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Abstract
The entanglement-assisted stabilizer formalism overcomes the dual-containing con-
straint of standard stabilizer formalism for constructing quantum codes. This allows
ones to construct entanglement-assisted quantum error-correcting codes (EAQECCs)
from arbitrary linear codes by pre-shared entanglement between the sender and the
receiver. However, it is not easy to determine the number c of pre-shared entanglement
pairs required to construct an EAQECC from arbitrary linear codes. In this paper, let q
be a prime power, we aim to construct new q-ary EAQECCs from constacyclic codes.
Firstly, we define the decomposition of the defining set of constacyclic codes, which
transforms the problem of determining the number c into determining a subset of the
defining set of underlying constacyclic codes. Secondly, five families of non-Hermitian
dual-containing constacyclic codes are discussed. Hence, many entanglement-assisted
quantum maximum distance separable codes with c ≤ 7 are constructed from them,
including ones with minimum distance d ≥ q + 1. Most of these codes are new, and
some of them have better performance than ones obtained in the literature.
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1 Introduction

Quantum codes are applied to reduce decoherence in quantum computation and quan-
tum communication. The quantum stabilizer formalism allows constructing quantum
codes from “dual-containing” or “self-orthogonal” classical linear codes, see [1–4].
Then, a great deal of good quantum codes have been obtained. However, owing to
the limitation of the dual-containing condition for underlying classical codes, many
classical codes with good performance cannot be used to construct quantum stabilizer
codes.

Bowen found that pre-shared entangled states between the sender and the receiver
can increase both quantum and classical capacity for communication [5]. Based on
this, Brun et al. [6] proposed an entanglement-assisted stabilizer formalism, which
avoids the dual-containing constraint and allows ones to construct EAQECCs from
arbitrary classical linear codes. Here, an EAQECC can be denoted by [[n, k, d; c]]q ,
which encodes k information qubits into n channel qubits with the help of c pairs of
maximally entangled states and corrects up to � d−1

2 � errors, where d is the minimum
distance of the code.

EA-quantum Singleton bound of EAQECCs was proposed at first in [6]. Recently,
it was pointed to be incomplete and some examples of EAQECCs beating the bound
were presented [7]. In fact, this bound holds if d ≤ n+2

2 [8], which can be specifically
given below.

Proposition 1 ([6–8] EA-quantum Singleton bound) Suppose that d ≤ n+2
2 . An

EAQECC [[n, k, d; c]]q satisfies n + c − k ≥ 2(d − 1). Particularly, if c = 0,
then n − k ≥ 2(d − 1).

When d ≤ n+2
2 , an [[n, k, d; c]]q EAQECC achieving n + c − k = 2(d − 1) is called

an EAQMDS code. It is called a standard QMDS code when c = 0.
There have been many papers on the construction of quantum MDS codes (see

Refs. [9–22] and the references therein). However, it is not an easy task to construct
QMDS codes with large distance. For n = q2 + 1, q2, q2 − 1, (q2 + 1)/2 and
(q2 − 1)/2, there are QMDS codes with d ≥ q. Except for these five classes of code
lengths, it is very hard to construct QMDS codes with d ≥ q/2, see [15,17,18,21].
Since the entanglement can increase the error-correcting ability of quantum codes [23],
it is natural to consider constructing EAQMDS codes with large distance. In the latest
years, someEAQMDScodes ofminimumdistance greater than q+1were increasingly
obtained. Lai and Brun presented EAQMDS codes [[7, 1, 5; 2]]2, [[9, 1, 7; 4]]2 and
[[n, 1, n; n −1]]2 with n odd in [23,24]. An infinite class of EAQMDS codes based on
quaternary linear codes were constructed by Li et al. [25]. Applying Reed–Solomon
codes and constacyclic codes, Fan et al. [26] obtained five classes of EAQMDS
codes with the help of a few shared entanglement states. Chen et al. [27] derived four
families of EAQMDS codes from negacyclic codes by 4 or 5 pre-shared entanglement
states. Guenda et al. [28] provided the construction of EAQMDS codes based on the
dimension of the Hermitian hull of generalized Reed–Solomon codes.

Motivated by these previous results, we construct some new EAQMDS codes from
constacyclic codes of lengths n = q+1

r (q − 1) for r = 3, 4, 5, 6, 7 and q ≡ −1 mod
r . The paper is organized as follows. In Sect. 2, basic concepts on η-constacyclic
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codes, q2-cyclotomic cosets and EAQMDS codes are reviewed. We will generalize
the decomposition of the defining set of cyclic codes in [29] and negacyclic codes in
[27] to η-constacyclic codes. In Sects. 3 and 4, five families of EAQMDS codes are
obtained. In Sect. 5, we conclude the paper.

2 Preliminaries

In this section, we will review some relevant concepts on η-constacyclic codes, q2-
cyclotomic cosets, EAQECCs and EAQMDS codes. For more details, one can refer
to Refs. [6,25,30–32].

2.1 A review of�-constacyclic codes

For a given prime power q, let Fq2 be the finite field with q2 elements and F
n
q2 be

the n-dimensional vector space over Fq2 . Denote F
∗
q2 as the multiplicative group of

nonzero elements of Fq2 . Suppose that e is the identity of F
∗
q2 and α ∈ F

∗
q2 . The order

of α is defined by the smallest positive integer r such that αr = e. Here, α is called a
primitive r -th root of unity in F

∗
q2 and a conjugation of α is denoted by α = αq .

Given two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ F
n
q2 , their

Hermitian inner product is defined as

(x, y)h =
n∑

i=1

xi yi = x1y1 + x2y2 + · · · + xn yn .

For a linear code C over Fq2 of length n, the Hermitian dual code of C is denoted by
C⊥h , where

C⊥h = {x ∈ F
n
q2 | (x, y)h = 0,∀y ∈ C}.

If C⊥h ⊆ C, then C is called a Hermitian dual-containing code, while C⊥h is called a
Hermitian self-orthogonal code.

Let η be a primitive r -th root of unity in F
∗
q2 . A q2-ary linear code C of length n is

called η-constacyclic if (ηcn−1, c0, . . . , cn−2) ∈ C whenever (c0, c1, . . . , cn−1) ∈ C.
If η = 1, then C is a cyclic code; C is a negacyclic code when η = −1. For an η-
constacyclic code C, each codeword c = (c0, c1, . . . , cn−1) is customarily represented
in its polynomial form: c(x) = c0 + c1x + · · · + cn−1xn−1, and the code C is in turn
identified with an ideal of the quotient ring Rn = Fq [x]/(xn − η). It follows that C
is generated by a monic factor of xn − η, i.e., C = 〈g(x)〉 with g(x)|(xn − η). The
polynomial g(x) is called the generator polynomial of C.

Let gcd(n, q) = 1 and η be a primitive r -th root of unity. Then, there exists a
primitive rn-th root ζ of unity in some extension field of Fq2 such that ζ n = η. Let
ξ = ζ r . Then, ξ is a primitive n-th root of unity. It follows that the roots of xn − η are
ζ ξ j = ζ 1+ jr for 0 ≤ j ≤ n − 1.

123



210 Page 4 of 19 Y. Liu et al.

For convenience, we denote a set � by

� = �r ,n = {i = 1 + jr |0 ≤ j ≤ n − 1}.

The defining set of an η-constacyclic code C = 〈g(x)〉 of length n is defined by

T = {i ∈ � | g(ζ i ) = 0}.

It is well known that there is a close relation between cyclotomic cosets and con-
stacyclic codes [14,17,30,33–35].

The q2-cyclotomic coset modulo rn containing i is defined by

Ci = {i, iq2, i(q2)2, ..., i(q2)k−1} mod rn,

where i ∈ � and k is the smallest positive integer such that (q2)ki ≡ i mod rn. It
is easy to know that the defining set T of an η-constacyclic code is a union of some
q2-cyclotomic cosets modulo rn (see [14,17]).

To study the properties of q2-ary cyclotomic cosets modulo rn, we first give some
useful definitions introduced in [33,35]. For each i ∈ �, Ci is called skew symmetric
if −qi (mod rn) ∈ Ci , and skew asymmetric, otherwise. Skew asymmetric cosets Ci

and C−qi come in pair, and we use (Ci , C−qi ) to denote such a skew asymmetric pair
(SAP, for short).

For an η-constacyclic code C and its Hermitian dual C⊥h , some known results
about the generator polynomial and the defining set are summarized in the following
Lemmas 1 and 2 (see [14,17,33]).

Lemma 1 Let C = 〈g(x)〉 be an η-constacyclic code of length n over Fq2 and T be its

defining set. Suppose that h(x) = xn−η
g(x)

= h0 + h1x + · · · + hk xk , then

(1) C⊥h = 〈u(x)〉 is an η−1-constacyclic code with

u(x) = h−q
0

k∑

i=0

hq
i xk−i = h−q

0 xk
k∑

i=0

hq
i x−i = h−q

0 h̃(x),

where h̃(x) = xkh( 1x ) is the polynomial h(x) with reversed coefficients and

f (x) = ∑
f q
i xi for f (x) = ∑

fi xi .
(2) If r |q +1, then C⊥h is also η-constacyclic. Moreover, C⊥h has defining set T ⊥h =

�\T −q , where T −q = −qT = {− jq ∈ �| j ∈ T }.
For convenience to give our discussions in the sequel, it is necessary to first present

Notation 1 below.

Notation 1 Let q be a prime power. To make sure the Hermitian dual code of an η-
constacyclic code is also η-constacyclic, i.e., η = η−1, the order r of η in F

∗
q2 will be

always chosen to be a divisor of q+1 byLemma1.Hence, we can set q = rl−1,where
l is a proper integer such that q is a prime power. According to Proposition 1,we always
set d ≤ n+2

2 when constructing EAQMDS codes with parameters [[n, k, d; c]]q .
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Lemma 2 If C is an η-constacyclic code of length n with defining set T , then C⊥h ⊆ C
if and only if one of the following idems holds:

(1) T ∩ T −q = ∅;
(2) each Ci in T is skew asymmetric and any two cosets in T cannot form a SAP.

Similar to cyclic codes, there also exists the BCH bound for η-constacyclic codes
as follows.

Lemma 3 (The BCH bound for constacyclic codes [9,36]) Suppose that C is an η-
constacyclic code with the generator polynomial g(x) of length n over Fq2 , where
η is a primitive r-th root of unity. Let ζ be an rn-th primitive root of unity in an
extension field of Fq2 . If the roots of g(x) include the set {ζ 1+ri |i1 ≤ i ≤ i1 + δ −
2, i1 is an arbitrary integer}, then the minimum distance of C is at least δ.

2.2 The decomposition of the defining set of�-constacyclic codes

According to [37,38], EAQECCs can be constructed from arbitrary linear codes over
Fq2 , which can be given by the following proposition.

Proposition 2 Let C be an [n, k, d]q2 linear code with parity check matrix H. If c =
rank(H H†) where H† is the conjugate transpose of H, then there exists an [[n, 2k −
n + c, d; c]] EAQECC.

For general linear codes C, it is not easy to calculate c in Proposition 2. However, c
can be easily determined for some special classes of linear codes [27,29,39]. In [29],
the decomposition of the defining set of cyclic codes was initially introduced. Using
the technique, the problem of determining c can be reduced to determine some special
subset of T , where T is the defining set of a cyclic code C.

For constructing more EAQMDS codes, the decomposition of the defining set of
negacyclic codes was further developed by [27]. Notice that some EAQECCs with
good parameters cannot be constructed from cyclic codes or negacyclic codes. Below
we generalize the decomposition of the defining set of cyclic (negacyclic) codes to
η-constacyclic codes.

Definition 1 Let T be the defining set of an η-constacyclic code C over Fq2 . Denote
Tss = T

⋂
T −q and Tsas = T \Tss . Then, T = Tss

⋃
Tsas is called the decomposition

of the defining set T .

Remark 1 From the following lemma, it is easy to know that T
⋂

T −q contains all
the skew symmetric (for short, “ss”) cosets and SAPs. Whereas the cyclotomic cosets
in T \(T ⋂

T −q) are all skew asymmetric (for short,“sas”). Moreover, there is no
SAP in T \(T ⋂

T −q). Hence, “Tss” and “Tsas” are adopted to denote T
⋂

T −q and
T \(T ⋂

T −q) in Definition 1, respectively.

Lemma 4 Let C be an η-constacyclic code over Fq2 with defining set T . Suppose that
T = Tss

⋃
Tsas is the decomposition of the defining set T .
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(1) If i ∈ T , then i ∈ Tsas if and only if Ci is skew asymmetric and there is no integer
j ∈ T such that (Ci , C j ) is a SAP.

Tss =
⋃

i, j1, j2∈T

Ci

⋃ (
C j1

⋃
C j2

)
,

where Ci is skew symmetric and (C j1, C j2) is a SAP.
(2) Tsas

⋂
T −q

sas = ∅ and Tss = T −q
ss = Tss

⋂
T −q

ss .
(3) Let the defining sets of two η-constacyclic codes C1 and C2 be Tsas and Tss ,

respectively. Then C⊥h
1 ⊆ C1, C⊥h

2

⋂ C2 = {0}, C1 ⋂ C2 = C and C⊥h
1 + C⊥h

2 =
C⊥h .

Proof(1): From Definition 1, we split into two cases as follows.

Case 1: When Cx ⊆ T is skew symmetric. Let i = x and Ci ⊆ T .
In this case, by the definition of skew symmetric cyclotomic cosets, we know
that C−qi = Ci . It immediately follows that Ci ⊆ T −q , then we have Ci ⊆
T

⋂
T −q = Tss .

Case 2: When Cx ⊆ T is skew asymmetric. Let j1 = x and C j1 ⊆ T .
Subcase 2.1: There exists j2 ∈ T such that (C j1 , C j2) is a SAP.
In this subcase, , we have C−q j1 = C j2 by the definition of a SAP, then
C j2 ⊆ T −q . From j2 ⊆ T , we can similarly derive that C j2 ⊆ T and
C j1 ⊆ T −q . As thus, we can easily infer that C j1

⋃
C j2 ⊆ T

⋂
T −q =

Tss .
Subcase 2.2: There is no integer j2 ∈ T such that (C j1, C j2) is a SAP.
In this subcase, C j1 � T −q . Hence we have C j1 ⊆ Tsas .
Concluding the above two cases, then (1) follows.

(2): Assume that Tsas
⋂

T −q
sas �= ∅. Let i ∈ Tsas

⋂
T −q

sas , then i ∈ T
⋂

T −q = Tss .
This yields a contradiction, which implies Tsas

⋂
T −q

sas = ∅. We then proceed to
verify the rest of (2).
Tss

⋂
T −q

ss = (T
⋂

T −q)
⋂

(T −q ⋂
T ) = T

⋂
T −q = Tss = T −q

ss .
(3): (3.1). According to (2), we know that Tsas

⋂
T −q

sas = ∅. It naturally follows from
Lemma 2 that C⊥h

1 ⊆ C1.
(3.2). From (2), we know that Tss = T −q

ss , then the defining set of C⊥h
2

⋂ C2 is

T ⊥h
ss ∪ Tss = (�\T −q

ss )
⋃

Tss = �,

which implies that C⊥h
2

⋂ C2 = {0}.
(3.3). Since the defining set of C1

⋂ C2 is Tsas
⋃

Tss = T , we have C1
⋂ C2 = C.

(3.4). Notice that the defining set of C⊥h
1 + C⊥h

2 is

T ⊥h
sas

⋂
T ⊥h

ss = (�\T −q
sas )

⋂
(�\T −q

ss ) = �\
(

T −q
sas

⋃
T −q

ss

)
= �\T −q = T ⊥h .
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We then get C⊥h
1 + C⊥h

2 = C⊥h since T ⊥h is the defining set of C⊥h .
Concluding the above discussions, (3) follows.

��
According to Lemma 4, the following theorem can be proved.

Theorem 1 Let C be an η-constacyclic code over Fq2 with defining set T . Suppose
that T = Tss

⋃
Tsas is the decomposition of the defining set T . If C has parameters

[n, k = n − |T |, d]q2 , then there exist EAQECCs with parameters [[n, n − 2|T | +
|Tss |, d; |Tss |]]q .

Proof Let Tsas and Tss be the defining sets of two η-constacyclic codes C1 and C2,
respectively. Suppose that their parity check matrices are H1 and H2, respectively.
From (3) in Lemma 4, one can deduce that a parity check matrix H of C can be given
by

H =
(

H1
H2

)
.

Since Tss
⋂

Tsas = ∅, we can easily check that T ⊥h
ss ⊇ Tsas . Hence, C⊥h

2 ⊆ C1 and

H1H†
2 = 0, H2H†

1 = 0. According to C⊥h
1 ⊆ C1, we have H1H†

1 = 0. Thus, we can
obtain that

H H† =
(

H1
H2

)
(H†

1 H†
2 ) =

(
H1H†

1 H1H†
2

H2H†
1 H2H†

2

)
=

(
0 0
0 H2H†

2

)

Then, we have rank(H H†) = rank(H2H†
2 ). From C⊥h

2

⋂ C2 = {0}, it follows that
rank(H2H†

2 ) = |Tss |. Combining Proposition 2, the desired conclusion can be derived.
��

Compared with Refs. [27,29], the research scope is extended from cyclic and nega-
cyclic codes to general η-constacyclic codes. In addition, in (1) of Lemma 4, we deeply
study which cyclotomic cosets modulo rn are contained in Tss and Tsas , respectively.
It makes it relatively easy to determine |Tss |. We also detailedly prove the Hermitian
dual properties of C, C1 and C2 and investigate the relationships among them in (3) of
Lemma 4. This is the key step to show Theorem 1.

The following theorem ismuch useful to discuss the decomposition of the definition
set of η-constacyclic codes with length n = q+1

r (q − 1) in the following sections.

Theorem 2 Suppose that C is an η-constacyclic code of length n = q+1
r (q −1). Let Ci

be the q2-cyclotomic coset modulo rn containing i and � = {1+ jr |0 ≤ j ≤ n − 1},
then the following holds.

(1) For each i ∈ �, Ci = {i}.
(2) If i ∈ �, then Ci is skew symmetric if and only if 1 + jr ≡ 0 mod q − 1.
(3) For a given integer i2 ∈ �, i2 can be denoted by i2 = αq − β for two proper

integers 1 ≤ α, β ≤ q. Then, there exists an integer i1 ∈ � such that (Ci1 , Ci2) is
a SAP if and only if i1 = βq − α.
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Proof (1) From rn = q2 − 1, we know that iq2 ≡ i mod rn. It follows directly that
Ci = {i}.

(2) According to the skew symmetric properties of cyclotomic cosets modulo rn,
Ci=1+ jr is skew symmetric if and only if (1+ r j)(q + 1) ≡ 0 mod rn, which is
equivalent to 1 + r j ≡ 0 mod q − 1. Hence, (2) holds.

(3) Note that � = {i = 1 + jr |0 ≤ j ≤ n − 1}. For a given integer i2 ∈ �, we
have 1 ≤ i2 ≤ q2 − r . If 1 ≤ α, β ≤ q, then there exists a unique integers pair
(α, β) such that i2 = αq − β since αq − β runs through all the integers in the set
{0, 1, 2, . . . , q2 − 1}. For simplifying the following discussions, here we adopt
the representation i2 = αq − β.

Since Ci = {i} and C−iq = {−iq mod rn} form a SAP, (Ci1, Ci2) is a SAP if and
only if i1 + i2q ≡ 0 mod q2 − 1. When i2 is denoted by i2 = αq −β (1 ≤ α, β ≤ q),
then i1 + i2q ≡ 0 mod q2 − 1 ⇔ i1 + (αq − β)q ≡ i1 + α − βq ≡ 0 mod q2 − 1,
i.e.,

i1 + α − βq ≡ 0 mod q2 − 1. (1)

Moreover, by i2 ∈ �, we have αq − β ≡ 1 mod r . It follows from r |q + 1 that
(αq − β) − (α − β)(q + 1) = βq − α ≡ 1 mod r , then

βq − α ∈ �. (2)

Notice that
i1 < q2 − 1. (3)

Combining the above expressions (1)–(3), it is easy to derive that there exists an integer
i1 ∈ � such that (Ci1 , Ci2) is a SAP if and only if i1 = βq − α. ��

3 New EAQMDS codes of length n = q+1
r (q− 1)with r = 3, 5, 7

For a given r = 3, 5 or 7, let n = q+1
r (q − 1). It was shown in [16,17] that there

are [[n, n − 2d + 2, d]]q standard QMDS codes for 2 ≤ d ≤ (q+1)(r+1)
2r − 1. Ref.

[26] obtained [[n, n − 2d + 2+ r , d; r ]]q EAQMDS codes for (q+1)(r−1)
r + 2 ≤ d ≤

(q+1)(r+1)
r − 2. In this section, we will discuss constructions of new [[n, n − 2d + 2+

c, d; c]]q EAQMDS codes with 1 ≤ c ≤ r and d >
(q+1)(r+1)

2r − 1. Our results are
presented in three subsections according to different r = 3, 5, 7, respectively.

3.1 New EAQMDS codes of length n = q+1
3 (q− 1)

In this subsection, let r = 3, q = 3l − 1 ≥ 8 and n = q+1
3 (q − 1).

Lemma 5 Let T = {i = 1 + 3 j | 0 ≤ j ≤ 4(q−2)
3 }. Then

(1) Cq−1 is skew symmetric and Ci is skew asymmetric if i ∈ T \{q − 1}.
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(2) There is only one SAP (C3q−2, C2q−3) in T .

Proof(1): According to Theorem 2, Ci is skew symmetric if and only if 1 + 3 j ≡
0 mod q − 1, i.e., j ≡ q−2

3 mod q − 1. From j ∈ [0, 4(q−2)
3 ], it naturally follows

that j = q−2
3 , which implies that there is only one skew symmetric coset Cq−1 in

T . Hence, (1) holds.
(2): Given two integers i1 < i2 ∈ T , we have 1 ≤ i1 < i2 ≤ 4q −7. Let i2 = αq −β

for two proper integers 1 ≤ α, β ≤ q. Applying Theorem 2, (Ci1 , Ci2) is a SAP
if and only if i1 = βq − α.

Since q ≥ 8, 1 ≤ i2 ≤ 4q − 7 and i2 = αq − β, we can infer that

1 ≤ α ≤ 4. (4)

From i1 = βq − α < αq − β = i2, we derive that

1 ≤ β < α. (5)

Combining the above inequations (4) and (5), we can easily derive that 1 ≤ β <

α ≤ 4. Assume that α = 4 and β < α, then αq − β = 4q − β > 4q − 4 /∈ T . As
thus, we can further get that

1 ≤ β < α ≤ 3. (6)

Solving the inequation (6), then (α, β) = (2, 1), (3, 1) or (3, 2), i.e., i2 = 2q −
1, 3q −1 or 3q −2. From q = 3l −1, it can be obtained that there is only i2 = 3q −2
such that i2 ≡ 1 mod 3 ∈ T , which implies that there is only one SAP (C3q−2, C2q−3)

in T . This completes the proof. ��
Consider the following sets:
T0(δ) = {i = 1 + 3 j |q − δ ≤ j ≤ q − 2} for 2 ≤ δ ≤ 2(q+1)

3 − 1,

T1(δ) = {i = 1 + 3 j |q − δ ≤ j ≤ q − 2} for 2(q+1)
3 ≤ δ ≤ q,

T3(δ) = {i = 1 + 3 j |0 ≤ j ≤ δ − 2} for q + 1 ≤ δ ≤ 4(q+1)
3 − 2.

From Lemma 5, we can derive the following corollary.

Corollary 3 Let Ti (δ) for i = 0, 1, 3 be given as above.

(1) If 2 ≤ δ ≤ 2(q+1)
3 − 1, then T0(δ)ss = T0(δ)

⋂
T0(δ)−q = ∅;

(2) If 2(q+1)
3 ≤ δ ≤ q, then T1(δ)ss = T1(δ)

⋂
T1(δ)−q = {q − 1};

(3) If q + 1 ≤ δ ≤ 4(q+1)
3 − 2, then T3(δ)ss = T3(δ)

⋂
T3(δ)−q = {q − 1, 2q −

3, 3q − 2}.
Proof According to Lemmas 4 and 5, to determine Ti (δ), we only need to analyze
which ones of Cq−1, C2q−3 and C3q−2 are contained in Ti (δ) for i = 0, 1, 3.

(1): When 2 ≤ δ ≤ 2(q+1)
3 − 1, it is easy to know that Cq−1 � T0(δ), C2q−3 ⊆ T0(δ)

and C3q−2 � T0(δ). From (1) of Lemma 4, we get that T0(δ)
⋂

T0(δ)−q = ∅.
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(2): When 2(q+1)
3 ≤ δ ≤ q, we derive that Cq−1 ⊆ T1(δ), C2q−3 ⊆ T1(δ) and

C3q−2 � T1(δ). It follows from (1) of Lemma 4 that T1(δ)
⋂

T1(δ)−q = {q −1}.
(3): When q + 1 ≤ δ ≤ 4(q+1)

3 − 2, we have Cq−1 ⊆ T3(δ), C2q−3 ⊆ T3(δ) and
C3q−2 ⊆ T3(δ). We shall similarly verify that T3(δ)

⋂
T3(δ)−q = {q − 1, 2q −

3, 3q − 2}. ��
Theorem 4 Suppose that n = q+1

3 (q − 1). Set δ ≤ n+2
2 , then there exist EAQMDS

codes with parameters

{
[[n, n − 2δ + 3, δ; 1]]q if 2(q+1)

3 ≤ δ ≤ q;
[[n, n − 2δ + 5, δ; 3]]q if q + 1 ≤ δ ≤ 4(q+1)

3 − 2.

Proof (1) If 2(q+1)
3 ≤ δ ≤ q, let C be an η-constacyclic code over Fq2 with defining

set T1(δ), where T1(δ) is given as above. We can easily know that there are δ − 1
consecutive integers in T1(δ). According to Lemma 3, the minimum distance of
C is at least δ. Since Ci = {i} by Theorem 2, we have |T1(δ)| = δ − 1. Notice
that |T1(δ)ss | = 1 from Corollary 3. Applying Theorem 1 and Proposition 1, if
follows immediately that there exist EAQMDS codes with parameters [[n, n −
2δ + 3, δ; 1]]q .

(2) When q + 1 ≤ δ ≤ 4(q−2)
3 − 2, let the defining set of C be T3(δ). Similar to (1),

applying Theorem 1 to C, we shall derive that there exist EAQMDS codes with
parameters [[n, n − 2δ + 5, δ; 3]]q .

In the following two subsections and Sect. 4, the similar conclusions can be derived
by the corresponding results in Sect. 3.1 combining Theorems 1 and 2. For conciseness
and clarity, we only present main results and omit some similar proofs.

3.2 New EAQMDS codes of length n = q+1
5 (q− 1)

In this subsection, let r = 5, q = 5l − 1 ≥ 9 and n = q+1
5 (q − 1).

Lemma 6 Let T = {i = 1 + 5 j | 0 ≤ j ≤ 6(q+1)
5 − 3}. Then:

(1) C2(q−1) is skew symmetric and Ci is skew asymmetric if i ∈ T \{2(q − 1)}.
(2) There are only two SAPs (C3q−1, Cq−3) and (C4q−5, C5q−4) in T .

Proof According to Theorem 2, we can obtain the desired conclusion in a similar way
to the proof of Lemma 5. ��

Consider the following sets:
T0(δ) = {i = 1 + 5 j |q − δ ≤ j ≤ q − 2} for 2 ≤ δ ≤ 3(q+1)

5 − 1,

T1(δ) = {i = 1 + 5 j |q − δ ≤ j ≤ q − 2} for 3(q+1)
5 ≤ δ ≤ 4(q+1)

5 − 1,

T3(δ) = {i = 1 + 5 j |q − δ ≤ j ≤ q − 2} for 4(q+1)
5 ≤ δ ≤ q,

T5(δ) = {i = 1 + 5 j |0 ≤ j ≤ δ − 2} for q + 1 ≤ δ ≤ 6(q+1)
5 − 1.

From Lemma 6, we can get the following corollary.
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Corollary 5 Let Ti (δ) for i = 0, 1, 3, 5 be given as above.

(1) If 2 ≤ δ ≤ 3(q+1)
5 − 1, then T0(δ)ss = T0(δ)

⋂
T0(δ)−q = ∅.

(2) If 3(q+1)
5 ≤ δ ≤ 4(q+1)

5 − 1, then T1(δ)ss = T1(δ)
⋂

T1(δ)−q = {2q − 2}.
(3) If 4(q+1)

5 ≤ δ ≤ q, then T3(δ)ss = T3(δ)
⋂

T3(δ)−q = {q − 3, 2(q − 1), 3q − 1}.
(4) If q +1 ≤ δ ≤ 6(q+1)

5 −1, then T5(δ)ss = {q −3, 2(q −1), 3q −1, 4q −5, 5q −4}.
By Corollary 5, the following theorem can be derived in a similar way to the proof

of Theorem 4.

Theorem 6 Suppose that n = q+1
5 (q − 1). Set δ ≤ n+2

2 , then there exist EAQMDS
codes with parameters

⎧
⎪⎨

⎪⎩

[[n, n − 2δ + 3, δ; 1]]q if 3(q+1)
5 ≤ δ ≤ 4(q+1)

5 − 1;
[[n, n − 2δ + 5, δ; 3]]q if 4(q+1)

5 ≤ δ ≤ q;
[[n, n − 2δ + 7, δ; 5]]q if q + 1 ≤ δ ≤ 6(q+1)

5 − 1.

3.3 New EAQMDS codes of length n = q+1
7 (q− 1)

In this subsection, let r = 7, q = 7l − 1 ≥ 13 and n = q+1
7 (q − 1).

Lemma 7 Let T = {i = 1 + 7 j, 0 ≤ j ≤ 8(q+1)
7 − 3}. Then

(1) C3(q−1) is skew symmetric and Ci is skew asymmetric if i ∈ T \{3(q − 1)}.
(2) There is only three SAPs (Cq−5, C5q−1), (C2q−4, C4q−2) and (C6q−7, C7q−6) in

T .

Consider the following sets:
T0(δ) = {i = 1 + 7 j |q − δ ≤ j ≤ q − 2} for 2 ≤ δ ≤ 4(q+1)

7 − 1,

T1(δ) = {i = 1 + 7 j |q − δ ≤ j ≤ q − 2} for 4(q+1)
7 ≤ δ ≤ 5(q+1)

7 − 1,

T3(δ) = {i = 1 + 7 j |q − δ ≤ j ≤ q − 2} for 5(q+1)
7 ≤ δ ≤ 6(q+1)

7 − 1,

T5(δ) = {i = 1 + 7 j |q − δ ≤ j ≤ q − 2} for 6(q+1)
7 ≤ δ ≤ q,

T7(δ) = {i = 1 + 7 j |0 ≤ j ≤ δ − 2} for q + 1 ≤ δ ≤ 8(q+1)
7 − 1.

From Lemma 7, we can derive the following corollary.

Corollary 7 Let Ti (δ) for i = 0, 1, 3, 5, 7 be given as above.

(1) If 2 ≤ δ ≤ 4(q+1)
7 − 1, then T0(δ)ss = T0(δ)

⋂
T0(δ)−q = ∅.

(2) If 4(q+1)
7 ≤ δ ≤ 5(q+1)

7 − 1, then T1(δ)ss = T1(δ)
⋂

T1(δ)−q = {3q − 3}.
(3) If 5(q+1)

7 ≤ δ ≤ 6(q+1)
7 − 1, then T3(δ)ss = T3(δ)

⋂
T3(δ)−q = {3q − 3, 2q −

4, 4q − 2}
(4) If 6(q+1)

7 ≤ δ ≤ q, then T5(δ)ss = {3q − 3, 2q − 4, 4q − 2, q − 5, 5q − 1}.
(5) If 6(q+1)

7 ≤ δ ≤ q, then T7(δ)ss = T7(δ)
⋂

T7(δ)−q = {3q − 3, 2q − 4, 4q −
2, q − 5, 5q − 1, 6q − 7, 7q − 6}.
Applying Corollary 7, in a similar way to the proof of Theorem 4, we shall present

the following theorem.
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Theorem 8 Suppose that n = q+1
7 (q − 1). Set δ ≤ n+2

2 , then there exist EAQMDS
codes with parameters

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[[n, n − 2δ + 3, δ; 1]]q if 4(q+1)
7 ≤ δ ≤ 5(q+1)

7 − 1;
[[n, n − 2δ + 5, δ; 3]]q if 5(q+1)

7 ≤ δ ≤ 6(q+1)
7 − 1;

[[n, n − 2δ + 7, δ; 5]]q if 6(q+1)
7 ≤ δ ≤ q;

[[n, n − 2δ + 9, δ; 7]]q if q + 1 ≤ δ ≤ 8(q+1)
7 − 1.

In this section, we have constructed three classes of EAQMDS codes from η-
constacyclic codes of lengths q+1

r (q − 1) (r = 3, 5, 7). Actually, similar to the above
procedures, the same conclusions shall be obtained applying cyclic codes of respond-
ing lengths. For convenience to present all results of the whole paper, alternatively,
we employ constacyclic codes here (cyclic codes are not able to work well in next
section).

However, one cannot construct EAQMDS codes from underlying negacyclic codes
like above subsections. There are two reasons. On the one hand, all cyclotomic cosets

C1+2 j modulo 2n have the cardinality 2 since (1 + 2 j)(q2 − 1) �≡ 0 mod 2(q2−1)
r .

Thus, it is impossible to construct underlying negacyclic MDS codes. On the other
hand, 2 is not a factor of q + 1 with q even. Hence, the Hermitian dual code of a q-ary
negacyclic code is no longer negacyclic according to Lemma 2.

4 New EAQMDS codes of length n = q+1
r (q− 1)with r = 4, 6

It is shown in [16] that: If r = 4, 6, for n = q+1
r (q −1), there are [[n, n −2d +2, d]]q

QMDS code for 2 ≤ d ≤ q+1
2 + q+1

r −1. In this section, we will discuss constructions

of new [[n, n−2d+2+c, d; c]]q QMDScodeswith 1 ≤ c ≤ r and d ≥ q+1
2 + q+1

r , our
results are presented in two subsections according to different r = 4, 6, respectively.

4.1 New EAQMDS codes of length n = q+1
4 (q− 1)

In this subsection, let r = 4, q = 4l − 1 ≥ 7 and n = q+1
4 (q − 1).

Lemma 8 Let T = {i = 1 + 4 j |0 ≤ j ≤ 5(q+1)
4 − 3}. Then:

(1) Each Ci is skew asymmetric for i ∈ T .
(2) There are only two SAPs (Cq−2, C2q−1) and (C3q−4, C4q−3) in T .

Proof(1): According to Theorem 2, Ci is skew symmetric if and only if 1 + 4 j ≡
0 mod q−1, i.e., 4 j ≡ q−2 mod q−1. Since q = 4l−1 and 4 j ≤ 5q−5,we have
4 � (q−2)+α(q−1) ifα = 0, 1, 2, 3, 4. This implies that i(q+1) �≡ 0 mod q2−1
for i ∈ T , i.e., each Ci is skew asymmetric. Hence, (1) holds.

(2): Applying Theorem 2, in a similar way to the proof of Lemma 5, we can derive
that there are only two SAPs (Cq−2, C2q−1) and (C3q−4, C4q−3) in T . ��
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Consider the following sets:
T0(δ) = {i = 1 + 4 j |q − δ ≤ j ≤ q − 2} for 2 ≤ δ ≤ 3(q+1)

4 − 1,

T2(δ) = {i = 1 + 4 j |q − δ ≤ j ≤ q − 2} for 3(q+1)
4 ≤ δ ≤ q,

T4(δ) = {i = 1 + 4 j |0 ≤ j ≤ δ − 2} for q + 1 ≤ δ ≤ 5(q+1)
4 − 1.

One can deduce the following results from Lemma 8.

Corollary 9 Let Ti (δ) for i = 0, 2, 4 be given as above.

(1) If 2 ≤ δ ≤ 3(q+1)
4 − 1, then T0(δ)ss = T0(δ)

⋂
T0(δ)−q = ∅.

(2) If 3(q+1)
4 ≤ δ ≤ q, then T2(δ)ss = T2(δ)

⋂
T2(δ)−q = {q − 2, 2q − 1}.

(3) If q + 1 ≤ δ ≤ 5(q+1)
4 − 1, then T4(δ)ss = T4(δ)

⋂
T4(δ)−q = {q − 2, 2q −

1, 3q − 4, 4q − 3}.
Applying Corollary 9, the following theorem can be obtained in a similar way to

the proof of Theorem 4.

Theorem 10 Suppose that n = q+1
4 (q − 1). Set δ ≤ n+2

2 , then there exist EAQMDS
codes with parameters

{
[[n, n − 2δ + 4, δ; 2]]q if 3(q+1)

4 ≤ δ ≤ q;
[[n, n − 2δ + 6, δ; 4]]q if q + 1 ≤ δ ≤ 5(q+1)

4 − 1.

4.2 New EAQMDS codes of length n = q+1
6 (q− 1)

In this subsection, let r = 6, q = 6l − 1 ≥ 11 and n = q+1
6 (q − 1). Similar to the last

subsection, we can derive the following results.

Lemma 9 Let T = {i = 1 + 6 j, 0 ≤ j ≤ 7(q+1)
6 − 3}. Then:

(1) each Ci is skew asymmetric for i ∈ T .
(2) there are only three SAPs (Cq−4, C4q−1), (C2q−3, C3q−2) and (C6q−5, C5q−6) in

T .

Consider the following sets:
T0(δ) = {i = 1 + 6 j |q − δ ≤ j ≤ q − 2} for 2 ≤ δ ≤ 4(q+1)

6 − 1,

T2(δ) = {i = 1 + 6 j |q − δ ≤ j ≤ q − 2} for 4(q+1)
6 ≤ δ ≤ 5(q+1)

6 − 1,

T4(δ) = {i = 1 + 6 j |q − δ ≤ j ≤ q − 2} for 5q+1)
6 ≤ δ ≤ q,

T6(δ) = {i = 1 + 6 j |0 ≤ j ≤ δ − 2} for q + 1 ≤ δ ≤ 7(q+1)
6 − 1.

From Lemma 9, we can derive the following corollary.

Corollary 11 Let Ti (δ) for i = 0, 2, 4, 6 be given as above.

(1) If 2 ≤ δ ≤ 4(q+1)
6 − 1, then T0(δ)ss = T0(δ)

⋂
T0(δ)−q = ∅.

(2) If 4(q+1)
6 ≤ δ ≤ 5(q+1)

6 − 1, then T2(δ)ss = T2(δ)
⋂

T2(δ)−q = {2q − 3, 3q − 2}.
(3) If 5q+1)

6 ≤ δ ≤ q, then T4(δ)ss = T4(δ)
⋂

T4(δ)−q = {2q −3, 3q −2, q −4, 4q −
1}.
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Table 1 Some new EAQMDS codes of length n = q+1
3 (q − 1), d ≤ n+2

2

Paras. q d References

QMDS [[n, n + 2 − 2d, d]]q 2 ≤ d ≤ 2(q+1)
3 − 1 [16,17,22]

EAQMDS [[n, n + 3 − 2d, d; 1]]q 2(q+1)
3 ≤ d ≤ q New

EAQMDS [[n, n + 5 − 2d, d; 3]]q Odd 2(q+1)
3 + 2 ≤ d ≤ 4(q+1)

3 − 2 [26]

EAQMDS [[n, n + 5 − 2d, d; 3]]q Even q + 1 ≤ d ≤ 4(q+1)
3 − 2 New

Table 2 Some new EAQMDS codes of length n = q+1
5 (q − 1), d ≤ n+2

2

Paras. q d References

QMDS [[n, n + 2 − 2d, d]]q 2 ≤ d ≤ 3(q+1)
5 − 1 [16,17]

EAQMDS [[n, n + 3 − 2d, d; 1]]q 3(q+1)
5 ≤ d ≤ 4(q+1)

5 − 1 New

EAQMDS [[n, n + 5 − 2d, d; 3]]q 4(q+1)
5 ≤ d ≤ q New

EAQMDS [[n, n + 7 − 2d, d; 5]]q Odd 4(q+1)
5 + 2 ≤ d ≤ 6(q+1)

5 − 2 [26]

EAQMDS [[n, n + 7 − 2d, d; 5]]q Odd d = 6(q+1)
5 − 1 New

EAQMDS [[n, n + 7 − 2d, d; 5]]q Even q + 1 ≤ d ≤ 6(q+1)
5 − 1 New

(4) If q + 1 ≤ δ ≤ 8(q+1)
7 − 1, then T6(δ)ss = {2q − 3, 3q − 2, q − 4, 4q − 1, 6q −

5, 5q − 6}.
In a similar way to the proof of Theorem 4, we shall verify the following theorem

by Corollary 3.

Theorem 12 Suppose that n = q+1
6 (q − 1). Set δ ≤ n+2

2 , then there exist EAQMDS
codes with parameters

⎧
⎪⎨

⎪⎩

[[n, n − 2δ + 4, δ; 2]]q if 4(q+1)
6 ≤ δ ≤ 5(q+1)

6 − 1;
[[n, n − 2δ + 6, δ; 4]]q if 5q+1)

6 ≤ δ ≤ q;
[[n, n − 2δ + 8, δ; 6]]q if q + 1 ≤ δ ≤ 7(q+1)

6 − 1.

In this section, we have constructed two classes of EAQMDS codes from η-
constacyclic codes of lengths q+1

4 (q − 1) and q+1
6 (q − 1).

For n = q+1
4 (q − 1) and q+1

6 (q − 1), it is easy to know that the cyclotomic cosets
C (q−1)i

2
(i = 0, 1, 2 . . .)modulo n are skew symmetric. From Lemma 2, we shall derive

that the maximum designed distance of a Hermitian dual-containing cyclic code of
length n is at most q−1

2 , which is less than that of a Hermitian dual-containing consta-
cyclic code of length n. As thus, applying cyclic codes, the parameters of EAQMDS
codes are not so good as that of ones derived from constacyclic codes.

For n = q+1
4 (q − 1), note that C (q−1)(1+2i)

2
(i = 0, 1, 2 . . .) modulo 2n are skew

symmetric. Similar to cyclic codes, according to Lemma 2, negacyclic codes cannot
work well when they are employed to construct EAQMDS codes compared with
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Table 3 Some new EAQMDS codes of length n = q+1
7 (q − 1), d ≤ n+2

2

Paras. q d References

QMDS [[n, n + 2 − 2d, d]]q 2 ≤ δ ≤ 4(q+1)
7 − 1 [16,17]

EAQMDS [[n, n + 3 − 2d, d; 1]]q 4(q+1)
7 ≤ d ≤ 5(q+1)

7 − 1 New

EAQMDS [[n, n + 5 − 2d, d; 3]]q 5(q+1)
7 ≤ d ≤ 6(q+1)

7 − 2 New

EAQMDS [[n, n + 7 − 2d, d; 5]]q 6(q+1)
7 ≤ d ≤ q New

EAQMDS [[n, n + 9 − 2d, d; 7]]q Odd 6(q+1)
7 + 2 ≤ d ≤ 8(q+1)

7 − 2 [26]

EAQMDS [[n, n + 9 − 2d, d; 7]]q Odd d = 8(q+1)
7 − 1 New

EAQMDS [[n, n + 9 − 2d, d; 7]]q Even q + 1 ≤ d ≤ 8(q+1)
7 − 1 New

Table 4 Some new EAQMDS codes of length n = q+1
4 (q − 1), d ≤ n+2

2

Paras. q d References

QMDS [[n, n + 2 − 2d, d]]q Odd 2 ≤ d ≤ 3(q+1)
4 − 1 [13,16]

EAQMDS [[n, n + 4 − 2d, d; 2]]q Odd 3(q+1)
4 ≤ d ≤ q New

EAQMDS [[n, n + 6 − 2d, d; 4]]q Odd q + 1 ≤ d ≤ 5(q+1)
4 − 1 New

Table 5 Some new EAQMDS codes of length n = q+1
6 (q − 1), d ≤ n+2

2

Paras. q d References

QMDS [[n, n + 2 − 2d, d]]q Odd 2 ≤ d ≤ 4(q+1)
6 − 1 [16]

EAQMDS [[n, n + 4 − 2d, d; 2]]q Odd 4(q+1)
6 ≤ d ≤ 5(q+1)

6 − 1 New

EAQMDS [[n, n + 6 − 2d, d; 4]]q Odd 5q+1
6 ≤ d ≤ q New

EAQMDS [[n, n + 8 − 2d, d; 6]]q Odd q + 1 ≤ d ≤ 8(q+1)
7 − 1 New

Table 6 Code comparisons of length n = q+1
r (q − 1) for r = 3, 5, 7 and d ≤ n+2

2

q d Our Paras. Paras. in [26]

Odd (r−1)(q+1)
r + 2 ≤ d ≤ q [[n, n + r − 2d, d; r − 2]]q [[n, n + r + 2 − 2d, d; r ]]q

constacyclic codes. When n = q+1
6 (q − 1), in a similar way to the above procedures

for constacyclic codes, the same conclusions shall be obtained applying negacyclic
codes with responding lengths.

Combining the discussions at the end of last section, it is not difficult to find the
advantages of constacyclic codes compared with cyclic (negacyclic) codes. More spe-
cially, to unify all results of the whole paper, it is very necessary for constacyclic codes
to be investigated and employed.
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Table 7 Some detailed comparisons for n = q+1
5 (q −1) for q = 19 Let T be the defining set of underlying

constacyclic codes to construct EAQMDS codes

Ours [26]

Paras. T = {1 + 5 j} Tss Paras. T = {1 + 5 j} Rank(H H†)

[[72, 51, 12; 1]]19 7 ≤ j ≤ 17 1 –

[[72, 49, 13; 1]]19 6 ≤ j ≤ 17 1 –

[[72, 47, 14; 1]]19 5 ≤ j ≤ 17 1 –

[[72, 45, 15; 1]]19 4 ≤ j ≤ 17 1 –

[[72, 45, 16; 3]]19 3 ≤ j ≤ 17 3 –

[[72, 43, 17; 3]]19 2 ≤ j ≤ 17 3 –

[72, 41, 18; 3]]19 1 ≤ j ≤ 17 3 [[72, 43, 18; 5]]19 −1 ≤ j ≤ 15 5

[[72, 39, 19; 3]]19 0 ≤ j ≤ 17 3 [[72, 41, 19; 5]]19 −2 ≤ j ≤ 15 5

[[72, 39, 20; 5]]19 0 ≤ j ≤ 18 5 [[72, 39, 20; 5]]19 −3 ≤ j ≤ 15 5

[[72, 37, 21; 5]]19 0 ≤ j ≤ 29 5 [[72, 37, 21; 5]]19 −3 ≤ j ≤ 16 5

[[72, 35, 22; 5]]19 0 ≤ j ≤ 20 5 [[72, 35, 22; 5]]19 −3 ≤ j ≤ 17 5

[[72, 33, 23; 5]]19 0 ≤ j ≤ 21 5 –

Codes have better performance are given in bold

5 Code comparisons and conclusion

In this paper, we have derived five classes of EAQMDS codes from η-constacyclic
MDS codes of lengths n = q+1

r (q−1)(r = 3, 4, 5, 6, 7). For given r and n = q+1
r (q−

1), some standard QMDS codes have been obtained in [13,16,17,22]. We constructed
many EAQMDS codes of relatively large distances up to q + q+1

r (q + q+1
r − 1 for

r = 3) with a small number of pre-shared entangled states.
For comparison, we first give the following theorem.

Theorem 13 (Theorem 6 in [26]) Let t ≥ 3 be an odd integer and let q be an odd
prime power with t |(q + 1). Then, there exists an EAQMDS code with parameters

[[ q2−1
t ,

q2−1
t − 2d + t + 2, d; t]]q , where (t−1)(q−1)

t + 2 ≤ d ≤ (t+1)(q−1)
t − 2.

On the one hand, a lot of EAQMDS codes constructed in this paper are new in the
sense that they are not available in the literature. When r = 3, 5, 7 and 1 ≤ c ≤ r −2,
the [[n, n − 2d + c + 2, d; c]]q EAQMDS codes are new. when q is a power of 2,
the [[n, n − 2d + r + 2, d; r ]]q are also new. In addition, notice that the EAQMDS
codes in [26] have the minimum distance less than q + q+1

r − 1. Hence, for a given

odd prime power q, if d = q + q+1
r ≤ n+2

2 and r = 5, 7, our EAQMDS codes
[[n, n − 2d + r + 2, d; r ]]q obtained in this paper are also new. For clarity, these new
codes are listed in Tables 1, 2 and 3. When r = 4, 6, all the EAQMDS codes are new,
which are detailedly shown in Tables 4 and 5.

On the other hand, some EAQMDS codes newly obtained in this paper have better
performance than ones in the literature. Compared with EAQMDS codes derived from
λ-constacyclic in [26], we employed underlying η-constacyclic codes with different
defining sets (see the proof of Theorem 13). As thus, some relatively good EAQMDS
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Table 8 Some new EAQMDS codes and code comparisons

q, r d Paras. Paras. in [26] References

q = 7, r = 4 2 ≤ d ≤ 5 [[12, 14 − 2d, d]]7 [13,16]

d = 6, 7 [[12, 16 − 2d, d; 2]]7 New

q = 8, r = 3 2 ≤ d ≤ 5 [[21, 23 − 2d, 6]]8 [16,17,22]

d = 6, 7, 8 [[21, 24 − 2d, 6; 1]]8 New

d = 9, 10 [[21, 26 − 2d, 6; 3]]8 New

q = 9, r = 5 2 ≤ d ≤ 5 [[16, 18 − 2d, d]]9 [16,17]

d = 6, 7 [[16, 19 − 2d, d; 1]]9 New

d = 8, 9 [[16, 21 − 2d, d; 3]]9 New

q = 11, r = 3 2 ≤ d ≤ 7 [[40, 42 − 2d, d]]11 [16,17]

d = 8, 9 [[40, 43 − 2d, d; 1]]11 New

d = 10, 11 [[40, 43 − 2d, d; 1]]11 [[40, 45 − 2d, d; 3]]11 New

r = 4 2 ≤ d ≤ 8 [[30, 32 − 2d, d]]11 [13,16]

d = 9, 10, 11 [[30, 34 − 2d, d; 2]]11 New

d = 12, 13, 14 [[30, 36 − 2d, d; 4]]11 New

r = 6 2 ≤ d ≤ 7 [[20, 22 − 2d, d]]11 [16]

d = 8, 9 [[20, 24 − 2d, d; 2]]11 New

d = 10, 11 [[20, 26 − 2d, d; 4]]11 New

q = 13, r = 7 2 ≤ d ≤ 7 [[24, 26 − 2d, d]]13 [16,17]

d = 8, 9 [[24, 27 − 2d, d; 1]]13 New

d = 10, 11 [[24, 29 − 2d, d; 3]]13 New

d = 12, 13 [[24, 31 − 2d, d; 5]]13 New

q = 17, r = 3 2 ≤ d ≤ 11 [[96, 98 − 2d, d]]17 [16,17]

12 ≤ d ≤ 13 [[96, 99 − 2d, d; 1]]17 New

14 ≤ d ≤ 17 [[96, 99 − 2d, d; 1]]17 [[96, 101 − 2d, d; 3]]17 New

r = 6 2 ≤ d ≤ 11 [[54, 56 − 2d, d]]17 [16]

d = 12, 13, 14 [[54, 58 − 2d, d; 2]]17 New

d = 15, 16, 17 [[54, 60 − 2d, d; 4]]17 New

d = 18, 19, 20 [[54, 62 − 2d, d; 6]]17 New

q = 19, r = 4 2 ≤ d ≤ 14 [[90, 92 − 2d, d]]19 [13,16]

15 ≤ d ≤ 19 [[90, 94 − 2d, d; 2]]19 New

20 ≤ d ≤ 24 [[90, 96 − 2d, d; 4]]19 New

r = 5 2 ≤ d ≤ 11 [[72, 74 − 2d, d]]19 [16,17]

12 ≤ d ≤ 15 [[72, 75 − 2d, d; 1]]19 New

16 ≤ d ≤ 17 [[72, 77 − 2d, d; 3]]19 New

18 ≤ d ≤ 19 [[72, 77 − 2d, d; 3]]19 [[72, 79 − 2d, d; 5]]19 New

20 ≤ d ≤ 22 [[72, 79 − 2d, d; 5]]19 [26]

d = 23 [[72, 79 − 2d, d; 5]]19 New
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codes can be obtained. For (r−1)(q+1)
r +2 ≤ d ≤ q and c = r −2, our [[n, n−2d +c+

2, d; c]]q EAQMDS codes consume less entanglement states than the [[n, n − 2d +
r +2, d; r ]]q codes constructed in [26], yet have the same net rate and error-correcting
ability.We displayed these comparisons in Table 6. As an example for n = q+1

5 (q −1)
and q = 19, we presented the detailed comparisons with [26] in Table 7.

For clarity, for q = 7, 8, 9, 11, 13, 17, 19, Table 8 further shows a series of new
EAQMDS codes constructed in this paper and provides some code comparisons in
detail. In the future work, we look forward to getting more EAQMDS codes with
large minimum distance from pseudo-cyclic codes, quasi-cyclic codes, generalized
Reed–Solomon codes and so on.
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