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Abstract
Number state filtering in coherent states leads to sub-Poissonian photon statistics.
These states are more suitable for phase estimation when compared with the coher-
ent states. Nonclassicality of these states is quantified in terms of the negativity of
the Wigner function and the entanglement potential. Filtering of the vacuum from a
coherent state is almost like the photon addition. However, filtering makes the state
more resilient against dissipation than photon addition. Vacuum state filtered coherent
states perform better than the photon-added coherent states for a two-way quantum key
distribution protocol. A scheme to generate these states in multi-photon atom–field
interaction is presented.

Keywords Number state filtering · Quantum key distribution · Quantum metrology

1 Introduction

Dynamics of the classical electromagnetic field is described by the Maxwell equa-
tions. All the features describable within this formalism are classified as the classical
aspects of the field. However, this description is inadequate as there are experimental
observations such as the anti-bunching of light, quadrature squeezing, sub-Poissonian
photon statistics, which cannot be understood within the classical description [13].
These observations are explainable in the quantum description of the electromagnetic
field. In this formulation, most fundamental states of the electromagnetic field are
the number states, which correspond to states of definite number of photons. It is of
interest to know those quantum states of the field which have features similar to the
classical field. It turns out that the coherent state, which is a superposition of all the
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number states with specific superposition coefficients, has that property [16,33]. This
specific choice of the superposition coefficients makes the coherent state very differ-
ent from these number states. For instance, the coherent states are the eigenstates of
the annihilation operator â; the corresponding complex eigenvalue α is the coherent
state amplitude. These states form an over-complete basis set so that any state of the
electromagnetic field is expressible as a continuous superposition. As a consequence,
the expectation values of an operator-valued function of the annihilation operator are
the statistical average of the corresponding function of the coherent state amplitude.
The expression for the coherent state in the number state basis is

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n! |n〉. (1)

Correlation functions of any order are factorizable for the coherent states [17]. For
large amplitude coherent state, the photon number fluctuation is much smaller than
the mean number of photon. Hence, large amplitude coherent states represent the
classical field. These states saturate the uncertainties in the field quadratures to their
minimum values allowed by quantum mechanics. This, in turn, implies that the phase
space distribution of a coherent state is well localized. In the context of a harmonic
oscillator, the coherent state wave packet oscillates without dispersion. An alternate
definition identifies the coherent state as a displaced vacuum state. Interestingly, one
of the quasi-probability distributions, namely the Glauber–Sudarshan P-function for
the coherent state, is a Dirac delta function, which is a well defined probability density
[16,33]. For this reason these states are called quasi-classical states. Any other choice
of coefficientsmakes the resultant state nonclassical whose P-function ismore singular
than a delta function. This signals the nonclassical aspect of the quantum state [13].

Nonclassicality of quantum states is of importance in quantum optics [22,27]. The
notion of nonclassicality is based on the quasi-probability distributions for the quan-
tum states. Negative value of P-function or Wigner function is sufficient to identify a
quantum state as nonclassical. Many interesting nonclassical states have been defined
by suitable modifications of the quasi-classical coherent states: for instance, photon-
added coherent states [1], even/odd coherent states [10], truncated coherent states
[25,31]. The even and odd coherent states are defined as the symmetric and anti-
symmetric superposition of two coherent states whose complex amplitudes are of
equal magnitude but out of phase by π [10]. These states exhibit quadrature squeezing
and sub-Poissonian statistics for suitable values of the amplitude. Agarwal and Tara
introduced a new class of nonclassical states by adding quanta to the coherent state.
These states are called photon-added coherent state (PACS) [1]. For proper choice of
parameters, PACS shows quadrature squeezing and sub-Poissonian photon statistics.
Truncated coherent states are obtained bymodifying the expression in Eq. 1 by remov-
ing either a finite number of contiguous states starting from the vacuum or by removing
all the states beyond a specified number state [25,31]. This process is known as quan-
tum scissoring [2,19,26]. Another important class of nonclassical states is obtained
by number state hole burning or filtering in the coherent states [7,28]. More generally,
states with many of the number states not being present in the superposition have been
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studied to assess their possible use in practical applications such as optical data storage
and optical communication [6,7]. It may be noted that schemes to generate such states
are known [3,4,9,11,12,15,21,30,39,40].

In this paper, we study the nonclassical properties of number state filtered coherent
state. The photon counting statistics of these states is discussed in Sect. 2. Sub-
Poissonian statistics is shown to improve phase estimation in comparison to the
coherent states. In Sect. 3, quantification of nonclassicality of these states is car-
ried out. Entanglement potential and negativity of Wigner function are studied in this
context. In Sect. 4, the possibility of generating these states in the interaction of a
three-level atom with a cavity field is discussed. In Sect. 5, features of vacuum state
filtered coherent state are analyzed. Specifically, the robustness of the state against
dissipation is exhibited. This feature enables these states to perform better than the
single-photon-added coherent state (SPACS) when it comes to two-way quantum key
distribution.

2 Number state filtering in coherent state

Number state filtered state (NSFS), denoted by |ψ(α,m)〉, is defined as

|ψ(α,m)〉 = e−|α|2/2

Nm

∞∑

n=0,n �=m

αn

√
n! |n〉, (2)

where Nm is the normalization constant given by

Nm =
√

1 − e−|α|2 |α|2m
m! . (3)

This definition implies that the state is obtained if the number state |m〉 is absent in
the superposition defined in Eq. 1.

The state |ψ(α,m)〉 does not become |α〉 for any m. However, if m >> |α| or vice
versa, then |ψ(α,m)〉 ≈ |α〉. It is worth noting that the coherent state is a superposition
of NSFSs,

|α〉 = Nm

2
(|ψ(α,m)〉 + |ψ(−α,m)〉)

+ Nk

2
(|ψ(α, k)〉 − |ψ(−α, k)〉), (4)

where m is odd and k is even.
NSFS is expressible as

|ψ(α,m)〉 = 1

Nm
(|α〉 − Cm |m〉) = 1

Nm
(I − |m〉〈m|)|α〉, (5)
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Fig. 1 Probability distribution for |x〉 in |ψ(α,m)〉 (continuous), |α〉 (dashed) and |m〉 (dot-dashed) as a
function of x for α = 2 and m = 4

a superposition of |α〉 and |m〉, where Cm = e−|α|2/2 αm√
m! [5]. The overlap between

the states |ψ(α,m)〉 and |α〉 is

|〈α|ψ(α,m)〉|2 = 1 − |Cm |2, (6)

which is minimum if |α|2 = m. Therefore, maximum nonclassicality of |ψ(α,m)〉 is
expected if |α|2 = m.

For a given α, the state |ψ(α,m)〉 corresponding to different m are linearly inde-
pendent. Hence the set {|ψ(α,m)〉}∞m=0 can be used as a basis. Further, for a given
m

1

π

∫
N 2
m |ψ(α,m)〉〈ψ(α,m)|d2α = I − |m〉〈m|, (7)

which is the completeness relation for the Hilbert space less than the number state |m〉
of a harmonic oscillator.

In x-representation, the wavefunction for a coherent state is a Gaussian. Probability
density for x in |ψ(α,m)〉 is |ψα,m(x)|2, which is shown in Fig. 1. For comparison,
the corresponding probability densities for coherent state |α〉 of amplitude α = 2 and
the number state |m〉 with m = 4 are also shown. From the figure it is clear that the
probability distribution is not a Gaussian. In fact, the distribution is oscillatory.

The time evolution of |ψ(α,m)〉 under U = e−iωta†a , the evolved state is

|ψ(α,m, t)〉 = 1

Nm

(
|αe−iωt 〉 − Cme

−imωt |m〉
)

,

= |ψ(αe−iωt ,m)〉, (8)

analogous to the evolution of the coherent state |α〉 → |αe−iωt 〉.
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It is interesting to note that the even and odd coherent states are expressible as

|ECS〉 = 1√
2

√
1 − |Cm |2
1 + |C0|4 (|ψ(α,m)〉 + |ψ(−α,m)〉),

(for odd m) (9)

and

|OCS〉 = 1√
2

√
1 − |Cm |2
1 − |C0|4 (|ψ(α,m)〉 − |ψ(−α,m)〉),

(for even m). (10)

2.1 Photon statistics

Photon statistics is an experimentally measurable aspect of the electromagnetic field.
Probability of detecting k photons in a measurement is |〈k|ψ(α,m)〉|2, where |k〉
represents the number state with k photons. Using the number state expression given
in Eq. 2,

Pk = |〈k|ψ(α,m)〉|2 = e−|α|2

N 2
m

∣∣∣∣
αk

√
k! − αm

√
m!δk,m

∣∣∣∣
2

, (11)

which gives the average number of photons in the state as

〈n̂〉 = 〈a†a〉 = 1

N 2
m

(
|α|2 − me−|α|2 |α|2m

m!
)

. (12)

For |α| >> m or |α| << m

〈n̂〉 ≈ |α|2, (13)

as expected since |ψ(α,m)〉 ≈ |α〉 under these limits. Surprisingly, if |α|2 = m,

〈n̂〉 = |α|2, (14)

same as the average number of photons in the coherent state |α〉 even though overlap
between |ψ(α,m)〉 and |α〉 is minimum. Nevertheless, the nonclassical nature of the
photon distribution can be identified by the Mandel Q-parameter

Q = 〈a†2a2〉 − 〈a†a〉2
〈a†a〉 . (15)

If Q = 0, the state is Poissonian which corresponds to a coherent state. If Q < 0, the
state is sub-Poissonian which is a nonclassical feature. The state is super-Poissonian
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Fig. 2 The Q parameter as a function of |α| for the state |ψ(α,m)〉 (continuous), |α,m − 1〉u (dashed) and
|α,m〉l (dot-dashed) with a m = 9 and b m = 25

if Q > 0. For the state |ψ(α,m)〉,

Q = e−|α|2 |α|2m
m!N 2

m〈n̂〉
(
2m|α|2 − m(m − 1)

− |α|4 − me−|α|2 |α|2m
m!

)
, (16)

where 〈n̂〉 is given in Eq. 12. The dependence of Q on |α| is shown in Fig. 2a for
m = 9 and Fig. 2b for m = 25. The state is characterized by Q < 0 as well as Q > 0
in different ranges of |α|. To understand the photon statistics of |ψ(α,m)〉, consider
expressing it as a linear superposition of a lower truncated coherent state (LTCS) and
an upper truncated coherent state (UTCS)whose number states expressions are [25,31]

|α, N 〉l = Ñl

∞∑

n=0

αN+1+n

√
(N + 1 + n)! |N + 1 + n〉, (17)

and

|α, N 〉u = Ñu

N∑

n=0

αn

√
n! |n〉, (18)

respectively. Here Ñ−2
u = e|α|2(1 − γ (N + 1, |α|2)/N !) and Ñ−2

l = e|α|2γ (N +
1, |α|2)/N ! with γ (N , x) = (N − 1)!

[
1 − e−x ∑N−1

j=0
x j

j !
]
, the incomplete Gamma

function. Note that, the states UTCS and LTCS are orthogonal to each other.
An interesting aspect of these two states is that they are sub-Poissonian for any α.

As |α| increases to values much larger than unity, the photon number distribution of
LTCS becomes Poissonian, that is, Q tends to zero. In the same limit, the Q parameter
of UTCS becomes −1, that is, sub-Poissonian.
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Fig. 3 |Cu |2 (continuous) and |Cl |2 (dashed) are plotted as a function of |α| for a m = 9 and b m = 25

The state |ψ(α,m)〉 is expressible as a linear combination of LTCS and UTCS:

|ψ(α,m)〉 = Cu |α,m − 1〉u + Cl |α,m〉l , (19)

where Cu = u〈α,m − 1|ψ(α,m)〉 and Cl = l〈α,m|ψ(α,m)〉.
Though the states involved in the superposition are sub-Poissonian, the resultant

state is super-Poissonian for a range of values of α as shown in Fig. 2. A key obser-
vation is that the state |ψ(α,m)〉 exhibits maximum super-Poissonian character when
UTCS and LTCS are equally sub-Poissonian. As α changes, |ψ(α,m)〉 exhibits sub-
Poissonian feature over a small region and becomes nearly Poissonian for larger and
smaller values of |α|. This feature emerges here in away that is analogous to the appear-
ance of super-Poissonian statistics when two number states, which are sub-Poissonian,
are superposed. If the superposition coefficients are nearly equal in magnitude, mea-
surement of photon number gives results corresponding to the two number states with
nearly equal probability. That is, the measurement results fluctuate and the statistics is
super-Poissonian. To relate this with the behavior of Q parameter of |ψ(α,m)〉, |Cu |2
and |Cl |2 are shown as a function of |α| for different values of m in Fig. 3. When one
of the coefficients is nearly unity, |ψ(α,m)〉 has negative Q corresponding to either
LTCS or UTCS both of which are sub-Poissonian. When the coefficients are nearly
equal, the statistics exhibits fluctuations as in the case of superposition of two number
states and the resultant state is super-Poissonian.

The fact that the states |ψ(α,m)〉 exhibit sub-Poissonian character indicates that
they could be of use in phase estimation using interferometers. Coherent states provide
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Fig. 4 Phase sensitivity �θ (continuous) and Q parameter (dashed) as a function of m for |ψ(α,m)〉 for a
α = 3 and b α = 4

a phase resolution of �θ = 1/
√|α|2| sin θ | [13]. There is mild improvement if one

uses |ψ(α,m)〉 instead of the coherent states. This feature is shown in Fig. 4, where
the minimum detectable phase is shown as a function of m. It is clear that sensitivity
is maximum when |ψ(α,m)〉 exhibits minimum Q.

2.2 Subtraction of photons fromNSFS

Photon addition to a coherent state generates a nonclassical state [1]. Like photon
addition, photon subtraction is a process which may introduce nonclassicality in many
states. However, photon subtraction leaves the coherent state unaltered as it is an
eigenstate of â. Action of â on other states generates photon-subtracted states [34].
One way of realizing photon subtraction experimentally is by using beam splitters.
Though |ψ(α,m)〉 is necessarily nonclassical, the effect of photon subtraction is of
interest. The resultant state on subtracting a photon from |ψ(α,m)〉 is

â|ψ(α,m)〉 = α

√
1 − |Cm−1|2√
1 − |Cm |2 |ψ(α,m − 1)〉, (20)

in which the number state |m−1〉 is filtered. Successive action of â leads to a sequence
of NSFS wherein the successively lower number states are filtered. After m photon

123



Number state filtered coherent states Page 9 of 19 233

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

|α|

|〈
α

,1
| ψ

(α
,0

)〉
|2

Fig. 5 Overlap of the state |ψ(α, 0)〉 with single-photon-added coherent state |α, 1〉 as a function of |α|

subtractions, |ψ(α,m)〉 becomes

âm |ψ(α,m)〉 = αm

√
1 − |C0|2√
1 − |Cm |2 |ψ(α, 0)〉, (21)

in which the vacuum state is absent. This state is similar to the SPACS |α, 1〉 [1]. The
overlap between these two states is

|〈α, 1|ψ(α, 0)〉|2 = |α|2
(1 − e−|α|2)(1 + |α|2) , (22)

which is plotted as a function of |α| in Fig. 5. It clearly indicates that for small or large
|α|, the states are nearly the same as the overlap is nearly unity.

Interestingly, subtraction of one more photon from |ψ(α, 0)〉 yields

âm+1|ψ(α,m)〉 = αm+1
√
1 − |Cm |2 |α〉, (23)

the coherent state. In short, subtraction of m + 1 photons from |ψ(α,m)〉 generates
the coherent state. This has to be compared with the action of â on a number state |m〉.
After m successive photon subtractions, |m〉 becomes the vacuum state |0〉 and one
more subtraction annihilates the state. It is to be noted that while subtraction of m + 1
photons from |ψ(α,m)〉 generates a coherent state, addition of photons to a coherent
state does not generate |ψ(α,m)〉, a consequence of the noncommutativity of a and
a†.

From Eq. 23, it is seen that |ψ(α,m)〉 satisfies the eigenvalue equation
[
(I − P̂m)am+1

]
|ψ(α,m)〉 = αm+1|ψ(α,m)〉, (24)

where P̂m = |m〉〈m|.
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Fig. 6 Wigner function for the states |ψ(2, 5)〉 (left) and |ψ(3, 9)〉 (right) showing negative regions

On filtering the number state |m〉 from the coherent state |α〉, the resultant state
has maximum deviation from |α〉 if |α|2 ≈ m, which is the condition for maximum
nonclassicality of the NSFS. On the other hand, NSFS exhibits maximum super-
Poissonian photon statistics under the same condition. In fact, a state with super-
Poissonian photon statistics does not refer to the nonclassicality of the state. In order
to clarify the condition for maximum nonclassicality of NSFS, we study the negativity
of Wigner function and entanglement potential in the next section.

3 Nonclassicality of NSFS

Phase space representation of quantum states provides additional insights. For
instance, classical aspects of quantum states are readily obtained by such represen-
tations. In quantum optics, the most used phase space distributions are the P-, Q-
and Wigner functions. Negative value of Glauber–Sudarshan P-function is a suffi-
cient condition for qualifying the state as nonclassical. The condition 〈(�n̂)2〉 < 〈n̂〉
requires the P-function to be negative. Hence, the amplitude squeezing is a nonclas-
sical effect [13]. A state with amplitude squeezing possesses sub-Poissonian photon
statistics. The sub-Poissonian character of |ψ(α,m)〉 is discussed in Sect. 2.

3.1 Wigner function

In this section, we discuss the nonclassicality of |ψ(α,m)〉 in terms of its Wigner
function. Wigner function, though not singular for any state, can become negative in
some regions. The negativity is an indicator of quantumness [38]. Wigner function for
a state |φ〉 is,

W (β) = 2

π

∞∑

n=0

(−1)n〈φ|D(β)|n〉〈n|D†(β)|φ〉, (25)

which is an expression in terms of the displaced number state D(β)|n〉 [8,13].
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Fig. 7 Negativity of Wigner function as a function of α for |ψ(α,m)〉 corresponds to m = 2 (dot-dashed),
4 (dashed) and 9 (continuous)

For the state |ψ(α,m)〉,

W (β) = 2

π

∞∑

n=0

(−1)n
∣∣∣e−i Im(βα∗)〈α − β|n〉 − C∗

mDmn(β)t
∣∣∣
2
. (26)

Here

Dmn(β) =
√

n!
m!e

−|β|2/2βm−n L(m−n)
n (|β|2), m > n (27)

Dmn(β) =
√
m!
n! e

−|β|2/2(−β∗)m−n L(n−m)
n (|β|2), m ≤ n (28)

where L(k)
n is the associated Laguerre polynomial.

Wigner functions for |ψ(α,m)〉with α = 2,m = 5 and α = 3,m = 9 are shown in
Fig. 6. Both the states are nonclassical as their respectiveWigner functions are negative
in some regions of phase space. Interestingly, the number of peaks equals m + 1. To
quantify the nonclassicality, the volume under negative portion of theWigner function
is shown in Fig. 7. It is readily inferred from the figure that the negativity is maximum
when |α|2 ≈ m. This is consistent with the result that the overlap of |ψ(α,m)〉 with
the classical state |α〉 reaches its minimum when |α|2 = m.

3.2 Beam splitter transformation

Anotherway to quantify nonclassicality is the entanglement at output of a beamsplitter.
If one of the input states is a coherent state, it requires a nonclassical state at the
second port to generate entanglement at the output [18]. The amount of entanglement
is a measure of the nonclassicality of the input state to the second port. The unitary
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transformation effected by a 50:50 beam splitter is

U =
[

1√
2

i√
2

i√
2

1√
2

]
. (29)

The input bipartite state |ψ(α,m)〉|β〉 transforms to

|ψAB〉 = U |ψ(α,m)〉|β〉 = 1

Nm

[ ∞∑

r=0

e−|α̃|2/2 α̃r

√
r !

∞∑

s=0

e−|β̃|2/2 β̃s

√
s! |r , s〉

−Cm

∞∑

n=0

e−|β|2/2 βn

√
n!

⎛

⎝
m∑

q

n∑

q ′

√
(q + q ′)!(m + n − q − q ′)!

m!n!

×
(

1√
2

)n+q−q ′ (
i√
2

)m−q+q ′

|q + q ′,m + n − q − q ′〉
)]

, (30)

where α̃ = (α + iβ)/
√
2 and β̃ = (iα + β)/

√
2. Here |β〉 is a coherent state.

Entanglement in the output of the beam splitter is quantified by the linear entropy
of one of the reduced density operators of the bipartite output. It is defined as [37],

L A(|ψAB〉) = 1 − Tr(ρ2
A), (31)

where ρA = TrB(|ψAB〉〈ψAB |). Here A and B are refer to the two output ports. For
pure bipartite states, linear entropy is a goodmeasure of entanglement. Nonzero values
of LA imply entanglement in |ψAB〉. Figure 8 shows the entanglement in the output
state |ψAB〉 for various values ofm with α = β = 3. It is clear from the figure that the
state at the output ports of the beam splitter is entangled, which indicates that the input
state is nonclassical. For large m, |ψ(α,m)〉 ≈ |α〉 and hence the entanglement of the
output state is zero. Beam splitter generates maximally entangled state if |α|2 = m for
a given α and independent of β. This is consistent with the observation made earlier in
Sect. 3 that the nonclassicality of |ψ(α,m)〉 is expected to be maximum if |α|2 = m.

4 Generation of NSFS

In this section, a scheme to generate |ψ(α,m)〉 is presented. This process involves
driving a system of an atom and a cavity by two consecutive Hamiltonian evolutions.
First, a multi-photon interaction drives the atom–cavity system. The resultant state is
modified by driving the atomic system with a classical field. Details of the processes
are indicated here.

Consider a ladder-type three-level atom interacting with a cavity field of resonance
frequency ωc. The states of the three-level atom are labeled by | f 〉, |e〉 and |g〉 in
decreasing order of their energies as shown in Fig. 9. Interaction between the field and
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Fig. 8 Linear entropy L A for the
state |ψAB 〉 as a function of m
with α = β = 3
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Fig. 9 Ladder-type three-level
atom with energy levels | f 〉, |e〉
and |g〉. The states are labeled in
decreasing order of energies

the atom is given by the multi-photon Hamiltonian [41]

HI = g(eiφa†m |g〉〈 f | + e−iφam | f 〉〈g|), (32)

which connects the states |g〉 and | f 〉. The transition from |g〉 to | f 〉 is achieved by
annihilating m photons of the cavity field, and the transition from | f 〉 to |g〉 creates m
photons of the cavity field.

The initial state of the atom–cavity is |0, f 〉, where the cavity field is in its vacuum
and the atom is in the state | f 〉. The time evolved state at time t1 is

|ψ(t1)〉 = cos(
√
m!gt1)|0, f 〉 − ieimφ sin(

√
m!gt1)|m, g〉. (33)

The atomic transition |e〉 → | f 〉 comes in to the picture when the atom is driven by
an external laser with Rabi frequency ε. The corresponding Hamiltonian is

H2 = 1

2
�ω f eσz + �ωca

†a + �g(σ+a + σ−a†)

− �ε(e−iωd tσ− + eiωd tσ+), (34)

where σz = | f 〉〈 f | − |e〉〈e|, σ+ = | f 〉〈e| and σ− = |e〉〈 f |. The transition frequency
between the states |e〉 and | f 〉 is ω f e. We assume ωc = ωd . In the limit of large

detuning (� = ω f e − ωc) and in the rotating frame defined by e−iωd (σz+a†a), the
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effective Hamiltonian corresponding to H2 is [14]

Heff = �χ [| f 〉〈 f | + (a†a − λ(a† + a) + λ2)σz], (35)

where χ = g/(ω f e − ωc) and λ = ε/g. If the state of the atom is |g〉, then the cavity
field is unaffected. If the atomic state is |e〉 or | f 〉, the cavity evolution is nontrivial.
Cavity driven is conditional depending on the atomic state.

Under the evolution governed by Heff , |ψ(t1)〉 evolves to

|ψ(t1 + t2)〉 = cos(
√
m!gt1)eiλ2 sin2 χ t2 |λ(1 − eiχ t2)〉| f 〉

− ieimφ sin(
√
m!gt1)|m, g〉, (36)

where |λ(1− eiχ t2)〉 is a coherent state. Using a Ramsey pulse to drive the transitions
| f 〉 → 1√

2
(| f 〉 + |g〉) and |g〉 → 1√

2
(| f 〉 − |g〉), the state |ψ(t1 + t2)〉 transforms to

|ψ(t1 + t2)〉 = (b|α〉 − c|m〉)| f 〉 + (b|α〉 + c|m〉)|g〉, (37)

where α = λ(1 − eiχ t2), b = 1√
2
(cos(

√
m!gt1)eiλ2 sin2 χ t2) and c = 1√

2
ieimφ sin

(
√
m!gt1). The resultant state contains the required field state |ψ(α,m)〉 as a compo-

nent. It is in post-selection of the atomic state, the cavity field is projected onto the
required state. If the atom is detected in the state | f 〉, the state of the field collapses
to (b|α〉 − c|m〉) which is the target state |ψ(α,m)〉 for proper choices of b and c.

5 NSFS for quantum information processing

The elementary unit for quantum computation and information processing is a qubit.
Any two orthogonal quantum states of a system form a qubit. In the context of cavities,
the vacuum state and the single-photon state form a qubit. Various quantum protocols
such as quantum teleportation [20,32], quantum state transfer [23], entanglement gen-
eration [35] have been implemented in this system. SPACS has also been suggested
for implementing various quantum information protocols [29,36]. Performance of any
quantum information processing system is affected by external factors such as dissi-
pation and decoherence. It has always been of interest to use qubits which are resilient
against such processes.

One way of assessing the robustness of the qubit evolving under a dissipative
channel, is to calculate the overlap between its initial and final states. We consider
four families of qubits using cavity field. One of the states of the qubit is the vacuum
state. The other state can be a single-photon state |1〉, a coherent state |α〉, a SPACS
|α, 1〉 or a NSFS |ψ(α, 0)〉. Of these choices, the one with |α〉 is not ideal qubit as
the states |0〉 and |α〉 are not orthogonal. A phenomenological model of damping in a
quantum channel is considered to study the effect of dissipation on these families of
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Fig. 10 Fidelities F|ψ(α,0)〉 (continuous), F|α〉 (dashed), F|α,1〉 (dot-dashed) and F|1〉 (dotted) as a function
of time. All curve corresponds to |α| = 1

qubits [13]. The fidelity, which is the overlap of evolved state and the initial state, is

F|φ〉 = |〈φ(0)|φ(t)〉|2 . (38)

where |φ(t)〉 ∝ e−γ a†at/2|φ(0)〉. The amplitude damping rate is γ . The respective
fidelities for the states mentioned above are

F|1〉 = e−γ t ,

F|α〉 = e−|α−αd |2 ,

F|ψ(α,0)〉 =
∣∣∣e− 1

2 |α−αd |2 − e− 1
2 (|α|2−|αd |2)

∣∣∣
2

(1 − e−|α|2)(1 − e−|αd |2)
,

F|α,1〉 = e
1
2 |α−α̃d |2e

1
2 (|α|2−|α̃d |2)e−|α−αd |2e−(|α|2−|αd |2)

× (1 + α∗αd)
2

(1 + |α|2)(1 + α∗α̃d)
, (39)

where αd = αe−γ t/2 and α̃d = αe−γ t . The suffix indicates the state whose fidelity is
being studied.

Fidelities for these various quantum states are shown in Fig. 10, assuming γ = 0.01.
It is to be noted that the state |ψ(α, 0)〉 is robust against damping in a quantum channel
as its fidelity decays slower than the other states. This makes the state suitable for
quantum information processing.

Secure communication protocols such as BB84 are being carried out using the
coherent states. The drawback in using the coherent states is that the eavesdropper
can extract some photons, which may lead to loss of information. In order to prevent
photon loss, Mundarain et al. [24] have shown that SPACS can be used for two-way
quantum key distribution. Their protocol guarantees secure key distribution between
two parties A andB even in the presence of a third-party Ewho eavesdropswith a beam
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splitter. In order to quantify the information gathered by E, the respective probabilities
of detecting at least one photon by B and E are calculated. If |0〉 and SPACS are used,
then these probabilities are

PB(n ≥ 1) = 1 − e−|α|2 cos2 θ

1 + |α|2
(
sin2 θ + |α|2 sin4 θ

)
, (40)

and

PE (n ≥ 1) = 1 − e−|α|2 sin2 θ

1 + |α|2
(
cos2 θ + |α|2 cos4 θ

)
, (41)

where θ is an angular parameter that characterize the beam splitter. It is clear that for
small θ and α, information loss is less.

The state |ψ(α, 0)〉 is more robust against dissipative losses in a quantum channel.
This may endow |ψ(α, 0)〉 as a better choice than SPACS. The respective probabilities
of detecting at least one photon by B and E when |0〉 and |ψ(α, 0)〉 are the input to
the beam splitter are

P̃B(n ≥ 1) = 1 − e−|α|2 cos2 θ − e−|α|2

1 − e−|α|2 , (42)

and

P̃E (n ≥ 1) = 1 − e−|α|2 sin2 θ − e−|α|2

1 − e−|α|2 . (43)

In order to compare the advantage of |ψ(α, 0)〉 over SPACS, the ratios of detection
probabilities are considered. These are defined as

R|ψ(α,0)〉 = P̃E (n ≥ 1)

P̃B(n ≥ 1)
, (44)

and

R|α,1〉 = PE (n ≥ 1)

PB(n ≥ 1)
. (45)

These two ratios are shown in Fig. 11. The ratio R|ψ(α,0)〉 is always less than R|α,1〉
indicating that the diversion of photons by eavesdropper E via beam splitter transfor-
mation is less probable if one uses the state |ψ(α, 0)〉 instead of SPACS. This shows
|ψ(α, 0)〉 performs better than SPACS.
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Fig. 11 Ratios R|ψ(α,0)〉 (continuous line) and R|α,1〉 (dashed line) as a function of |α|. Here cos2 θ = 0.9

6 Summary

Coherent states are special as they exhibit minimum uncertainty in the quadratures,
Poissonian statistics, factorizability of coherence functions, etc. All these features
which make these states the most classical among the quantum states arise due to the
specific choice of superposition coefficients. Number state filtering from a coherent
state leads to a nonclassical state. These states are realizable in the multi-photon
interaction between a three-level atom and a single-mode cavity field in a coherent
state. The number state |m〉 that has the maximum weightage in a coherent state |α〉
corresponds to |α|2 ≈ m. This is the condition for maximal nonclassicality for a
number state filtered coherent state. The overlap between the coherent state and NSFS
is minimum when this condition is satisfied. The negativity of the Wigner function is
maximum under these conditions. Also, the entanglement potential of these states is
highest when |α|2 ≈ m. Ifm deviates from |α|2, the resultant state is still nonclassical
as shown by the sub-Poissonian. This property enables these states to perform slightly
better than the coherent states if used for phase measurements in an interferometric
setup. Surprisingly, NSFS is super-Poissonian when |α|2 ≈ m. Emergence of this
super-Poissonian statistics is understood based on the fact that NSFS is a superposition
of suitably truncated coherent states which are sub-Poissonian. The super-Poissonian
statistics emerges in an analogous manner as in suitable superposition of two number
states which are also sub-Poissonian.

Further, vacuum state filtered coherent states are resilient against the effects of
dissipation than the photon-added coherent states. This makes NSFS more suitable
for quantum information processing. For instance, a robust qubit can be realized using
the vacuum and NSFS as the computational basis states. The vacuum state filtered
coherent state performs better than the single-photon-added coherent state in two-way
quantum key distribution where eavesdropping is carried out using a beam splitter.
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