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Abstract
This paper proposes a newdynamicmultiparty quantumdirect secret sharing (DQDSS)
usingmutually unbiasedmeasurements based on generalized GHZ states.Without any
unitary operations, an agent can obtain a shadow of the secret by simply performing
a measurement on single photons. In the proposed scheme, multiple agents can be
added or deleted and the shared secret need not be changed. Our DQDSS scheme has
several advantages. The dealer is not required to retain any photons and can further
share a predetermined key instead of a random key to the agents. Agents can update
their shadows periodically, and the dealer does not need to be online. Furthermore, the
proposed scheme can resist not only the existing attacks, but also cheating attacks from
dishonest agents. Hence, compared to some famous DQSS schemes, the proposed
scheme is more efficient and more practical. Finally, we establish a mathematical
model about the efficiency and security of the scheme and perform simulation analyses
with different parameters using MATLAB.

Keywords Dynamic quantum secret sharing · Generalized GHZ state · Multiparty ·
Security

1 Introduction

Secure multiparty computation is an important branch in modern cryptography. It
focuses on the studies of secure computation among the players that do not trust
each other. In quantum cryptography, it is also studied extensively as secure multi-
party quantum computation (SMQC). The SMQC has been studied from two aspects:
(1) the evaluation of classical function with quantum protocol and (2) the evaluation
of quantum transformation. Smith [1] proposed a secure multiparty computation of
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quantum circuit based on a verifiable quantum secret sharing protocol. Later, there
were a lot of studies focus on SMQC in both the theoretical [2–5] and applied [6–
8] aspects. Quantum secret sharing (QSS) is a kind of basic agreement of secure
multiparty quantum computation. A QSS scheme allows a sender to share his/her
secret message among several agents by using quantum mechanics in such a way
that only the legitimate agents can cooperate to recover the original secret. The first
QSS scheme was proposed by Hillery et al. [9] in 1999 for sharing a private key
with three-particle and four-particle entangled Greenberger–Horne–Zeilinger (GHZ)
state and generalized by Xiao et al. [10] into arbitrary multiparty. Subsequently,
Karlsson et al. [11] proposed another QSS scheme with a two-photon polarization
entangled state. Afterwards, there were a lot of studies focused on QSS protocols
[12–24]. However, most of these QSS schemes do not consider the issue on the
joining and deleting of agents when quanta are distributed, which is an essential
requirement for all practical setups. A scheme with this feature is referred to as DQSS
scheme.

In 2012, Hsu et al. [25] firstly proposed a dynamic quantum secret sharing (DQSS),
in which the dealer can add or delete agents through the entanglement swapping on
the Bell state. In this scheme, the shared secret will be changed after updating agents.
Almost at the same time, Jia et al. [26] also proposed a DQSS scheme using the
property of a special star-like cluster state (which is constructed by Chen et al. [27]).
In 2013, Wang and Li [28] performed a cryptanalysis of Hsu et al.’s DQSS scheme
and showed that the first and the last agents can collude with each other to reveal
the sender’s secret message. In 2014, Liao et al. [29] proposed a new scheme of
DQSS which can resist the collusion attack and dishonest user’s attack. In 2017,
Qin et al. [30] used the d-dimensional GHZ state to propose a new dynamic QSS.
However, all QSS schemes have four constraints: (1) the dealer is required to retain
particle sequences. That is, quantum memory cannot be omitted for the dealer. (2)
In order to check the security of the scheme, the dealer has to prepare checking sets
and insert them into the agents’ particle sequences which were previously divided.
(3) The above schemes are based on the idea of sharing some sifted keys through
the transmission of quantum signals between the dealer and participants. By using
the sifted key, participants can encrypt or decrypt the secret messages. That is, the
participants are only allowed to build a shared key using their secret shares. (4) The
above schemes do not mention the issue of updating the agents’ shadows periodically
without changing the secret, which is very useful for resisting the mobile attacker.
Thus, the mobile attacker must break enough participants within a period of updating.
After an updating period, the old shadows will be useless even if they have been stolen
by the attacker.

As a practical matter, it may also be the case that, sometimes, the dealer wants
to share her secret directly with a group of participants, who can then collabo-
rate together to restore her secret at a later time. Therefore, it is very important
to improve the practicability of the DQSS. In this paper, we will propose a prac-
tical and efficient multiparty quantum direct secret sharing (DQDSS). We point
out the properties of unbiased bases using quantum Fourier transform that has
been used to design some quantum cryptographic protocols [31–34]. Then, the
quantum correlation between the exclusive-OR value of all agents’ possible mea-
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surement results with X -basis and the original local unitary operation on the
last particle of the generalized GHZ states encoded by the dealer was presented,
which brought out an advantage that the dealer can directly share a predetermined
secret rather than transmitting a random key to agents. Our scheme only needs
to use one n-particle generalized GHZ state to share one classical bit among n
agents in contrast to [25,26] that need one (n + 1)-particle generalized GHZ state.
Besides, all agents simply have to perform the measurement of single photons to
get shadows without being required to generate any photons, do any local unitary
operations, or transmit any classical message except in eavesdropping checks. Two
approaches are employed for eavesdropping checkings. The corresponding security
of the proposed scheme is presented in detail. Our scheme has the following mer-
its:

1. The dealer can directly share a determinate secret among the participants. There-
fore, our scheme is more practical than those schemes that can only share a random
secret.

2. In our scheme, the dealer is not required to retain any photons, and thus quantum
memory for the dealer can be omitted.

3. Rather than inserting checking sets composed of nonorthogonal states into the
agents’ particle sequences, the dealer only needs to prepare additional generalized
GHZ states at the beginning of the scheme to detect the eavesdropping (Remark 2).

4. Agents can update their shadows periodically, and the dealer does not need to be
online. After an updating period, the secret is changeless and the old shadows will
be useless even if they have been stolen by an attacker.

The rest of this article is organized as follows. In Sect. 2, we review some pre-
liminaries that are used in this article. Our DQDSS scheme is described in detail in
Sect. 3. Section 4 presents the security analysis of the proposed scheme and also gives
a comparison to the other DQSS schemes. Section 5 provides conclusions.

2 Mutually unbiased bases measurement for generalized GHZ states

The special states |0〉 and |1〉 are known as computational basis states for a two-
dimensional Hilbert space C2; {|Z0〉 = 0, |Z1〉 = 1} is called Z -basis and forms an
orthonormal basis for this vector space. By performing the quantumFourier transform,
another orthonormal basis X -basis ({|X0〉, |X1〉}) for C2 can be obtained as follows:

|X j 〉 = F |Z j 〉 = 1√
2

1∑

k=0

e
2π i jk

2 |Zk〉 = 1√
2

1∑

k=0

eπ i jk |Zk〉, (1)

where j ∈ {0, 1} and F is the quantum Fourier transform. Then, |X0〉 and |X1〉 can
be computed, thanks to Eq. (1), as
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|X0〉 = |+〉 = 1√
2
(|0〉 + |1〉), |X1〉 = |−〉 = 1√

2
(|0〉 − |1〉).

Similarly, by performing the inverse quantumFourier transformof F , both |Z0〉 = 0
and |Z1〉 = 1 can be represented by X -basis as follows:

|Z j 〉 = F−1|X j 〉 = 1√
2

1∑

k=0

e
−2π i jk

2 |Xk〉 = 1√
2

1∑

k=0

e−π i jk |Xk〉. (2)

Since |〈|Z j |Xk〉| = 1√
2
for j, k ∈ {0, 1}, by definition of the mutually unbiased

bases [35], the X -basis and Z -basis are mutually unbiased. Moreover, we introduce
generalized GHZ states, namely two maximally entangled states |φ0〉 and |φ1〉, in the
n-particle Hilbert space, as shown in the following:

|φ0〉1...n = 1√
2
(|00 . . . 0〉1,2,...,n + |11 . . . 1〉1,2,...,n), (3)

and

|φ1〉1...n = 1√
2
(|00 . . . 0〉1,2,...,n − |11 . . . 1〉1,2,...,n), (4)

where n ≥ 2. Note that the states are Einstein–Podolsky–Rosen (EPR) pairs when
n = 2 and they are GHZ states when n ≥ 3.

According to Eqs. (1) and (2), n-qudit generalized GHZ state can be represented
by mutually unbiased bases (X -basis and Z -basis) as follows:

|φ0〉1...n = 1√
2

(|00 · · · 0〉1,2,...,n + |11 · · · 1〉1,2,...,n
)

= 1√
2

1∑

j=0

|Z j 〉1|Z j 〉2 · · · |Z j 〉n

= 1√
2

1∑

j=0

⎧
⎨

⎩

⎛

⎝ 1√
2

1∑

k1=0

e−π i jk1 |Xk1〉
⎞

⎠

⎛

⎝ 1√
2

1∑

k2=0

e−π i jk2 |Xk2〉
⎞

⎠

· · ·
⎛

⎝ 1√
2

1∑

kn=0

e−π i jkn |Xkn 〉
⎞

⎠

⎫
⎬

⎭

= 2
−(n+1)

2

1∑

k1,k2,...,kn=0

⎛

⎝
1∑

j=0

e−π i j[(k1+k2+···+kn)(mod2)]|Xk1〉|Xk2〉 · · · |Xkn 〉
⎞

⎠

= 2
−(n−1)

2

1∑

k1,k2,...,kn=0
k1+k2+···+kn=0(mod2)

|Xk1〉|Xk2〉 · · · |Xkn 〉, (5)
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|φ1〉1...n = 1√
2

(|00 · · · 0〉1,2,...,n − |11 · · · 1〉1,2,...,n
)

= 1√
2

(|Z0〉1|Z0〉2 · · · |Z0〉n − |Z1〉1|Z1〉2 · · · |Z1〉n)

= 2
−(n+1)

2

⎡

⎢⎢⎢⎣

⎛

⎜⎜⎜⎝

1∑

k1,k2,...,kn=0
k1+k2+···+kn=0(mod2)

|Xk1〉|Xk2〉 · · · |Xkn 〉

+
1∑

k1,k2,...,kn=0
k1+k2+···+kn=1(mod2)

|Xk1〉|Xk2〉 · · · |Xkn 〉

⎞

⎟⎟⎟⎠

−

⎛

⎜⎜⎜⎝

1∑

k1,k2,...,kn=0
k1+k2+···+kn=0(mod2)

|Xk1〉|Xk2〉 · · · |Xkn 〉

+
1∑

k1,k2,...,kn=0
k1+k2+···+kn=1(mod2)

e−π i |Xk1〉|Xk2〉 · · · |Xkn 〉

⎞

⎟⎟⎟⎠

⎤

⎥⎥⎥⎦

= 2
−(n−1)

2

1∑

k1,k2,...,kn=0
k1+k2+···+kn=1(mod2)

|Xk1〉|Xk2〉 · · · |Xkn 〉. (6)

Here, if each particle in |φ0〉1...n (|φ1〉1...n) is measured in the X -basis, we can
get the measurement results Xk1 , Xk2 , . . . , Xkn , where ki (i ∈ {1, 2, . . . , n}) is the
i-th particle in |φ0〉1...n (|φ1〉1...n) and Xki will be |X0〉 or |X1〉. If |X0〉 represents the
classical bit “0” and |X1〉 represents the classical bit “1”, then the measurement results
satisfy Xk1 ⊕ Xk2 ⊕ · · · ⊕ Xkn = 0 for |φ0〉 and Xk1 ⊕ Xk2 ⊕ · · · ⊕ Xkn = 1 for
|φ1〉, where ⊕ is the bitwise exclusive-OR. Equations (5) and (6) will be used later as
a coding function in the proposed DQDSS.

3 The proposed DQDSS scheme

In this section, we will introduce a new DQDSS scheme under the four-party scenario
and extend it to an (n+1)-party case. Then,wewill demonstrate how to add a newagent
and revoke a current agent from our scheme. Furthermore, the property of periodical
updates will be pointed out at the end of this section.
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3.1 The proposed DQDSS scheme using themutually unbiased bases
measurement

We first consider four-party DQDSS scheme. Suppose Alice is the dealer who wants
to send a secret key S to three agents: Bob, Charlie and David. S can be recovered if
and only if they cooperate. Now, let us give the detail steps in the following:

1. Alice randomly generates N three-particle GHZ entangled states, and each one is
in the state |φ0〉123 = 1√

2
(|000〉 + |111〉). Then, she imposes secret messages by

performing local unitary operations on the third particle of |φ0〉123. If the two local
unitary operations we use areU0 = |0〉〈0| + |1〉〈1| andU1 = |0〉〈0| − |1〉〈1|, then
we have

I ⊗ I ⊗U0|φ0〉123 = |φ0〉123, I ⊗ I ⊗U1|φ0〉123 = |φ1〉123. (7)

Each of the above two local unitary operations corresponds two encodings of the
secret messages, respectively, i.e., U0 to ‘0’ and U1 to ‘1’.

2. Alice takes all of the first qubits, second qubits and third qubits from each GHZ
state to form three sequences S1, S2 and S3, respectively. Then, she prepares three
checking sets of decoy photons arbitrarily chosen from {|0〉, |1〉, |+〉, |−〉} and then
randomly inserts these decoy photons into S1 (S2, S3) to form S∗

1 (S∗
2 , S

∗
3 ). Alice

keeps a record of the insertion positions and initial states of the decoy particles
and delivers S∗

1 , S
∗
2 , S

∗
3 to Bob, Charlie and David, respectively.

3. After Bob, Charlie and David receive the sequences, Alice publicly announces the
positions of the decoy particles and asks them to measure these particles in the Z -
basis or X -basis. Bob, Charlie and David measure the decoy particles according
to Alice’s announcements and tell Alice their measurement results. Alice can
compute the error rate through comparing the measurement results to the initial
states. If the error rate is higher than the threshold determined by the channel noise,
Alice cancels this protocol and restarts; otherwise, they continue to the next step.

4. After confirming that the channels are secure, Bob, Charlie and David per-
form X basis measurements on S1, S2 and S3, respectively. They can obtain
their shadows K1 = {k11, k12, . . . , k1N }, K2 = {k21, k22, . . . , k2N } and K3 =
{k31, k32, . . . , k3N },respectively, where k ji = 0(1 ≤ j ≤ 3, 1 ≤ i ≤ N ) if the
measurement of the i-th particle is |+〉 and k ji = 1 if the measurement of the i-th
particle is |−〉.

5. According to Eqs. (5)–(7), we can see that S = ( j1, j2, . . . , jl , . . . , jN ) = K1 ⊕
K2 ⊕ K3, where 1 ≤ l ≤ N , jl denotes the subscript of local unitary operation,
which Alice acted on the third particle in Step (1) for the l-th |φ0〉123, jl ∈ {0, 1}.

Remark 1 Based on |φ0〉12 = 1√
2
(|00〉 + |11〉) and |φ1〉12 = 1√

2
(|00〉 − |11〉), the

three-party DQDSS scheme can be constructed similarly.

It is easy to expand this DQDSS protocol to an (n + 1)-party DQDSS with a
boss, Alice, and n agents, Bob1,Bob2, . . . ,Bobn . Alice prepares N n-particle GHZ
states in |φ0〉1...n = 1√

2
(|0〉⊗n + |1〉⊗n). She imposes secret messages by performing
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Fig. 1 Detail steps of our DQDSS scheme

local unitary operations {U0,U1} on the n-th particle of |φ0〉1...n . Then, she divides
these n-qubit GHZ states into n ordered sequences, S1, S2, . . . , Sn . After that, Alice
delivers these sequences to Bob1,Bob2, . . . ,Bobn , respectively. In order to avoid
eavesdropping attacks, decoy photons are used to protect each quantum transmission
as described in Step (2). After the eavesdropping checks, all parties perform the X basis
measurements on their particles to obtain the measurement results K1, K2, . . . , Kn .

Finally, when all agents Bob1,Bob2, . . . , Bobn cooperate, they can recover Alice’s
secret S = ( j1, j2, . . . , jl , . . . , jN ) = K1 ⊕ K2 ⊕ · · · ⊕ Kn , where 1 ≤ l ≤ N , jl
denotes the subscript of local unitary operation, which Alice acted on the n-th particle
in Step (1) for l-th |φ0〉1...n , jl ∈ {0, 1}. The basic idea of this (n + 1)-party DQDSS
is shown in Fig. 1.

Remark 2 The eavesdropping check can be executed in another way. Alice prepares
N + σ generalized GHZ states, where each of the σ GHZ states used to check the
security is randomly in either |φ0〉1...n or |φ1〉1...n , and each of the N GHZ states is
in the same state |φ0〉1...n . After agents receive the sequences, Alice announces the
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positions and the measurement basis from one of the mutually unbiased bases for the
sample particles in each of the GHZ states without inserting any checking sets. If the
corresponding measurement basis is the Z -basis, all agents should obtain the same
results; otherwise, the measurement results should satisfy

∑n
j=1 k jil = 0(mod2) for

|φ0〉 and ∑n
j=1 k jil = 1(mod2) for |φ1〉, where k jil = 0(1 ≤ j ≤ n, 1 ≤ il ≤ N , 1 ≤

l ≤ σ) if the measurement of the il -th particle is |+〉 and k jil = 1 if the measurement
of the il -th particle is |−〉.

3.2 Add a new agent

Suppose that a new agent, say Frieda, wants to join the four-party DQDSS before the
distributed quanta are measured. With the help of one of the old members, Alice and
Frieda execute the following steps:

1. One of the old members, suppose Bob, prepares a checking set of decoy photons
arbitrarily chosen from {|0〉, |1〉, |+〉, |−〉} and then randomly inserts these decoy
photons into his sequence S1 to form S♣

1 . Bob keeps a record of the insertion
positions and initial states of the decoy particles, and delivers S♣

1 to Alice.
2. After Alice receives the sequence S♣

1 , Bob publicly announces the positions of
the decoy particles and the corresponding measurement basis. Alice measures the
decoy particles according to Bob’s announcements and tell Bob her measurement
result. Bob can compute the error rate through comparing the measurement results
to the initial states. If the error rate is higher than the threshold determined by the
channel noise, Bob will ask Alice to cancel this process of adding a new agent;
otherwise, they continue to the next step.

3. After confirming that the channel is secure, Alice prepares a sequence of N single
photons S4 in |0〉 and performs the CNOT operations between S1 and SF , where
each particle in S1 is as the control qubit and the single photon |0〉 in SF as the target
qubit, and then the 3-particle GHZ state |φ0〉123 and |φ1〉123 will convert to a 4-
particle GHZ state |φ0〉123F = 1√

2
(|0000〉+|1111〉) and |φ1〉123F = 1√

2
(|0000〉−

|1111〉), respectively. After that, Alice randomly inserts decoy photons arbitrarily
chosen from {|0〉, |1〉, |+〉, |−〉} into the sequence S1 and SF to form S∗′

1 and S∗
F .

Finally, Alice delivers S∗′
1 and S∗

F to Bob and Frieda, respectively.
4. After Bob and Frieda receive the sequence S∗′

1 and S∗
F sent from Alice, they

perform the eavesdropping check to confirm the security of S1 and SF (similar
to Step (3) in Sect. 3.1). Then, Bob, Charlie, David and Frieda perform X basis
measurements on S1, S2, S3 and SF , respectively. They can obtain their shadows
K1 = {k11, k12, . . . , k1N }, K2 = {k21, k22, . . . , k2N }, K3 = {k31, k32, . . . , k3N },
and K4 = {k41, k42, . . . , k4N }, respectively, where k ji = 0(1 ≤ j ≤ 4, 1 ≤ i ≤
N ) if the measurement of the i-th particle is |+〉 and k ji = 1 if the measurement
of the i-th particle is |−〉.

5. According to Eqs. (5)–(7), we can see that S = ( j1, j2, . . . , jl , . . . , jN ) = K1 ⊕
K2 ⊕ K3 ⊕ K4, where 1 ≤ l ≤ N , jl denotes the subscript of local unitary
operation which Alice acted on the third particle in Step (1) in Sect. 3.1 for l-th
|φ0〉123, jl ∈ {0, 1}.
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3.3 Revoke an agent

Suppose that Alice wants to revoke an agent, say David, before the distributed quanta
are measured in our four-party DQDSS scheme. Alice and David will perform the
following steps:

1. Upon the request from Alice, David randomly inserts enough decoy photons into
his sequence S3 to form S′

3 and sends S′
3 back to Alice.

2. After Alice receives the sequence S′
3 sent fromDavid, David andAlice perform the

eavesdropping check to confirm the security of S3 [similar to Step (3) in Sect. 3.1].
3, To check the correctness of the sequence S3, Alice randomly selects enough check

positions in S3 and then announces these positions to Bob and Charlie. After that,
Bob and Charlie take out the corresponding check photons in S1 and S2 to form
SC1 and SC2 and then randomly insert enough decoy photons into their sequences,
respectively. The new sequences are denoted as S∗

C1 and S∗
C2, which are delivered

to Alice through quantum channel.
4. After the eavesdropping check [similar to Step (3) in Sect. 3.1], Alice receives SC1

and SC2 from Bob and Charlie. Then she performs the X -basis measurements on
SC1, SC2 and SC3 to check the correctness of S3 from David.

5. After verifying the correctness of S3 successfully, she prepares two-particle gen-
eralized GHZ entangled states for the checking positions. According to Remark 1,
Alice makes Bob and Charlie obtain the components of their secret shadows in
checking positions of S1 and S2, denoted as KC1 and KC2, respectively, which
form partial components of the secret from Alice. Then Alice, Bob and Charlie
perform X -basis measurements on the remaining qubits in S3, S1 and S2 to obtain
the measurement results KR3, KR1 and KR2, and Alice announces KR3. Finally,
Bob and Charlie can recover the remaining components of the secret by computing
KR1 ⊕ KR2 ⊕ KR3.

3.4 Updating

Suppose that there is an (n + 1)-party DQDSS with a boss, Alice, and n agents,
Bob1,Bob2 . . . ,Bobn . They can use the following steps to update their shadows.

1. In the first updating period, Bob1 randomly generates N generalized GHZ entan-
gled states and each one is in the state |ψ〉 = 1√

2
(|0〉⊗n +|1〉⊗n). He divides these

n-qubit generalized GHZ states into n ordered sequences, SU1, SU2, . . . , SUn .

Then Bob1 keeps the sequence SU1 himself and sends the sequence SU2 to Bob2.
This process is similar to the Steps (2), (3) in Sect. 3.1.

2. Bob2 measures his particles in SU2 using the X -basis and gets the binary number
U2 = (u21, u22, . . . , u2N ). This process is similar to Step (4) in Sect. 3.1. Then
Bob2 computes K ′

2 = K2 ⊕U2 and updates his shadow.
3. Similarly, Bob1 sends the sequence SU3 to Bob3. Bob3 measures his particles in

SU3 using the X -basis and updates his shadow K3. This process is continued until
Bobn .

4. Bob1 measures his particles in SU1 using the X -basis and updates his shadow K1.
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5. Once the above steps are completed, the first updating period is over. When the
second updating period starts, Bob2 does the similar operations as Bob1. The other
updating can be performed periodically in the similar way.

Theorem 1 After the updating of shadows, the secret S satisfied S = K ′
1⊕K ′

2⊕· · · K ′
n,

where K ′
i is the new shadow of the agent Bobi , i ∈ {1, 2, . . . , n}.

Proof Assume that K1, K2, . . . , Kn are the old shadows of Bob1,Bob2, . . . ,Bobn .
After the first updating period, their shadows will become as follows

K ′
1 = K1 ⊕U1, K

′
2 = K2 ⊕U2, . . . , K

′
n = Kn ⊕Un .

According to the updating process and the property of the generalized GHZ state, we
can get that U1 = U2 ⊕U3 ⊕ · · · ⊕Un . So

K ′
1 ⊕ K ′

2 ⊕ · · · K ′
n = (K1 ⊕U1) ⊕ (K2 ⊕U2) ⊕ · · · ⊕ (Kn ⊕Un)

= (K1 ⊕U2 ⊕U3 ⊕ · · · ⊕Un) ⊕ (K2 ⊕U2) ⊕ · · · ⊕ (Kn ⊕Un)

= K1 ⊕ K2 ⊕ · · · ⊕ Kn = S. (8)

The above suffices to show that the secret is changeless after the first updating
period. Since the other updating periods are similar to the first one, we can know that
the secret is unchanged after the updating and that the Theorem is proved. 
�
Example In order to specify the updating processmore clearly,wewill give an example
as follows. We assume that the dealer Alice wants to share a 2-bit ‘01’ secret S
among three agents Bob, Charlie and David. Without loss of generality, we assume
that K1 = 01, K2 = 10 and K3 = 10 after executing the five steps in Sect. 3.1.
We can know that Bob, Charlie and David can recover the secret S by computing
K1 ⊕ K2 ⊕ K3. In an updating period, Bob1 generates two GHZ entangled states
|φ′

01〉 = 1√
2
(|000〉 + |111〉) and |φ′

02〉 = 1√
2
(|000〉 + |111〉), and then uses the first

particles of |φ′
01〉 and |φ′

02〉 to compose the sequence SU1, the second particles to
compose the sequence SU2 and the third particles to compose the sequence SU3, Then
he keeps the sequence SU1 himself and SU2, SU3 to Charlie and David, respectively.
After that, all of them perform the X -basis measurement on SU1, SU2 and SU3 to get
U1,U2, and U3, respectively. We assume U1 = 11,U2 = 01, and U3 = 10. finally,
they can update their shadows through computing K ′

1 = K1 ⊕ U1 = 01 ⊕ 11 = 10,
K ′
2 = K2 ⊕ U2 = 10 ⊕ 01 = 11 and K ′

3 = K3 ⊕ U3 = 10 ⊕ 10 = 00. We can see
that the secret S is not changed after the updating.

4 Analysis of the proposed scheme

4.1 Security analysis

Now we will prove that the present scheme is secure. As mentioned in [30], if a QSS
scheme is secure for a dishonest agent, then it is secure for any outside eavesdropper,
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because he knows partial information legally and can tell a lie at the stage of eavesdrop-
ping detection to try to avoid introducing errors. Thus, our main goal for the security
of the proposed DQDSS scheme is to prevent dishonest agents from deception. In the
following, for the two approaches employed to check eavesdropping, we will analyze
the intercept-and-attack, entangle-and-measure attack, collusion attack, Trojan horse
attack, the honest check of added or revoked agents and the security under a noisy
quantum channel, against the proposed scheme.

4.1.1 The security of the scheme against the intercept-and-resend attack

Suppose that there are dishonest agents who can intercept the particle sequences sent
by Alice and resend other forged particles prepared by themselves in hope to pass the
eavesdropping. Therefore, they can obtain the initial particle sequences Si (i = 1, 2, 3)
and then they intend to get the information of Alice. But according to the two ways for
eavesdropping check, Alice inserts randomly k samples in each transmitted sequences,
requires the agents tomeasure them later, and checks theirmeasurement results. In fact,
if the dishonest agent starts an intercept-resend attack, he cannot know the position,
basis and value of each decoy particle. Since each decoy particle is randomly in one of

the four states {|0〉, |1〉, |+〉, |−〉}, the successful probability is less than
( 1
4

)k
, where

k is the number of the decoy particles in each sequences transmitted to other agents.

4.1.2 The security of the scheme against the entangle-and-measure attack

Here we consider a more complicated eavesdropping attack by a dishonest agent who
is able to prepare an ancilla and entangle the ancilla to gain information about the
secret without the help of other agents.

In this kind of attack, for the first way of checking eavesdroppings, since the dishon-
est agent does not know the positions and states of the decoy photons in the intercepted
sequences, the dishonest agent then prepares some ancillas E = (|E1〉, |E2〉, . . .),
entangles these ancillas with the intercepted sequences using a unitary operation UE ,
andmeasures the ancillary particles to steal secret information. The effect of the unitary
operation UE performed on the decoy particle is shown as follows.

UE |0〉|Ei 〉 = α|0〉|ε0〉 + β|1〉|ε1〉, (9)

UE |1〉|Ei 〉 = η|0〉|ε′
0〉 + γ |1〉|ε′

1〉, (10)

UE |+〉|Ei 〉 = 1√
2

(
α|0〉|ε0〉 + β|1〉|ε1〉 + η|0〉|ε′

0〉 + γ |1〉|ε′
1〉

)

= 1

2
[|+〉(α|ε0〉 + β|ε1〉 + η|ε′

0〉 + γ |ε′
1〉)

+ |−〉(α|ε0〉 − β|ε1〉 + η|ε′
0〉 − γ |ε′

1〉)], (11)

UE |−〉|Ei 〉 = 1√
2
(α|0〉|ε0〉 + β|1〉|ε1〉 − η|0〉|ε′

0〉 − γ |1〉|ε′
1〉)
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= 1

2
[|+〉(α|ε0〉 + β|ε1〉 − η|ε′

0〉 − γ |ε′
1〉)

+ |−〉(α|ε0〉 − β|ε1〉 − η|ε′
0〉 + γ |ε′

1〉)], (12)

where UEÛE = ÛEUE = I ; |α2| + |β2| = |η2| + |γ 2| = 1; |Ei 〉 is the initial state
of Bob’s ancilla and {|ε0〉, |ε1〉, |ε′

0〉, |ε′
1〉} are the pure ancilla’s states determined

uniquely by the unitary operation UE , i.e.,

α2 〈ε0|ε0〉 + β2 〈ε1|ε1〉 = 1, η2
〈
ε′
0|ε′

0

〉 + γ 2 〈
ε′
1|ε′

1

〉 = 1,

αβ 〈ε1|ε0〉 + ηγ
〈
ε′
1|ε′

0

〉 = 1, αβ
〈
ε′
0|ε′

0

〉 + ηγ
〈
ε′
1|ε′

1

〉 = 1.

Obviously, the effect of Bob’s eavesdropping will introduce an error rate for every
decoy photon in the stage of the honest check.

P0 = α2 〈ε0|ε0〉 = 1 − β2 〈ε1|ε1〉 , (13)

P1 = η2
〈
ε′
0|ε′

0

〉 = 1 − γ 2 〈
ε′
1|ε′

1

〉
, (14)

P+ = 1

2

(
1 + αη

〈
ε0|ε′

0

〉 + βγ
〈
ε1|ε′

1

〉 + αγ
〈
ε0|ε′

1

〉 + βη
〈
ε1|ε′

0

〉)
, (15)

P− = 1

2

(
1 − αη

〈
ε0|ε′

0

〉 − βγ
〈
ε1|ε′

1

〉 + αγ
〈
ε0|ε′

1

〉 + βη
〈
ε1|ε′

0

〉)
. (16)

If Bob wants to achieve the eavesdropping without being detected in the stage of
the honest check, the rates P0, P1, P+, P− have to equal to 1. Therefore, the following
equations must be satisfied:

β2 〈ε1|ε1〉 = η2
〈
ε′
0|ε′

0

〉 = 0, α2 〈ε0|ε0〉 = γ 2 〈
ε′
1|ε′

1

〉 = 1,

αγ
〈
ε0|ε′

1

〉 = 1. (17)

Equation (17) implies that α|ε0〉 = γ |ε′
1〉. Obviously, Bob cannot distinguish α|ε0〉

from γ |ε′
1〉 and cannot obtain useful information from the ancillary particles. So the

entangle-and-measure attack is unsuccessful.
From another point of view, we will analyze that our scheme can resist an entangle-

and-measure attack from the dishonest agent considered in Remark 2 (i.e., without
inserting any checking sets to detect eavesdropping). The dishonest agent prepares
ancillas E = {|ε0〉, |ε1〉} and entangles these ancillas with |φ0〉 and |φ1〉 by performing
a unitary operationU hoping that he can pass the eavesdropping check among honest
agents and derive useful information about the honest agents’shadow. However, taking
|φ0〉 as an example, the effect of the dishonest agent’s operation on the generalized
GHZ states will produce the following results:

Û |φ0〉|E〉 = |φ′
0〉 =

1∑

j=0

a j |Z j 〉1|Z j 〉2 · · · |Z j 〉n ⊗ |ε j 〉, (18)

where the coefficients a j satisfy
∑1

j=0 a
∗
j a j = 1.
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According to Remark 2, if no eavesdropping exists, all agents’ measurement out-
comes should be the same with Z -basis. So we have

|φ′
0〉 =

1∑

j=0

| j〉| j〉 · · · | j〉 ⊗ |ε j 〉. (19)

Furthermore, |φ′
0〉 can be represented by X -basis as follows:

|φ′
0〉 = 2−n/2

1∑

j=0

1∑

k1,k2,...,kn=0

a j e
−π i j(k1+k2+···+kn)|Xk1〉|Xk2〉 · · · |Xkn 〉 ⊗ |ε j 〉

= 2−n/2
1∑

k1,k2,...,kn=0

⎧
⎨

⎩|Xk1〉|Xk2〉 · · · |Xkn 〉 ⊗
1∑

j=0

a j e
−π i j(k1+k2+···+kn)|ε j 〉

⎫
⎬

⎭ .

(20)

In order to avoid the eavesdropping check, the dishonest agent has to set

2−n/2
1∑

k1,k2,...,kn=0
k1+k2+···+kn=1(mod2)

⎧
⎨

⎩|Xk1〉|Xk2〉 · · · |Xkn 〉⊗
1∑

j=0

a j e
−π i j(k1+k2+···+kn)|ε j 〉

⎫
⎬

⎭ = 0.

(21)

Then

2−n/2
1∑

k1,k2,...,kn=0
k1+k2+···+kn=1(mod2)

{|Xk1〉|Xk2〉 · · · |Xkn 〉 ⊗ (a0|ε0〉 − a1|ε〉} = 0. (22)

That is

a0|ε0〉 − a1|ε〉 = 0, a0|ε0〉 = a1|ε〉. (23)

In terms of Eq. (23) and
∑1

j=0 a
∗
j a j = 1, Eq. (19) can be written as

|φ′
0〉 =

⎛

⎝ 1√
2

1∑

j=0

| j〉| j〉 · · · | j〉
⎞

⎠ ⊗ |ε0〉 = |φ0〉 ⊗ |ε0〉. (24)

It can be seen that |φ′
0〉 is a product of a GHZ state and the ancilla. The density

operator of the ancilla is ρE = tr|φ′
0〉(|φ′

0〉|ε0〉〈ε0|〈φ′
0|) = |ε0〉〈ε0|tr|φ′

0〉(|φ′
0〉〈ε0|) =

|ε0〉〈ε0|. Thus, von Neumann entropy S(ρE ) = 0, which implies that the dishonest
agent will gain no information about the secret from Alice by observing the ancilla.
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Conversely, if gaining information about the secret, the dishonest agent will invariably
introduce errors.

4.1.3 The security of the scheme against the collusion attack

Furthermore, there may be two or more dishonest agents, and they can collude to
perform an attack (i.e., the collusion attack). For example, suppose that Bob is honest
and other two agents, Charlie and David, are dishonest, that is, Charlie and David try
to collude to perform an attack to obtain the shared secret without the help of Bob.
However, since the dealer in the proposed DQDSS scheme distributes all photons to
the agents without preserving anything, k1⊕k2⊕k3 is not known to two agents Charlie
and David, i.e., they do not obtain any information about secret. That is, our DQDSS
protocol is still secure against the collusion attack by two or more dishonest agents
(as long as there is an honest agent).

4.1.4 Security for Trojan horse attack

According to [30], if the particles used in the QSS are the photons, then the proposed
protocol may be insecure against the two kinds of Trojan horse attacks: the delay
photon attack and the invisible photon attack. In order to prevent delay photon attack,
the agents have to introduce a special quantum device that filters out the spy photons
whose wavelength is close to the legitimate one. Furthermore, each agent will have
to take a portion of the received photons as sample signals and splits each particle
by a photon number splitter (PNS). Then they measure the two signals with the base
{|0〉, |1〉} or {|+〉, |−〉} randomly. If there is an unreasonably high rate of multiphoton
signal, then the existence of a Trojan horse attack is detected. For stopping the invisible
photon attack, the participants should add a filter before their devices. The filter only
allows the photon signals whose wavelengths are close to the operating one to come
in. So the eavesdropper’s invisible photons will be filtered out.

4.1.5 Security of adding or deleting participants

In the proposed scheme, the agents can be added or deleted and the shared secret need
not be changed. When adding agents, the boss, Alice, generates a GHZ state in the
Z -basis and sends the particles to agents, and then each agent measures his particle in
the X -basis and gets his shadows. Besides, the property of GHZ state can ensure the
confidentiality of our scheme, and any agents cannot know the states of the new agents’
particles. So the old agents cannot know the states of the new agents’ particles and
cannot get the new agents’ shadows. In the revocation process, Alice asks a revoked
agent to send his/her qubits back to her. Then, she randomly chooses enough check
positions to perform the X -basis measurements and request the other agents to deliver
the X -basis measurement results in the corresponding check positions by quantum
signals, respectively. According to these measurement results, Alice can check the
correctness of the revoked agent’s qubits. If the check result is positive, the shadows
of removed agents will be useless. Otherwise, Alice asks other agents to abort the
process and starts a new one.
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4.1.6 Security under a noisy channel

In the above-mentioned analysis, we assume that the quantum channel is ideal. That
is, the quantum channel is noiseless. However, in practice, due to the fluctuation of
the birefringence of the optical fiber, the quantum channel is imperfect (i.e., photons
tend to suffer from noises in the quantum channel). In the following, we analyze the
security of the proposed scheme in the noisy quantum channel.

Eve intercepts the photons transmitted fromAlice toBob (Charlie, David), performs
intercept-and-resend attack or entangle-and-measure attack, and then sends theses
intercepted photons to Bob through an ideal channel established by herself. Eve may
attempt to hide her attack in the noise on the quantum channel. Suppose that the
quantumbit error rate (QBER) caused by the channel noise τ is approximately between
2 and 8.9% [36–39]. It is clear that the attack will not be detected if the eavesdropper
detection rate of our protocols is smaller than τ . However, the eavesdropper detection
rate of our protocol is 25%, which is obviously larger than τ . Hence, even in a noisy
channel the present protocol works securely also.

4.2 Efficiency analysis

In this section, we compare the qubit efficiency of several existing DQSS schemes
[25,26,29,30] with our scheme. According to [40], a method ηq = qu

qt
has been used

to evaluate the qubit efficiency, where qu denotes the useful qubits (i.e., the qubits
used for creating the master key and the shadow keys), qt denotes the total number of
transmitted qubits (except the number of decoy photons). Thus, except a few particles
which used to check the security of quantum channel, all of the above schemes can
achieve a maximum value of 100%.

Another qubit efficiency η of a quantum protocol is defined as ηE = qs
qg
, where qs

denotes the bit length of the dealer’smaster key, and qg is the total number of generated
particles. This definition underlines each photon’s contribution in average to the shared
key in the scheme. Suppose that the decoy photons account for fifty percent of every
quantum channel to each agent. We consider the n-party QSS scenario, i.e., n − 1
agents share 2N or N bits of classical secret from the dealer.

In Jia et al.’s scheme [26], to share N bits of classical secret, Alice must prepare nN
star-like cluster states (i.e., (2n−1)N qubits), and each cluster state can be used to share
N -bit classical secret. Since half of star-like cluster states are used for eavesdropping
check, the qubit efficiency of Jia et al.’s scheme is 1

4n−2 (i.e., N
2(n−1)N × 1

2 = 1
4n−2 ).

In Hsu et al.’s scheme [25], since 2nN EPR pairs have been prepared by the dealer
for secret sharing and 2nN EPR pairs are used for eavesdropping check, the qubit
efficiency of our scheme can be expressed as 1

2n (i.e., 2N
2nN × 1

2 = 1
2n ). Liao et al.’s

scheme [29] and Qin et al.’s scheme [30] require the dealer generate N n-particle
GHZ states and N n − 1 decoy photons to share N -bit classical secret. Hence, the
qubit efficiency of Liao et al.’s scheme is 1

2n−1 (i.e., N
nN+(n−1)N = 1

2n−1 ). For the
proposed DQSS scheme, since N (n − 1)-particle generalized GHZ states have been
prepared by the dealer for secret sharing and (n − 1)N decoy photons are used for
eavesdropping check, the qubit efficiency of our scheme can be expressed as 1

2n−2
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Table 1 Comparisons among the schemes in [25,26,29,30] and our scheme

Issue/scheme [26] [25] [29] [30] Our scheme

Quantum state Star-like
cluster

Bell state GHZ state GHZ state Generalized
GHZ state

Qubit efficiency
(n-party DQSS)

1
4n−2

1
2n

1
2n−1

1
2n−1

1
2n−2

Qubit efficiency
(3-party DQSS)

10% 16.67% 20% 20% 25%

Qubit generation for
agents

No Yes No No No

Prepare qubits for
adding an agent

Linear cluster
state

Two Bell
states

Single photon 4-Particle
GHZ state

Single photon

(3 Qubits) (4 Qubits) (1 Qubit) (4 Qubits) (1 Qubit)

The scheme is a
multiparty DQDSS

No No No No Yes

The dealer need not
retain photons

No No No No Yes

Features Only dynamic Only dynamic Only dynamic Only dynamic Dynamic and
updated
periodically

(i.e., N
(n−1)N × 1

2 = 1
2n−2 ). Table 1 shows the efficiency and performance comparison

of the proposed protocol with the previous ones. It can be seen that the efficiency of
the proposed protocol is higher than these four important multiparty DQSS schemes
and that the performance advantage of our scheme is clear.

4.3 Security and efficiencymodel based on quantum information theory

In this section, we analyze the security of the present scheme by quantum information
theory. Then we establish a mathematical model about the efficiency and security and
perform simulation analyses with different parameters using MATLAB.

Because each photon is in the maximal mixed state, any measurement performed
on the system of photo by Eve cannot distinguish quantum states. If Eve intervene,
the particles will be entangled into Eve’s ancilla and it knows that the GHZ state
|ξ 〉 becomes a mixed state ρ. According to [41], the information that the agent Bob
can gain from ρ is bounded by the Holevo quantity χ(ρ) [42]. Let IEve denote the
information Eve can obtain, then IEve ≤ χ(ρ). (Obviously, Eve cannot gain more
information about Bob’s measurement result than Bob.) From

χ(ρ) = S(ρ) −
∑

i

pi S(ρi ), (25)

we know S(ρ) is the upper bound of χ(ρ). According to [43], F(|ξ 〉, ρ)2 = 〈ξ |ρ|ξ 〉 =
1−r ,where F(|ξ 〉, ρ) is thefidelity [44] of the state |ξ 〉 andρ, 0 ≤ r ≤ 1.Therefore,the
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entropy of ρ is bounded above by the entropy of a diagonal density matrix ρmax with
diagonal entries 1 − r , 3/r , 3/r , 3/r . The entropy of ρmax is

S(ρmax) = −(1 − r) log2(1 − r) − r log2
r

3
. (26)

From Eqs. (25) and (26), we can obtain

IEve ≤ −(1 − r) log2(1 − r) − r log2
r

3
. (27)

Let ω denote the probability of Eve introducing an error. When Alice detects eaves-
dropping, only |ξ 〉 is the correct result, whereas any other Bell state will be regarded
as an error. Since F(|ξ 〉, ρ)2 = 1− r , the detection probability ω = r . From Eq. (27),
we get

IEve ≤ −(1 − ω) log2(1 − ω) − ω log2
ω

3
. (28)

By the efficiency definition ηq in Sect. 4.2, we can get

η = 6n − p · 6n
6n

. (29)

where n is the number of generalized GHZ states prepared by Alice and p is the
proportion of eavesdropping particles. Besides, let f denote the probability of Eve
being found, and then we have

f = 1 − (1 − ω)6pn . (30)

From Eqs. (28)–(30), we can obtain the following model equations about the effi-
ciency and security of the proposed scheme:

⎧
⎨

⎩

IEve ≤ −(1 − ω) log2(1 − ω) − ω log2
ω
3

η = 6n−p·6n
6n

f = 1 − (1 − ω)6pn
(31)

Let n = 1 for convenience. We perform simulation analyses with different param-
eters using MATLAB. The results of the simulation analyses are shown in Figs. 2
and 3.

It can be seen from Fig. 2 that if Eve gain more information, the probability of Eve
being foundwill increase. Besides, Eve has to face a higher risk of being detected along
with the proportion of eavesdropping particles increasing. The relation indicates that
when ω = 0, i.e., Eve introduces no error to the key, she will obtain no information,
which is in agreement with the above result. When ω > 0, i.e., Eve can gain some
of Bob’s information, but she has to face a nonzero risk ω = r of being detected.
When IEve = 2, Eve has the chance to eavesdrop on all of Bob’s information, which
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indicates that the detection probability is no less than r per state for eavesdropping
detection in this case.

Figure 3 shows the relationship among η,ω and f . On the one hand, the probability
of Eve being found decreases along with the efficiency increasing; on the other hand,
the probability of Eve introducing an error will impact efficiency and security as well.

To sum up, by means of simulation analyses with different parameters, if the eaves-
dropping introduces no errors into the proposed scheme, Eve will gain no information
about the key by observing the ancilla, which is exactly consistent with the previous
security analysis.

5 Conclusion

In this paper, we proposed a practical and efficient dynamic quantum direct secret
sharing scheme using mutually unbiased measurements results for generalized GHZ
states. The dealer can share a determinate secret among agents by performing unitary
operations. Agents only perform single-photon measurements to get their shadows,
and even the dealer cannot know their shadows. Our scheme is not only dynamic, but
can make agents update their shadows periodically without changing the secret, which
makes it more convenient in a practical application than other schemes. Our newly
proposed protocol can stand against participant attacks, provide a higher efficiency in
transmission, and reduce the complexity of implementation.

Acknowledgements The authors would like to thank the anonymous referees for their very valuable
comments that enhance the quality of this paper. This work was supported by the National Natural Sci-
ence Foundation of China (61602291, 61671280, 11671244) and China Postdoctoral Science Foundation
(2018M633456).

References

1. Smith, A.: Multi-party quantum computation. Arxiv Cornell University Library (2001)
2. Liu, B.,Xiao,D.,Huang,W., et al.: Quantumprivate comparison employing single-photon interference.

Quantum Inf. Process. 16, 180 (2017)
3. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum

Inf. Process. 11, 373–384 (2011)
4. Sharma, R.D., Thapliyal, K., Pathak, A.: Quantum sealed-bid auction using a modified scheme for

multiparty circular quantum key agreement. Quantum Inf. Process. 16, 169 (2017)
5. Gao, F., Liu, B., Huang, W., et al.: Postprocessing of the oblivious key in quantum private query. IEEE

J. Sel. Top. Quantum Electron. 21, 98–108 (2014)
6. Huang, W., Wen, Q.Y., Liu, B., et al.: Robust and efficient quantum private comparison of equality

with collective detection over collective-noise channels. Sci. China-Phys.Mech.Astron.56, 1670–1678
(2013)

7. Zhang, L., Sun, H.W., Zhang, K.J., et al.: An improved arbitrated quantum signature protocol based
on the key-controlled chained CNOT encryption. Quantum Inf. Process. 16, 70 (2017)

8. Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2001)
9. Hillery, M., Buzek, V., Berthiaunie, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1840 (1999)

10. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes.
Phys. Rev. A 69, 052307 (2004)

11. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting.
Phys. Rev. A 59, 162–168 (1999)

123



244 Page 20 of 21 Y. Song et al.

12. Lu, H., et al.: Secret sharing of a quantum state. Phys. Rev. Lett. 117, 030501 (2016)
13. Gao, X., Zhang, S., Chang, Y.: Cryptanalysis and improvement of the semi-quantum secret sharing

protocol. Int. J. Theor. Phys. 56, 2512–2520 (2017)
14. Matsumoto, R.: Unitary reconstruction of secret for stabilizer-based quantum secret sharing. Quantum

Inf. Process. 16, 202 (2017)
15. Bai, C.M., Li, Z.H., et al.: Quantum secret sharing using the d-dimensional GHZ state. Quantum Inf.

Process. 16, 59 (2017)
16. Qin, H.W., Zhu, X.H., Dai, Y.W.: A proactive quantum secret sharing scheme based on GHZ state.

Mod. Phys. Lett. B 29, 550165 (2015)
17. Yu,K.F., et al.:Multi-party semi-quantumkeydistribution-convertiblemulti-party semi-quantumsecret

sharing. Quantum Inf. Process. 16, 194 (2017)
18. Fiedler, L., Naaijkens, P., Osborne, T.J.: Jones index, secret sharing and total quantum dimension. New

J. Phys. 19, 023039 (2017)
19. Kogias, I., Xiang, Y., He, Q., et al.: Unconditional security of entanglement-based continuous-variable

quantum secret sharing. Phys. Rev. A 95, 012315 (2017)
20. Wang, J., Li, L., Peng, H., et al.: Quantum-secret-sharing scheme based on local distinguishability of

orthogonal multiqudit entangled states. Phys. Rev. A 95, 022320 (2017)
21. Chen, X.B., Dou, Z., Xu, G., et al.: A kind of universal quantum secret sharing protocol. Sci. Rep. 7,

39845 (2017)
22. Xu, T.T., Li, Z.H., et al.: A new improving quantum secret sharing scheme. Int. J. Theor. Phys. 56,

1–10 (2017)
23. Ahmadi, M., Wu, Y.D., Sanders, B.C.: Relativistic (2, 3)-threshold quantum secret sharing. Phys. Rev.

D Part. Fields 96, 065018 (2017)
24. Abulkasim, H., Hamad, S., et al.: Quantum secret sharing with identity authentication based on Bell

states. Int. J. Quantum Inf. 15, 1750023 (2017)
25. Hsu, J.L., Chong, S.K., Hwang, T., Tsai, C.W.:Dynamic quantum secret sharing. Quantum Inf. Process.

12, 331–344 (2013)
26. Jia, H.Y., Wen, Q.Y., Gao, F., et al.: Dynamic quantum secret sharing. Phys. Lett. A 376, 1035–1041

(2012)
27. Chen, Q., Chen, J., Wang, K., Du, J.: Efficient construction of two-dimensional cluster states with

probabilistic quantum gates. Phys. Rev. A 73, 012303 (2006)
28. Wang, T.Y., Li, Y.P.: Cryptanalysis of dynamic quantum secret sharing. Quantum Inf. Process. 12,

1991–1997 (2013)
29. Liao, C.H., Yang, C.W., Hwang, T.: Dynamic quantum secret sharing protocol based on GHZ state.

Quantum Inf. Process. 13, 1907–1916 (2014)
30. Qin, H., Dai, Y.: Dynamic quantum secret sharing by using d-dimensional GHZ state. Quantum Inf.

Process. 16, 64 (2017)
31. Shi, R.H., Mu, Y., Zhong, H., et al.: Secure multiparty quantum computation for summation and

multiplication. Sci. Rep. 6, 19655 (2016)
32. Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys.

Rev. A 75, 10064–10070 (2007)
33. Huang, W., Wen, Q.Y., Liu, B., et al.: Quantum anonymous ranking. Phys. Rev. A 89, 87–90 (2014)
34. Dolev, S., Pitowsky, I., Tamir, B.A.: Quantum secret ballot. Computer Science (2006)
35. Pittenge, A.O., Rubin, M.H.: Mutually unbiased bases, generalized spin matrices and separability.

Linear Algebra Appl. 390, 255–278 (2004)
36. Jennewein, T., Simon, C., Weihs, G., et al.: Quantum cryptography with entangled photons. Phys. Rev.

Lett. 84, 4729 (2000)
37. Beveratos, A., Brouri, R., Gacoin, T., et al.: Single photon quantum cryptography. Phys. Rev. Lett. 89,

187901 (2002)
38. Hughes, R.J., Nordholt, J.E., Derkacs, D., et al.: Practical free-space quantum key distribution over 10

km in daylight, and at night. New J. Phys. 4, 3283–3286 (2002)
39. Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber.

Appl. Phys. Lett. 84, 3762–3764 (2004)
40. Shi, R.H., Huang, L.S., Yang, W., et al.: Multiparty quantum secret sharing with Bell states and Bell.

Opt. Commun. 283, 2476–2480 (2010)
41. Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution without alternative measurements and

rotations. Phys. Rev. A 349, 53–58 (2006)

123



A dynamic multiparty quantum direct secret sharing… Page 21 of 21 244

42. Nielsen, M.A., Chuang, I.L.: QuantumComputation and Quantum Information. Cambridge University
Press, Cambridge (2000)

43. Cai, Q.Y., Li, B.W.: Improving the capacity of the Boström–Felbinger protocol. Phys. Rev. A 69,
521–524 (2004)

44. Barnum, H., Caves, C.M., Fuchs, C.A., et al.: Noncommuting mixed states cannot be broadcast. Phys.
Rev. Lett. 76, 2818–2821 (1996)

123


	A dynamic multiparty quantum direct secret sharing based on generalized GHZ states
	Abstract
	1 Introduction
	2 Mutually unbiased bases measurement for generalized GHZ states
	3 The proposed DQDSS scheme
	3.1 The proposed DQDSS scheme using the mutually unbiased bases measurement
	3.2 Add a new agent
	3.3 Revoke an agent
	3.4 Updating

	4 Analysis of the proposed scheme
	4.1 Security analysis
	4.1.1 The security of the scheme against the intercept-and-resend attack
	4.1.2 The security of the scheme against the entangle-and-measure attack
	4.1.3 The security of the scheme against the collusion attack
	4.1.4 Security for Trojan horse attack
	4.1.5 Security of adding or deleting participants
	4.1.6 Security under a noisy channel

	4.2 Efficiency analysis
	4.3 Security and efficiency model based on quantum information theory

	5 Conclusion
	Acknowledgements
	References




