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Abstract
We propose a scheme for implementing a two-qubit quantum phase gate in which the
photonic qubits encoded on the cavity modes and a three-level V -type atom passes
through the cavity. The location of the resonance is predicted from the use of the
theory of multiphoton resonance. Further, we investigate the influence of variations in
parameters such as the coupling strengths and detunings on the gate fidelity. We also
use the wave-function and the density matrix approaches to analyze theoretically and
numerically the effects of decoherence in the implementation of the gate.

Keywords Quantum information processing · Multiphoton resonance theory ·
Multimode cavity QED · Wave-function approach

1 Introduction

In the field of quantum computation, the principle of coherent superposition and quan-
tum entanglement can be utilized for building quantum computers [1]. In comparison
to conventional computers, it has been shown that quantum computers provide more
efficient and faster solutions for certain computational problems. An evidence for the
power of quantum computers had been shown by finding the prime factors of an integer
and by conducting a search of an object in an unsorted database with N elements [2,3].
Quantum logic gates are fundamental building blocks of quantum computers. In [4,5],
a set of gates containing of a one-bit unitary gate and a two-bit gate can build a
universal quantum computer. Many physical systems were suggested to implement
the concept of quantum computing: trapped ions [6], liquid-state nuclear magnetic
resonance (NMR) [7], cavity quantum electrodynamics (QED) [8,9], etc.

Cavity QED systems have been shown to provide an enhancement in the interac-
tions between atoms and photons compared to such interactions in free space, and then
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these systems can be used to implement quantum logic [8–11]. Quantum information
in cavity QED systems can be represented by qubits in atoms, by qubits in cavity
modes, or by qubits in atoms and cavity modes together. A number of proposals for
realizing quantum logic gates were proposed such as schemes in [12–14]. In quantum
communication, the use of cavity QED systems is favored since they provide an inter-
face between computation and communication (i.e., between atoms and photons) and
then they hold great promise as basic tools for quantum networks [15,16].

In [17], a scheme for realizing quantum gates with photonic qubits to be encoded
on cavity modes is proposed. In this theoretical scheme, the authors utilize both the
technique of adiabatic elimination from atomic physics developed by [18] and dual-rail
qubits approach for the interaction of multilevel atoms with multimode cavities so that
a set of universal gates is realized. In more details, by assuming a four-level atom in
double-� configuration to be coupled to two dual-rail qubits the two-qubit iSWAPgate
has been formed.Then, by adding twomore transitions to the iSWAPgate configuration
(i.e., a six-level atom interacts with six cavity modes) the Fredkin gate can be built.
In [19], it is shown that applying the multiphoton resonance theory has significantly
improved the speed of quantum iSWAP gate in the previous scheme. Furthermore,
a study of the influence of the decoherence processes on the performance of both
the iSWAP and the Fredkin operations shows that these operations are insensitive to
the atomic and photonic decays, and therefore, these gates are good candidates for
applications in quantum information processing.

In this paper, we follow the same procedure of using the multiphoton resonance
theory in Refs. [17,19] to implement a two-qubit gate in which a three-level atom in
Vee configuration passes through a cavity with two photons. As a comparison with
the previous scheme, in our scheme we reduce the number of the states of an atom
and the number of photons inside a cavity to only three atomic levels and two cavity
modes, and therefore, the requirements in the physical system in our scheme can be
met in a physically reasonable scenario.

This paper is organized as follows. In Sect. 2 we describe the model and discuss
howmultiphoton resonance theory is used so that the two-qubit quantum phase gate is
performed. We then examine the robustness of our scheme to variations in significant
parameters of the model in Sect. 3, and we also study the variation in the gate fidelity
due to decoherence processes in Sect. 4. Finally, we conclude the paper in Sect. 5 with
a summary.

2 Quantum phase gate

2.1 Themodel

We consider a V -configuration of the energy levels of a three-level atom in which
|g〉 represents the ground state and |e〉 and |i〉 are two excited states, each coupled
to the ground state via a dipole allowed transition but not to each other. The atom
interacts with twoEMmodes inside a high Q cavity, and thesemodes have the resonant
frequencies ω1 and ω2 (see Fig. 1). We choose the Fock states |0〉 and |1〉 to be the
logical states 0 and 1. All the possible states in the cavity field are therefore given by
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Fig. 1 V -type three-level atom
interacting with a bimodal cavity
field. The cavity can hold two
modes of frequencies ω1 and
ω2. The atomic levels are such
that ωig = ω1 + �1 and
ωeg = ω2 + �2. This level
scheme is used to realize a
two-qubit quantum phase gate
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|00〉, |01〉, |10〉, and |11〉. In this paper, we use the notation |α, β, δ〉 ≡ |α〉|β1〉|δ2〉
where |α〉(α = g, i, e) represents atomic state, while |β1〉 and |δ2〉 denote that cavity
fields have β photon in mode 1 and |δ〉 photon in mode 2 with (β, δ ∈ 0, 1).

In the standard qubit basis |00〉, |01〉, |10〉, |11〉, the quantum phase gate (QPG) we
want to realize is given, in matrix form, by

QPG ≡

⎡
⎢⎢⎣
1
1
1

−1

⎤
⎥⎥⎦ . (1)

We consider an atom with such a configuration (see Fig. 1) in its ground state |g〉
passing through the cavity with two photons in its modes. Obviously, the initial state
then is |ψ(0)〉 = |g, 11, 12〉. It is apparent that the initial state |01, 02〉 does not evolve
with the time, and for the initial states |g, 01, 12〉 and |g, 11, 02〉 we will see in the
following sections that proper values for detunings, the interaction time between the
three-level atom and the cavity modes, and the global phases will keep these states in
their initial states. This means the cavity state |01, 02〉 is unaffected, the cavity states
|01, 12〉, |11, 02〉 remain in their initial states, and therefore, aπ phase shift for the state
|11, 12〉 is only needed so that we meet the conditional evolution for implementing the
quantum phase gate.

The Hamiltonian describes the level scheme in Fig. 1 in the Schrödinger picture
which can be given, in the dipole and rotating-wave approximations, as

H = �

∑
i=g,i,e

ωi σ̂i i + �

2∑
j=1

ω j â
†
j â j + �[g1â1σ̂ig + g2σ̂geâ

†
2 + H.c.], (2)

where the coupling strengths are g j ( j = 1, 2), the atomic operators σ̂ig ≡ |i〉〈g| and
σ̂ge ≡ |g〉〈e|, and â j is the photon annihilation operator for the cavity mode. Now, we
can set � = 1. For the system initially in the state |g, 11, 12〉 and after interaction time
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t , the state of the system is given by

|ψ(t)〉 = a11|g, 11, 12〉 + b01|i, 01, 12〉 + c10|e, 11, 02〉, (3)

and therefore the Hamiltonian describing this system in an interaction picture can take
the form

HI = �1|i, 01, 12〉〈i, 01, 12| + �2|e, 11, 02〉〈e, 11, 02|
+ [g1|i, 01, 12〉〈g, 11, 12| + g2|g, 11, 12〉〈e, 11, 02| + H.c.], (4)

with �1 = [(ωi − ωg) − ω1] and �2 = [(ωe − ωg) − ω2].

2.2 Effective Hamiltonian

We now discuss how to use the adiabatic elimination technique to implement the
quantum phase gate in Eq. (1). This technique provides a theoretical method for iso-
lating two-level behavior from the more general N -level rotating-wave approximation
Schrödinger equation [18]. In [17,19], this technique has been used to construct effec-
tive three-level, four-level, and even five-level systems with a multiphoton resonance
in order to implement universal quantum gates. Here, we use this technique to reduce
the system in Eq. (3) to an effective two-level system. We now define two orthog-
onal projection operators P and Q where P + Q = 1, PP = P , QQ = Q, and
PQ = QP = 0.

Assuming we set |i〉 to be far from resonance and the states of interest correspond
to the subspace |ψ〉P spanned by P , then |ψ〉P = a11|g, 11, 12〉 + c10|e, 11, 02〉. In
this assumption �1 � g j with g j ( j = 1, 2) are all of coupling constants, whereas
�2 to be small and its proper value will be determined later to ensure resonance.
We use the two-level effective Hamiltonian defined by Heff = H0 − BA−1B† where
H0 = PHI P , A = QHI Q, B = PHI Q, and HI is given by Eq. (4). For convenience,
we use matrix form to represent the Hamiltonian in Eq. (4). That is, in the basis
{|g, 11, 12〉, |i, 01, 12〉, |e, 11, 02〉} one can rewrite HI as

HI =
⎡
⎣

0 g1 g2
g1 �1 0
g2 0 �2

⎤
⎦ . (5)

Selecting levels |g〉 and |e〉 as our P space, one can then partition HI into the matrices:

B =
[
g1
0

]
, H0 =

[
0 g2
g2 �2

]
, A = �1. (6)

After a trivial energy shift, the effective two-level Hamiltonian is

Heff = geff (σ̂− + σ̂+) + �eff σ̂+σ̂−, (7)
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Fig. 2 Quantum phase gate
using the two-level behavior of
Eqs. (8) and (9) for parameters
in the Hamiltonian (4). In this
figure, the state |g, 11, 12〉 is
represented by the black-solid
line, the state |i, 01, 12〉 is in
red-dotted line, and the state
|e, 11, 02〉 is the blue-dashed
line. Parameters: g1 = g2 = g,
�1 = 25g, and the value of �2
is determined by the resonance
condition in Eq. (9). The inset
shows a zoom for the population
of the state |i, 01, 12〉 for the
same parameters (Color figure
online)
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where the operators σ̂− ≡ |g, 11, 12〉〈e, 11, 02| and σ̂+ ≡ |e, 11, 02〉〈g, 11, 12|. The
effective coupling geff and the resonance condition �2 (by setting�eff = 0) are given
by

geff = g2, (8)

�eff = �2 + g21/�1. (9)

The system for the states of interest evolves in time, therefore, according to

|g, 11, 12〉 �→ cos(geff t) |g, 11, 12〉 − i sin(geff t) |e, 11, 02〉. (10)

With the time evolution to be (|geff t | = π) a π shift for the state |11, 12〉 is intro-
duced. The three other logical states |01, 02〉, |01, 12〉, and |11, 02〉 remain in their
initial states as a result for the parameters in Eqs. (8) and (9), for the large value of
�1, and for the gate operating time |geff t | = π . A two-qubit phase gate is, therefore,
realized. It is worth noting that our proposal requires the atom state to be |g〉 in and
out the cavity, such a condition provides a simple error correction. If the atom is not
detected to be in the ground state, the logic operation must be aborted.

In Fig. 2, we use the parameters in Eqs. (8) and (9) to numerically integrate the full
Hamiltonian (4). In this plot it is apparent that a two-level behavior occurs between
the states |g, 11, 12〉 and |e, 11, 02〉, and the system in Eq. (3) returns to its initial state
|g, 11, 12〉 after an interaction time |geff t | = π , which is completely in agreement
with the analytical dynamics in Eq. (10). In Fig. 3 we also numerically integrate the
Hamiltonian (4) to check the validity of our proposal by measuring the fidelity of the
system in Eq. (3) for being in the qubit state |g, 11, 12〉 for different values of �1/g.
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Fig. 3 Variation of the fidelity of
the quantum phase gate as a
function of �1/g, where
g1 = g2 = g and the value of
�2 is set by the resonance
condition in Eq. (9). The inset
shows a zoom for the fidelity in
the region 0 < �1/g ≤ 5 for the
same parameters
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3 Impacts of variations in couplings and detunings

Here, we discuss the impact of variations in significant parameters such as the coupling
constant g and the detuning � on the fidelity of our gate. Theoretically, the proper
values for the coupling strengths and the detunings are determined by Eqs. (8) and (9).
In reality, however, there is always uncertainty in these parameters that must be taken
into account. For example, it is reported in [8] that the uncertainty in atom velocity
ranges between ± 2 m/s, and then the atomic position of each atom can be determined
with a± 1mm precision. It is found in [20] that the variation of the atom-field strength
over the cross section of the atomic beam (0.5 mm) is in order 2%. Considering such
variations in the parameters of g and � and by the use of the full Hamiltonian (4),
we plot the fidelity of QPG in Fig. 4, where we allow the values of g and �2 to vary
slightly around the theoretical values. The system appears to be reasonably insensitive
to variations in parameters.

Fig. 4 Variation of the fidelity of
the quantum phase gate as a
function of �2/g. Parameters:
g1 = g2 = g, �1 = 25g, and the
value of �2 is determined by the
resonance condition in Eq. (9).
The solid line shows the effect
of both the variation of the
atom-field strength in order 2%
and the variation of �2
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4 Effects of decoherence

Since the birth of quantum computing, it was realized that decoherence will be one
of the difficulties to build quantum computers. Here, we study the influence of deco-
herence to examine with how much efficiency the desired outcome can be produced.
In our treatment, two dominant channels of the decoherence decay, namely via cavity
and atomic relaxations, are only considered in the study of the effects of decoherence.

4.1 Input state: |Ã〉 = |g, 11, 12〉

Firstly, we study the effect of dissipative processes when the initial state to be
|g, 11, 12〉. For this purpose,we recall Liouville’s equation (or generalmaster equation)
that can be written, in the density matrix framework, as

∂

∂t
ρ = −i[HI , ρ] + Lρ. (11)

The first term in Eq. (11) describes the atom-field coupling for the system HI in Eq. (4),
and the second term Lρ is known as Liouville’s operator and contains the effects
of dissipations. At zero temperature, the Liouvillian Lρ has the so-called Lindblad
form [21]

Lρ =
∑
i

1

2
ηi (2LiρL

†
i − L†

i Liρ − ρL†
i Li ), (12)

where η represents the loss of population. In our case η may refer to the spontaneous
emission γ or to the cavity field rate κ . The operators L and L† are the corresponding
system operators. By using Eqs. (11) and (12), numerical calculations in Fig. 5 show
the variation in fidelity when atomic and photonic decays to be considered.

In the following we seek to derive an analytical solution that enables us to explain
the numerical results provided by Eq. (11). For convenience, we rewrite the previous
Lindblad form in an another equivalent form as

Lρ =
∑
i

ηi LiρL
†
i − 1

2

∑
i

ηi (L
†
i Liρ + ρL†

i Li ). (13)

The Liouvillian operator in this formula gives further details for the population decays
from the excited states and the quantum jumps events in the damped systems [22].

Applying the general master equation in Eq. (11) on the system described by the
state vector (3) shows that the decay of the cavity field from the state, for example,
|e, 11, 02〉 takes the system to state |e, 01, 02〉 and the decay of state |i, 01, 12〉 due to
the atomic relaxation takes the system to state |g, 01, 12〉. Both states |g, 01, 12〉 and
|e, 01, 02〉 /∈ H, as H represents the Hilbert space where the Hamiltonian HI acts on
|ψ(t)〉. Indeed, both decays via atomic andphotonic relaxations take the systemoutside
the Hilbert space H = {|g, 11, 12〉, |i, 01, 12〉, |e, 11, 02〉}. This means our system is
not closed and decays in our system result in an irreversible loss of population. This
actually indicates that we can use the wave-function approach [23] instead of density
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matrix approach in Eq. (11) and therefore an analytical solution can be deduced. To
this end, we rewrite the previous Liouville’s equation as

∂

∂t
ρ = −i(H ′ρ − ρH ′†) + J ρ, (14)

where H ′ = HI − i
2

∑
i ηi L

†
i Li and Jρ = ∑

i ηi Liρ L†
i . Since decays in our

system result in an irreversible loss of population, we can propagate the wave function
|ψ(t)〉 (instead of the density matrix ρ) with the Schrödinger equation using the non-
HermitianHamiltonian H ′, i.e., ∂

∂t |ψ(t)〉 = −i H ′|ψ(t)〉. TheHamiltonian describing
the system when decays to be considered is

H ′ =
⎡
⎣

− i
2 (κ1 + κ2) g1 g2

g1
[
�1 − i

2 (γig + κ2)
]

0
g2 0

[
�2 − i

2 (γeg + κ1)
]

⎤
⎦ , (15)

where κ1 and κ2 are the cavity field rates of the two modes and γeg is the atomic
relaxation from state |e〉 to state |g〉. Shore’s method [18] can be modified so that
H ′
eff = Heff − i

2

∑
i ηi L

†
i Li and, therefore, the effective two-level Hamiltonian with

decays can be given as

H ′
eff =

[− i
2 (κ1 + κ2) geff
geff

[
�eff − i

2 (γeg + κ1)
]
]

. (16)

The Hamiltonian H ′
eff acts on the subsystem |χ(t)〉 = c1|g, 11, 12〉 + c2|e, 11, 02〉

which is nothing but the system |ψ(t)〉 spanned by the projector P , i.e., |χ(t)〉 =
P|ψ(t)〉. The time evolution of the probability amplitudes in the subsystem |χ(t)〉,
therefore, can be described by (with geff = g2 and assuming exact resonance, �eff =
0)

∂

∂t
c1 = −1

2
(κ1 + κ2) c1 − i g2 c2,

∂

∂t
c2 = −i g2 c1 − 1

2
(γeg + κ1) c2. (17)

We may write the equations of motion (17) in matrix form as

[−λ − 1
2 (κ1 + κ2) −i g2

−i g2 −λ − 1
2 (γeg + κ1)

] [
c1
c2

]
= 0. (18)

The solutions for λ are obtained from the 2× 2 determinant of the coefficients, which
yields the quadratic equation (where we set κ1 = κ2 = κ and γeg = γ )

λ2 +
(
3κ + γ

2

)
λ + 1

2
κ(γ + κ) + g22 = 0. (19)
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Fig. 5 Variation of the fidelity in the presence of dissipation processes. Parameters of couplings and detun-
ings can be found in Fig. 4, and F0 represents the fidelity of the system at the resonance condition and
in the absence of any decay (see Fig. 4). a For κ = 0 and at the resonance condition, the fidelity is
F = (0.9, 0.75, 0.5)F0 at γ /g2 ∼ − 2

π ln(F). b Similarly F = (0.9, 0.75, 0.5)F0 at κ/g2 ∼ − 2
3π ln(F),

where γ = 0

The distinct roots (in the strong coupling regime g2 > κ, γ ) are reduced into

λ± = − (3κ + γ )

4
± i g2.

It follows that the general solutions for ci (i = 1, 2) may have the forms

ci (t) = c̃(1)
i exp(λ+t) + c̃(2)

i exp(λ−t), (20)

where the values of the coefficients are determined by the initial values (c1(t = 0) = 1
and c2(t = 0) = 0) and by the initial values of their first and second derivatives
obtained from the equations of motion in Eq. (17). The solutions for (c1(t) and c2(t))
can be then given as

|χ(t)〉 =
{[

cos(g2t) − (κ − γ )

4g2
sin(g2t)

]
|g, 11, 12〉

− i sin(g2t)|e, 11, 02〉
}
exp−

(
(3κ + γ )

4
t

)
. (21)

The norm of the system |χ(t)〉 therefore decreases according to 〈χ(t)|χ(t)〉 =
|c1(t)|2 + |c2(t)|2 � e−(

3κ+γ
2 )t , i.e., it decays with the rate 1

2 (3κ + γ ). We plot the
dynamics of the states |g, 11, 12〉 and |e, 11, 02〉 and compare the results by Eq. (21)
with the numerical integration of Eq. (11) as shown in Fig. 6.
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Fig. 6 Dynamics of the two-level system in Fig. 2 in the presence of dissipation processes and in strong
coupling regime, g = 4γ and κ = γ . The inset shows the relative population R = |Pth−Pnum|/Pnum where
Pth represents population of |g, 11, 12〉 given by theoretical calculation, i.e., Pth = |〈g, 11, 12|χ(t)〉|2 (see
Eq. (21)), and Pnum is population of |g, 11, 12〉 by numerical integration of Eq. (11). This inset indicates the
deviations between theoretical and numerical calculations and reflects the agreement between the results
provided by the density operator approach and the wave-function method

4.2 Input states: |g, 11, 02〉, |g, 01, 12〉

Following the same procedure in previous sections, we now briefly discuss the effects
of decoherence processes on the initial states |g, 11, 02〉 and |g, 01, 12〉. For the initial
state |g, 11, 02〉, the time evolution of this state is |g, 11, 02〉 �→ a10|g, 11, 02〉 +
b00|i, 01, 02〉, and for the initial state |g, 01, 12〉 its wave function at some time later is
|g, 01, 12〉 �→ a01|g, 01, 12〉+b00|e, 01, 02〉. From Liouville’s equation, both systems
are not closed and in each system there are two relaxation channels. In more detail,
upper states in these systems, namely |i, 01, 02〉 and |e, 01, 02〉, decay to the state
|g, 01, 02〉 due to atomic relaxations, and both initial states |g, 11, 02〉 and |g, 01, 12〉
decay to |g, 01, 02〉 due to photonic relaxations. By integrating Eq. (11), one can find
the effects of atomic and photonic decays on the populations of the previous initial
states at any time.

Finally, we briefly give a discussion of the experimental feasibility for implement-
ing our scheme within cavity QED. Here we use the parameters in Rydberg atom
microwave cavity QED experiment performed at ENS in Paris by Haroche et al. [8].
In this experiment the three important parameters for the cavity–atom interaction sys-
tem are (g, κ, γ )/2π ∼ (47, , 0.16, 0.005) kHz. Considering these parameters, the
gate fidelities in our scheme F > 0.98. The gate fidelities become F > 0.99 for
the parameters in [24], where further improvements in the field energy damping time
(with Tc = 130 ms at ω/2π = 51 GHz) have been introduced.

123



Quantum phase gate based on multiphoton process… Page 11 of 12 211

5 Conclusion

In summary, we have proposed a simple scheme that realizes a cavity QED based two-
qubit phase gate. In this scheme, a three-level atom in Vee configuration interacts with
a two-mode high Q cavity, where we use quantum logic with stored cavity photons.
We utilize the theory of multiphoton resonance to determine the appropriate values for
detunings, coupling constants, and the interaction time indicated in Eqs. (8) and (9).
We also discuss the influence of the atomic and photonic decays, and deviation of g and
� on the fidelity. In general, it is apparent that the system is reasonably insensitive to
variations in such parameters and therefore the scheme can be experimentally realized.

The three-level V -type atom is realistic and has interesting applications. This sys-
tem, for example, has been widely used in experimental observations of quantum
jumps of single trapped ions [25–27]. Moreover, polarization spectroscopy in V -type
configuration in Rb atoms has been reported in [28].

In this scheme, we consider the interaction of the atom–cavity to be in the strong
coupling domain. Basically, our scheme requires the cavity to have an extremely high
Q factor and the cavity modes to be confined in a small mode volume for extended
periods of times. Recently, most of cavity QED techniques work in the regime of
strong coupling [24,29–32]. Further, experimental realizations of multimode strong
coupling in cavity QED have been recently reported in [33,34], which promises that
the strong interaction between amultimode field and amultilevel atom simultaneously
inside one cavity can be achievable and, therefore, our scheme can be realized by the
present cavity QED techniques.
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