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Abstract
In a rational protocol, players are supposed to be rational, rather than honest, semi-
honest or dishonest. This kind of protocols is practical and important, but seldom
researched in quantumcomputationfield. In this paper, amultifunctional rational quan-
tumsecuremulti-party computationprotocol is investigated. Firstly, a rational quantum
summation protocol is proposed. Secondly, the protocol is generalized to a rational
quantum multi-party computation protocol. The computation which is homomorphic
can be resolved by our protocol. Thirdly, from the view of utilities, correctness, Nash
equilibrium and fairness, analyses show that our protocol is rational. Besides, our pro-
tocol is also proved to be secure, efficient and practical. Our research will promote the
development of rational quantum multi-party protocol.

Keywords Quantum secure multi-party computation · Rational player ·
Multifunctional function · Homomorphic computation

1 Introduction

In secure multi-party computation (MC) problem, each player has an input which
cannot be revealed to anyone else. Players want to compute the value of function in
private. This kind of problem is first proposed by Yao [1]. He introduced the two-party
millionaire problem, where two millionaires want to compare their values of assets
without the help of any others. Another important problem is multi-party summation
[2–4], inwhich players need to compute the summation of their private inputs.With the
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development of cloud computing [5], security of computation and secure MC attract
a great deal of attention.

Because of the uncertainty principle, no-cloning theorem and entanglement, quan-
tum cryptography provides the possibility of designing an unconditional secure
protocol [6, 7]. Quantum version solutions of secure MC problem are researched
widely [8–12]. For example, in 2007, Du et al. [10] proposed an n-party quantum
addition module n+1 protocol based on non-orthogonal states. After that, a quantum
addition module 2 protocol via multi-particle entangled states was investigated by
Chen et al. [11]. Recently, a secure summation and a secure multiplication protocols
were given by Shi et al. [12]. The module of Shi et al.’s protocol is 2m. Here m is the
number of bits.

In common protocols, players are supposed to be honest, semi-honest or dishonest.
Players under different assumptions have different behavior patterns. In other word,
their behaviors are limited by these assumptions, instead of free. Therefore, these
protocols are not reasonable enough. Another weakness of common protocols is that
fairness is usually not concerned. For example, in an MC protocol, one player may
obtain the result but not inform it to the others. In this case, the other players have
no choice to obtain the result. This case is unfair for them. Under the circumstances,
rational protocols were introduced. In this kind of protocols, players are supposed to
be rational and will perform the protocol for their own benefits. They may cooperate
with the others faithfully, send false information, perform false operations or give up.
The only principle is to maximize their benefits. In addition, a rational protocol should
be fair for players. The probabilities of each player gaining the result should be equal.

In 2004, Halpern et al. [13] designed a rational three-party secret sharing protocol.
Each player can generate a random bit 0 or 1 with probability α or 1−α, respectively,
and choose a strategy according to this bit. The expected running rounds are 5/α3.
Authors proved that there exists no deterministic rational MC protocol at the same
time. In 2015, Zhang et al. proposed a verifiable rational secret sharing scheme [14].
A non-interactively verifiable proof is provided for the correctness of players’ share.
After that, Wang et al. [15] represented the research status of rational secure multi-
party computing and some typical protocols. In 2016, Wang et al. [16] utilized fuzzy
theory to research rational computing protocol. Compared with previous protocols,
round complexity can be reduced in Wang et al.’s [16].

In 2015, Maitra et al. [17] firstly introduced rational players into quantum protocol
and investigated rational quantum secret sharing (QSS) protocol. A (3, 7) threshold
protocol was proposed at first. Then, it was generalized to (k, n) version. Actually,
the shared secret is a quantum state in their protocol. This kind of QSS is usually
called as quantum state sharing (QSTS). After that, Dou et al. [18] also proposed a
rational QSTS protocol. Concretely, authors improved Li et al.’s QSTS protocol [19]
to the rational version. Since only one player can get the state, i.e., the result, QSTS
protocol is different from the others. Therefore, the definitions of utilities, correctness
and fairness of rational QSTS were creatively given. Besides that, assumptions in this
protocol are more practical and reasonable than previous ones.

In this paper, we follow the research on rational quantum protocol and design
a rational quantum MC protocol. We focus on a kind of MC problems which are
homomorphic, including but not limited to summation, multiplication, anonymous
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ranking. Firstly, a rational summation protocol is given as an example. Just likeHalpern
et al.’s protocol [13], players in our protocol also need to generate some random
bits and determine their strategies thereafter. An improvement is that punishment is
introduced into protocol to make players tend to send their inputs. Secondly, multi-
party problems which can be computed by our protocol are discussed. If the key
computation of a solution for a problem is homomorphic [20], this solution can be
modified into a rational protocol. This problem can be resolved by our protocol further.
Thirdly, utilities, correctness, Nash equilibrium, and fairness are analyzed. In order
to achieve the last three characteristics, players can choose suitable coefficients. Our
protocol satisfies all the criteria of rational protocol actually. Last but not least, another
three analyses are also given. We analyze the security, calculate probabilities of the
best and worst cases, and compare our protocol with Halpern et al.’s [13] and Maitra
et al.’s [17]. These show that our protocol is secure, efficient and multifunctional.
What’s more, no presupposition holds when analyzing players’ decision.

The structure of this paper is organized as follows. Preliminaries about rational MC
and homomorphic function are given in Sect. 2. After that, we describe the proposed
protocol in Sect. 3. Detailed analyses about our protocol are shown in Sect. 4. Finally,
conclusions are given in Sect. 5.

2 Preliminaries

2.1 Rational multi-party computation

For an n-party game Γ � ({Pi }ni�1, {Ai }ni�1, {Ui }ni�1), Pi denotes the ith player,
ai ∈ Ai is one of his strategies. Ai is his strategy set further. Let A � A1 × A2 ×
· · · × An , then a � (a1, a2, . . . , an) ∈ A denotes a strategy vector of this game,
o(a) � (o1, o2, . . . , on) is the corresponding outcome, Ui (a) is Pi’s utility in this
case. What’s more, if Pi prefers a than a′, then Ui (a) > Ui (a′). Besides that, for any
given strategy vector a, we define a−i � (a1, a2, . . . , ai−1, ai+1, . . . , an), and can get
(a′

i , a−i ) � (a1, a2, . . . , ai−1, a′
i , ai+1, . . . , an) naturally.

In rational MC problem, we also introduce a symbol infoi (a) to describe whether
the player Pi can get the computation result in strategy vector a. Here infoi (a) � 1 if
Pi can obtain the result, infoi (a) � 0 if not. Three notes, which will be mentioned in
following sections, are shown here.

(N1) If infoi (a) > infoi (a′), then Ui (a) > Ui (a′).
(N2) If infoi (a) � infoi (a′), info j (a) ≥ info j (a′) for all the j �� i , and infok(a) >

infok(a′) for at least one player Pk , then Ui (a) < Ui (a′).
(N3) If infoi (a) � infoi (a′), info j (a) ≤ info j (a′) for all the j �� i , and infok(a) <

infok(a′) for at least one player Pk , then Ui (a) > Ui (a′).

Definition 1 (Pure Strategy Nash Equilibrium [21]) A strategy vector a in the game
Γ is a pure strategy Nash equilibrium, if we have

Ui (a
′
i , a−i ) ≤ Ui (a) (1)

for each player Pi and his any other strategy a′
i .
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Definition 2 (Mixed Strategy [21]) In game Γ , a player Pi has a strategy set Ai �
{ai1, ai2, . . . , aiK }. A mixed strategy of Pi is denoted as Pri � {pi1, pi2, . . . , piK },
which means that Pi chooses ai j with probability pi j , 0 ≤ pi j < 1, and
∑K

j�1 pi j � 1. The mixed strategies of all the other players are denoted as Pr−i �
(Pr1,Pr2, . . . ,Pri−1,Pri+1, . . . ,Prn ), the mixed strategies of all the players are
denoted as Pr � (Pr1,Pr2, . . . ,Prn) further.

Definition 3 (Mixed Strategy Nash Equilibrium [21]) A strategy vector Pr in the game
Γ is a mixed strategy Nash equilibrium, if we have

Ui (Pr
′
i ,Pr−i ) ≤ Ui (Pr) (2)

for each player Pi and his any other strategy Pr′i .

Besides that, utilities, correctness, and fairness of rational multi-party protocol are
described and analyzed in Sect. 4.

2.2 Homomorphic function

For a multivariate function y � f (x1, x2, . . . , xn), xi ∈ Ai , domain of function f is
A1 × A2 × · · · × An . Accordingly, range is f (A1 × A2 × · · · × An).

The addition in domain and range are denoted as ◦ and 	, respectively. The
function f is homomorphic if for any xi , x ′

i ∈ Ai , y � f (x1, x2, . . . , xn), y′ �
f (x ′

1, x
′
2, . . . , x

′
n), we have

y′′ � f (x1 ◦ x ′
1, x2 ◦ x ′

2, . . . , xn ◦ x ′
n) � y 	 y′. (3)

Thus, another way to compute y is:

y � y′′ 	 y′−1

� f (x1 ◦ x ′
1, x2 ◦ x ′

2, . . . , xn ◦ x ′
n) 	 [ f (x ′

1, x
′
2, . . . , x

′
n)]

−1. (4)

Here y′−1 is the inverse element of y′ in range.

3 The proposed rational quantummulti-party computation protocol

At first, a new rational multi-party summation protocol based on common protocols is
investigated in Sect. 3.1. In order to solvemoreMCproblems, this protocol is modified
to a multifunctional rational MC protocol in Sect. 3.2.

3.1 A new rational quantum summation protocol

Suppose that there are n players who want to compute the summation of their private
data. For the ith playerPi, his secret can bewritten as a d-ary numberMi ∈ {0, . . . , d−
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1}, where i ∈ {1, 2, . . . , n}, d is a prime number. The jth round processes of our
protocol are shown as follows:

[S-1] In the jth round, he generates a random number Ri j ∈ {0, . . . , d − 1} and
computes MRi j � Mi ⊕d Ri j , here ⊕d denotes the addition module d.
[S-2] Then, a common quantum summation protocol is performed. All the players
compute the summation of MRi j . The result is denoted as S1 j . Here any protocol
could be employed as long as it is secure and correct.
[S-3] Pi chooses a bit ci j . The probability of ci j � 0 is α, and the probability of

ci � 1 is 1−α accordingly. Then, he randomly generates n−2 bits c(1)i j , . . . , c(i−1)
i j ,

c(i+1)i j , . . . , c(n−1)
i j and computes c(n)i j � ci j⊕c(1)i j ⊕· · ·⊕c(i−1)

i j ⊕ c(i+1)i j ⊕· · ·⊕c(n−1)
i j ,

here ⊕ denotes the addition module 2.
[S-4] Pi sends c

(k)
i j to Pk for k ∈ {1, . . . , i − 1, i + 1, . . . , n}. Then, Pi computes

qi j � c(i)1 j ⊕ c(i)2 j ⊕ · · · ⊕ c(i)(i−1) j ⊕ c(i)(i+1) j ⊕ · · · ⊕ c(i)nj , and publishes it. Each player
can compute q j � ⊕n

i�1qi j � ⊕n
i�1ci j by himself. If q j � ci j � 0, then player Pi

sends Ri j to the others. If q j � 0 but ci j � 1, Pi does nothing. Otherwise, q j � 1,
then all the players come to the next round.
[S-5] After that, if q j � 0 but neither of players collects all the n random numbers

R1 j , R2 j , . . . , Rnj , all of thempublish their bits c(k)i j , and checkwhich player (named
as Pm) should send his Rmj . The player who did not publish Rmj in this round
needs to send his random number before the others in the next λ rounds. Here λ is
a constant.
Otherwise, at least one player has collected all, he can obtain the summation of Ri j .
The result is denoted as S2 j . Finally, the player can compute the summation of their
secret Mi as S j � S1 j�d S2 j . Here �d is the subtraction module d.

3.2 Multifunctional rational protocol of quantum securemulti-party computation

Next, the rational multi-party summation protocol will be generalized to a rational
MC protocol.

AMC problem could be regarded as a multivariate function y � f (x1, x2, . . . , xn).
Inputs and output correspond to independent variables and dependent variable, respec-
tively. As one of the MC problems, multi-party summation also could be denoted as
function y � x1 ⊕d x2 ⊕d · · ·⊕d xn which is homomorphic. Therefore, from the view
of multivariate function, operation Mi ⊕d Ri j in our protocol corresponds to operation
xi ◦ x ′

i in Sect. 2.2. Likewise, S1 j�d S2 j corresponds to y′′ 	 y′−1.

Furthermore, in order to modify the protocol in Sect. 3.1 to a rational MC protocol,
calculations players need to make should be changed from Mi ⊕d Ri j to xi ◦ x ′

i in
step [S-1], and from S1 j�d S2 j to y′′ 	 y′−1 in step [S-5]. Since Eq. (4) holds only for
homomorphic function, our protocol could be employed to resolve the problem which
could be regarded as homomorphic function.

Next, we will discuss common MC problems which could satisfy above require-
ment. As we have shown, multi-party summation is one of them. Addition of inputs
xi could be computed by equation
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x1 + x2 + · · · + xn � (
x1 + x ′

1

)
+

(
x2 + x ′

2

)
+ · · · + (

xn + x ′
n

) − (
x ′
1 + x ′

2 + · · · + x ′
n

)
.

(5)

Similarly, multi-party multiplication also belongs to this set. Multiplication could be
computed by

x1x2 . . . xn � (
x1x

′
1

)(
x2x

′
2

)
. . .

(
xnx

′
n

)
/
(
x ′
1x

′
2 . . . x ′

n

)
. (6)

Since d is a prime number, x ′
1x

′
2 . . . x ′

n ≡ 0 mod d only if one of x ′
i � 0. In order to

avoid this case, we can let x ′
i �� 0.

Ifwe reread existing quantumMCprotocols, and check the key of their solutions,we
can find some other examples. In many quantum millionaire protocols [8, 9], problem
is resolved by subtraction essentially. The third party needs to compute xi − x j to
determinewhich input is bigger. Subtraction is the inverse operation of addition, so this
problem could be resolved by our protocol. Another example is quantum anonymous
ranking protocols [22, 23]. In these protocols, if a player holds a value, he will add
1, i.e., perform an operation on the corresponding particle. In the end, players can
obtain the number of addition which is applied to each value and the rank of each
value further.

Actually, as Shi et al. mentioned in Ref. [12], summation and multiplication are
both fundamental primitives of secure MC. Many computations could be performed
on the basis of them, such as average, maximum and minimum. In other words, our
protocol is multifunctional and has a wide range of applications.

4 Analyses

In this section, some analyses about the protocol are given. Utilities, correctness,
Nash equilibrium, fairness are analyzed. These show that our protocol is rational.
Furthermore, security, probabilities of two protocol outcomes and comparison are
also analyzed. Our protocol is also secure, efficient and practical.

The processes of our protocol can be divided as two parts: steps [S-1]–[S-2] which
are based on common secure quantum multi-party computation protocol and steps [S-
3]–[S-5] which could be regarded as rational classical secret sharing protocol. These
two parts can be called as quantum stage and classical stage, respectively. They will
be mentioned next.

4.1 Utilities

In quantum stage, a player will be chosen to compute and publish the value of summa-
tion. His role is different from the others’.We can denote this player as P1. Concretely,
P1 will determine whether compute and publish the value of S1 j , while the others will
choose whether encode their MRi j (i �� 1) to help P1 before that. However, in clas-
sical stage, all the players’ roles are same. They may send their random number Ri j

or not. Here strategies, corresponding outcomes, explanations and utilities of all the
cases are described in Table 1. They will be employed in the following analyses.
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Table 1 The detailed strategies, outcomes, explanations and utilities

Stage Role Strategy Outcome Explanation Utility

Quantum Pi (i �� 1) Cooperating Successful code Pi (i �� 1) encodes his
MRi j to help P1.
P1 obtains all the
MRi j successfully

Uc

Quantum Pi (i �� 1) Cooperating Unsuccessful
code

Pi (i �� 1) encodes his
MRi j to help P1,
but someone else
does not

Uuc

Quantum Pi (i �� 1) Stopping1 Abandoned
code

Pi (i �� 1) does not
encode his MRi j to
help P1

Ua

Quantum P1 Publishing Public code P1 computes and
publishes S1 j

Up

Quantum P1 Stopping2 Private code P1 does not compute
or publish S1 j

Uud

Quantum P1 Null Failed code Not all the players
encode their MRi j ,
so P1 has nothing to
compute or publish

U f

Classical Any player Pi Sending Successful
computation

Pi sends his random
number Ri j , all the
infok (a) � 1 for
1 ≤ k ≤ n

Us

Classical Any player Pi Sending Someone else
computation

Pi sends Ri j ,
infoi (a) � 0, but
in f ok (a) � 1 for
another Pk

Uus

Classical Any player Pi Sending Unsuccessful
computation

Pi sends Ri j , all the
infok (a) � 0 for
1 ≤ k ≤ n

Usn

Classical Any player Pi Stopping3 No one
computation

When ci j � 1, Pi
does not send Ri j ,
all the infok (a) � 0
for 1 ≤ k ≤ n

Unn

Classical Any player Pi Stopping3 Punished
computation

When ci j � 0, Pi
does not send Ri j ,
all the infok (a) � 0
for 1 ≤ k ≤ n

Upn

Classical Any player Pi Stopping3 Only him
computation

Pi does not send Ri j ,
infoi (a) � 1, but all
the infok (a) � 0 for
k �� i

Uo

Classical Any player Pi Sending/Stopping3 Wrong
computation

Pi obtains a wrong
result

Uw
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Some illustrations about utilities are given. (1) The classical stagewill be performed
if and only if all the players cooperate in the quantum stage. (2) If all the players choose
to cooperate and publish, their utilities will beUc andUp, respectively. However, they
will go to classical stage next, and their utilities can also be denoted as Us, Uus ,
Usn , Unn , Upn , Uw or Uo. Then, the latter seven symbols will be used to describe
players’ utilities, instead of the former two. (3) From notes (N1)–(N3), we can know
thatUo > Us > Unn > Uus ,Uo > Us > Upn > Uus andUo > Us > Usn > Uus . (4)
Comparing the outcome “Unsuccessful computation” with “Punished computation,”
we find that no player can obtain S2 j or Sj in both cases. The difference is Pi sends his
random number in the former case. Since the player who did not fulfill his obligations
may be discovered at the end of round, we say that Usn > Upn . (5) Comparing the
outcome “Unsuccessful computation” with “No one computation,” we find that player
fulfills his obligation, but no one can obtain the result in both cases. The only difference
is the player sends Ri j in the former case. It means that he does some extra work, so
it is easy to get Usn < Unn . Now, we can get Uo > Us > Unn > Usn > Upn > Uus

further.
In quantum stage, P1 chooses to publish or stop after all the others encoded their

MRi j . This stage could be considered as a dynamic game. Game tree is a visual
description to show this kind of game. Here the quantum stage is analyzed in four-
party version. The game tree of this game Γ1 is illustrated in Fig. 1. Dotted lines mean
that P2, P3 and P4 know nothing about each other’s choice. In other words, they make
choices at the same time.

If any player chooses the strategy Stopping1 or Stopping2, none of players will
obtain useful result. They would restart the game. Otherwise, all the players will
obtain S1 j and go to the classical stage. From the view of type of game, if any agent
is punished to send the random number before the others, it will be a dynamic game.
Otherwise, all the players choose their strategies at the same time and are equivalent.
It is a static game. Consider the type of game and the value of ck j , four cases may
occur: (1) Not all the ck j � 0 in a static game; (2) all the ck j � 0 in a static game; (3)

Fig. 1 Game tree of the quantum stage with four players
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not all the other ck j � 0 in a dynamic game; (4) all the other ck j � 0 in a dynamic
game. Four cases are analyzed with examples as follows:

(1) Since all the players are equivalent,we suppose c1 j � c3 j � 1and c2 j � c4 j � 0,
and denote this game as Γ2. In this case, utilities of players in different strategy
vectors are shown in Table 2.

(2) Here c1 j � c2 j � c3 j � c4 j � 0. Likewise, we denote this game as Γ3. Utilities
are also given in Table 3.

(3) Suppose P1 is punished, and c2 j � c3 j � c4 j � 0. Game tree is also utilized to
describe this game Γ4(Fig. 2).
P1 needs to make a decision at first. If he stopped, the others need not send, the
utility vector is (Upn,Unn,Unn,Unn). Otherwise, they choose strategies at the
same time. Similarly, dotted lines in Fig. 2 imply that they make choices at the
same time.

(4) Likewise, suppose P1 is punished, c2 j � c3 j � 1, and c4 j � 0 (Fig. 3).
The game tree of Γ5 is similar with the tree of Γ4. The differences are P2’s and
P3’s utilities are changed from Upn to Unn if they choose Stopping3.

4.2 Correctness

Definition 4 (Correctness [17]) A rational multi-party protocol is correct if the fol-
lowing holds:

Pr[o−i (Γ, (ai , a−i )) � Wrong computation] � 0 (7)

for each player Pi ’s arbitrary strategy ai .

Theorem 1 The correctness is ensured if all the players are in fail-stop setting.

Proof In our protocol, players are supposed to be in fail-stop, and they can only choose
to send the number or not, instead of sending a false number. Because players’ private
inputs cannot be revealed to any other in MC protocol, authenticity of inputs also
cannot be confirmed. The fail-stop setting is the best of a bad bunch. In this case, no
player will get a wrong result, and correctness of protocol holds further. �
4.3 Nash equilibrium

Equilibrium is the situation in which all the players are balanced. Nash equilibrium of
our protocol will be discussed below. The existence of Nash equilibrium is given.

Theorem 2 There exist some values of x and α that make the protocol achieve mixed
strategy Nash equilibrium.

Proof As we have shown, in our protocol, quantum stage could be regarded as a
dynamic game. If there is no punishment, classical stage is a static game. Otherwise,
it is also dynamic.
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Fig. 2 Game tree of four-party dynamic game Γ4

Fig. 3 Game tree of four-party dynamic game Γ5

For static game, pure strategy ormixed strategyNash equilibrium could be obtained
easily. However, for dynamic game, backward induction is one of the most impor-
tant methods. Specifically, the player who selects strategy earlier will consider which
strategy the latter one may choose. Consequently, if we deduce which strategy the
last player will choose in each case and which strategies the other players will choose
backward one by one, the equilibrium of this game and the path to this equilibrium
will be obtained. For the sake of describing our analysis more clearly, we take the
four-party game as an example and then generalize the analysis to the n-party game.

(1) Four-party game

Firstly, the game Γ5 will be analyzed. The game among players P2, P3 and P4
can be denoted as a static sub-game Γ6 which can be described by utility matrix
(Table 4).

Since Uo > Us > Unn > Usn > Upn > Uus , it is easy to find that there only
exists one Nash equilibrium: (Sending, Stopping3, Stopping3, Sending). Utilities of
players are (Usn,Unn,Unn,Usn). In other words, a player will choose Sending if he
has ci j � 0, choose Stopping3 if ci j � 1. This conclusion could be generalized to
n-party version when q j � 0 but not all the ck j � 0.

Secondly, we analyze the game Γ4. The game among players P2, P3 and P4 can be
denoted as a sub-game Γ7, which can also be described by utility matrix (Table 5).

From Table 5, we could find three pure strategy Nash equilibriums. However, since
players do not know each other’s strategy, they only have to choose a mixed strategy.
The mixed strategy Nash equilibrium will be sought later. Here, we suppose that P2,
P3 and P4 choose the strategy Sending with probability p′

2, p
′
3 and p′

4, respectively.
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Each player chooses suitable p′
i to makes the others’ utilities completely equal when

choosing different strategies. The following three equations can be deduced.

p′
3 p

′
4Us + p′

3

(
1 − p′

4

)
Uus +

(
1 − p′

3

)
p′
4Uus +

(
1 − p′

3

)(
1 − p′

4

)
Usn

� p′
3 p

′
4Uo + p′

3

(
1 − p′

4

)
Upn +

(
1 − p′

3

)
p′
4Upn +

(
1 − p′

3

)(
1 − p′

4

)
Upn . (8)

p′
2 p

′
4Us + p′

2

(
1 − p′

4

)
Uus +

(
1 − p′

2

)
p′
4Uus +

(
1 − p′

2

)(
1 − p′

4

)
Usn

� p′
2 p

′
4Uo + p′

2

(
1 − p′

4

)
Upn +

(
1 − p′

2

)
p′
4Upn +

(
1 − p′

2

)(
1 − p′

4

)
Upn . (9)

p′
2 p

′
3Us + p′

2

(
1 − p′

3

)
Uus +

(
1 − p′

2

)
p′
3Uus +

(
1 − p′

2

)(
1 − p′

3

)
Usn

� p′
2 p

′
3Uo + p′

2

(
1 − p′

3

)
Upn +

(
1 − p′

2

)
p′
3Upn +

(
1 − p′

2

)(
1 − p′

3

)
Upn . (10)

In order to simplify the calculation, let a � Us − Uo < 0, d � Usn − Uus > 0,
x � Usn −Upn > 0. After computation, we find that the solution of Eqs. (8)–(10) is

p′ �
{

d−
√

(d−x)2−ax
a+2d−x , if a + 2d − x �� 0

1 + a
2d , if a + 2d − x � 0

. (11)

Here 0 < p′ � p′
2 � p′

3 � p′
4 < 1. Utility expectation of players P2, P3 and P4

is Uex � 2d(e − a + x) d−
√

(d−x)2−ax
(a+2d−x)2

− (2d+e)x
a+2d−x + Usn if a + 2d − x �� 0. Uex �

e − a + a(2d+e)
d + a2(2d+e)

4d2
+Usn if a + 2d − x � 0. Here e � Us −Usn .

For the sake of simplicity, we further suppose that utilities approximatively consti-
tute an arithmetic progression, i.e., a � −1, d � 2 and e � 1, then 0 < x < 2. Utility
expectation of player P1 if he chooses to send is

U1se � (24
√
x2 − 3x + 4 + 24)x − 6x2 − 6x3 + 12

√
x2 − 3x + 4 + 7

√
(x2 − 3x + 4)3 − 80

(x − 3)3
+Usn .

(12)

If and only if U1se > Upn , P1 will send his random number. Fortunately, this
inequality holds true for any 0 < x < 2. The image of U1se −Upn is drawn in Fig. 4
to show it.

From this figure,we can know thatU1se−Upn is always bigger than 0, and positively
related to x . In a word, P1 will send even if he is punished.

Thirdly, Γ3 could be analyzed. Similarly, although there exist six pure strategy
equilibriums, players will choose mixed strategies actually. We also suppose a � −1,
d � 2 and e � 1, then 0 < x < 2. The probability of sending is p′′

i for player Pi . Just
similar as the first case, the following equations can also be deduced.

p′′
2 p
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3 p

′′
4Us + p′′
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4

)
Uus + p′′

2

(
1 − p′′

3

)
p′′
4Uus + p′′

2

(
1 − p′′

3

)(
1 − p′′

4

)
Usn

+
(
1 − p′′

2

)
p′′
3 p

′′
4Uus +

(
1 − p′′

2

)
p′′
3

(
1 − p′′

4

)
Usn +

(
1 − p′′

2

)(
1 − p′′

3

)
p′′
4Usn

+
(
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2
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3
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Fig. 4 The relationship between U1se −Upn and x
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The solution is:

p′′ �
2 + 2

(
cos θ

3 − √
3 sin θ

3

)

5 − x
. (17)

Here θ � arccos
(
x(x−5)2

16 − 1
)
, 0 < p′′ � p′′

1 � p′′
2 � p′′

3 � p′′
4 < 1. The utility

expectation of each player is Uex2 � (p′′)2(7p′′ − 6) +Usn .
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Fourthly, Γ2 could be analyzed. This game is very similar to Γ6. Likewise, there
only exists one Nash equilibrium: (Stopping3, Sending, Stopping3, Sending). Utilities
of players are (Unn,Usn,Unn,Usn).

Fifthly, consider the game Γ1. We analyze this game simply. If players do not go
to the classical stage, they will get nothing. Otherwise, they may get the result of
computation. That is to say, they will all cooperate to go to classical stage.

In conclusion, player Pi will choose Stopping3 without doubt if q j � 1 or ci j � 1,
he will consider whether sending or not only if q j � ci j � 0. There are two cases
when q j � ci j � 0: (1) Two of three other players hold ck j � 1 with probability
3α(1 − α)2. Pi will choose Sending without doubt. (2) All the other ck j are equal
to 0 with probability α3. In this case, Pi will choose Sending with probability p′′.
Hence, the conditional probability of case (1) is 3(1− α)2/(4α2 − 6α + 3), case (2) is
α2/(4α2 − 6α + 3). On the whole, if q j � ci j � 0, the probability of Pi sending is:

pwh � α2

4α2 − 6α + 3
p′′ + 3(1 − α)2

4α2 − 6α + 3
. (18)

(2) n-party game

Similarly, in a n-party protocol, if all the ck j � 0 (1 ≤ k ≤ n), mixed strategy Nash
equilibrium could also be deduced. For the player Pi , the probability of sending is pi .
The other players will choose their probabilities to make:

pAiUs + pBiUus + pCiUsn � pAiUo + pBiUpn + pCiUpn . (19)

Here pAi � ∏n
j ��i p j , pBi � ∑n

k�1
k ��i

∏n
j ��i
j ��k

p j (1 − pk), and pCi � 1 − pAi − pBi .

If we put all Pi ’s equations together and simplify it, the following equation can be
obtained.

pn−1a + (n − 1)pn−2(1 − p)(x − d) + [1 + (n − 2)pn−1 − (n − 1)pn−2]x � 0

⇒ pn−1[a + (n − 1)d − x] − (n − 1)pn−2d + x � 0. (20)

Where 0 < p � p1 � p2 � · · · � pn < 1. Let g(p) � pn−1[a + (n − 1)d − x] −
(n − 1)pn−2d + x , it is easy to get g(0) � x > 0 and g(1) � a < 0. Thus, g(p) � 0
has a solution for 0 < p < 1. In other words, each player can find a suitable p to
make the other players’ utilities the same when they choose different strategies. The
mixed strategy Nash equilibrium is achieved.

In addition, as we mentioned in the four-party case, if q j � 0 but not all the ck j � 0
in an n-party protocol, a playerwill choose Sending if he has ci j � 0, choose Stopping3
if ci j � 1.

Furthermore, we could also compute the probability of each player sending his
random number if q j � ci j � 0. Just as we discussed before, there also are two
cases: (1) even but not zero numbers of ck j are equal to 1 with probability β1n �
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∑�n/2�−1
k�1 C2k

n−1α
n−2k−1(1 − α)2k ; (2) all the ck j are equal to 0 with probability β2n �

αn−1. In general, if q j � ci j � 0, the probability of Pi sending is:

pnwh � β2n

β1n + β2n
p +

β1n

β1n + β2n
. (21)

Here p is the solution of Eq. (20).
In summary, there exist some suitable coefficients x and α to make the protocol

achieve mixed strategy Nash equilibrium. �
4.4 Fairness

Definition 5 (Fairness [17]) A rational multi-party protocol is fair if the following
holds:

Pr[oi (Γ, (ai , a−i )) � Successful computation]

+ Pr[oi (Γ, (ai , a−i )) � Only him computation]

≤ Pr[o−i (Γ, (ai , a−i )) � Successful computation]

+ Pr[o−i (Γ, (ai , a−i )) � Only him computation] (22)

for each player Pi ’s arbitrary strategy ai .

Theorem 3 There exist some values of coefficients x and α that make the protocol
achieve fairness.

Proof Just like Ref. [17], for each player, if the probability of sending is very close to
1, he will not have incentive to deviate the protocol. Fairness of our protocol will be
ensured further. As we analyzed in Sect. 4.3, in classical stage, player Pi will choose
a mixed strategy if q j � ci j � 0. Next, we will discuss how to select coefficients to
make the probability close to 1, i.e., pnwh � 99.95%.

We also suppose that a � −1, d � 2 and e � 1. Since 0 < x < 2 and we hope that
all the players send their Ri j , we give x � 1.9 + ε (ε is a small number), then we can
compute p and α to satisfy pnwh � 99.95%. When one of p and α is fixed, the other
is determined. A possible pair of values of p and α is given in Table 6 for n=5, 10,
20, 50, 100, 200, 500, 1000. For the other value of n, it is also easy to find suitable x
and α to make pnwh close to 1. In other words, there exist some coefficients to ensure
the fairness of protocol. �
4.5 Security

Firstly, in quantum stage, any secure quantum multi-party homomorphic computation
protocol could be utilized as a black box, for example, Refs. [22, 23]. Since that, as
long as the original protocol is secure, this stage is also secure.

Secondly, let us take our rational quantum summation protocol as an example. All
the Ri j which are sent among different players are random in classical stage. Player
P1 cannot deduce any useful information about other players’ inputs Mk from Rkj .
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Table 6 Values of coefficients to
make pnwh� 99.95%

n x p α pnwh

5 1.9004 0.7783 0.1878 0.9995

10 1.9007 0.9002 0.5129 0.9995

20 1.9034 0.9525 0.7584 0.9995

50 1.9022 0.9815 0.9159 0.9995

100 1.9146 0.9909 0.9643 0.9995

200 1.9257 0.9955 0.9856 0.9995

500 1.9213 0.9982 0.9961 0.9995

1000 1.9198 0.9991 0.9988 0.9995

Thirdly, since Ri j are random, MRi j and S1 j are also random. It means that even
if MRi j and S1 j are revealed, the protocol is secure as long as the eavesdropping is
found before all the players publish their Ri j . From this point of view, our protocol is
something like quantum key distribution protocol [24, 25] or quantum key agreement
protocol [26].

In other words, our protocol is more secure than generalMC protocols. The security
of our protocol holds easily.

4.6 Probability and efficiency

Let us look over all the outcomes of our protocol. The outcome Successful compu-
tation means that the protocol is performed successfully, which is desired for us.
The probability of this outcome is pnnwh if all the ci j � 0. What we last expect is
the outcome Only him/Someone else computation, which happens if and only if only
one player chooses Stopping3 in classical stage. The probability of this outcome is
npn−1

nwh(1 − pnwh) if all the ck j � 0.
Just as we discussed before, pnwh is related to coefficients α, p and n. At the same

time, p is related to n and x. Here, we also give x � 1.9 + ε, then compute p when
n=5, 10, 20, 50, 100, 200, 500, 1000. After that, we compute pnwh which makes
pnnwh two, ten, hundred times as big as npn−1

nwh(1− pnwh), respectively. Next, α can be
determined. We list all the coefficients in following tables.

From Tables 7, 8, 9, we can know that it is easy to make the probability of out-
come Successful computationmuch bigger thanOnly him/Someone else computation.
Therefore, the latter outcome would almost never happen. At the same time, the prob-
ability of outcome Successful computation could be very close to 1. This also shows
that our protocol is efficient.

In addition, we can also find some relationships among coefficients. Firstly, if x is
approximatively fixed, p increases with increasing n. Secondly, if x, p and n are all
fixed, α decreases with increasing pnwh . Thirdly, if x, p and pnnwh/np

n−1
nwh(1 − pnwh)

are all fixed, α decreases with increasing n. These relationships could help us to choose
coefficients for protocol under different circumstances.
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Table 7 Values of coefficients to make pnnwh/npn−1
nwh (1 − pnwh ) � 2

n x p α pnwh pnnwh npn−1
nwh (1 − pnwh )

5 1.9004 0.7783 0.6754 0.9091 0.6209 0.3105

10 1.9007 0.9002 0.8571 0.9524 0.6139 0.3070

20 1.9034 0.9525 0.9341 0.9756 0.6103 0.3051

50 1.9022 0.9815 0.9750 0.9901 0.6080 0.3040

100 1.9146 0.9909 0.9879 0.9950 0.6073 0.3036

200 1.9257 0.9955 0.9940 0.9975 0.6069 0.3035

500 1.9213 0.9982 0.9976 0.9990 0.6067 0.3033

1000 1.9198 0.9991 0.9988 0.9995 0.6066 0.3033

Table 8 Values of coefficients to make pnnwh/npn−1
nwh (1 − pnwh ) � 10

n x p α pnwh pnnwh npn−1
nwh (1 − pnwh )

5 1.9004 0.7783 0.4573 0.9804 0.9057 0.0906

10 1.9007 0.9002 0.7155 0.9901 0.9053 0.0905

20 1.9034 0.9525 0.8561 0.9950 0.9051 0.0905

50 1.9022 0.9815 0.9421 0.9980 0.9049 0.0905

100 1.9146 0.9909 0.9711 0.9990 0.9049 0.0905

200 1.9257 0.9955 0.9856 0.9995 0.9049 0.0905

500 1.9213 0.9982 0.9942 0.9998 0.9048 0.0905

1000 1.9198 0.9991 0.9971 0.9999 0.9048 0.0905

Table 9 Values of coefficients to make pnnwh/npn−1
nwh (1 − pnwh ) � 100

n x p α pnwh pnnwh npn−1
nwh (1 − pnwh )

5 1.9004 0.7783 0.2616 0.9980 0.9901 0.0099

10 1.9007 0.9002 0.5545 0.9990 0.9901 0.0099

20 1.9034 0.9525 0.7583 0.9995 0.9901 0.0099

50 1.9022 0.9815 0.8988 0.9998 0.9901 0.0099

100 1.9146 0.9909 0.9488 0.9999 0.9901 0.0099

200 1.9257 0.9955 0.9742 1.0000 0.9901 0.0099

500 1.9213 0.9982 0.9896 1.0000 0.9900 0.0099

1000 1.9198 0.9991 0.9948 1.0000 0.9900 0.0099

4.7 Comparison

In this subsection, we compare our protocol with two valuable rational protocols,
Halpern et al.’s classical protocol [13] and Maitra et al.’s quantum protocol [17], from
the following aspects.
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Firstly, we consider the application of the protocol. Halpern et al.’s protocol [13] is
used to resolve secret sharing. Maitra et al.’s protocol [17] is utilized to settle sharing
known quantum state. However, our protocol can be employed to solve various multi-
party problems. This characteristic is a kind of universality of protocol [27]. As we
all know, shares in players’ hands are random in classical secret sharing, QSS and
QSTS protocols. Therefore, they could be transmitted among players. However, inMC
protocols, inputs of players are deterministic and private, so they could not be conveyed
among players directly. In our protocol, we introduce random number to solve this
problem. Only random numbers are transmitted, so true input of one player cannot be
obtained by any others. Security of players’ inputs is ensured in our protocol further.

Secondly, think about the assumption of the protocol. When Halpern et al. [13] and
Maitra et al. [17] analyze P1’s strategy, they suppose that P2 and P3 will obey the
protocol. In this situation, cooperation is better than deviation for the third party. This
assumption is not practical because the others’ strategies cannot be known beforehand
for any player. In this paper, we analyze each case of players’ strategies without
presupposition.

Last but not least, consider the number of participants of the protocol. In Ref. [17],
a (k, n) threshold protocol was investigated via quantum error correcting code. As for
Ref. [13], Halpern et al. also generalized their three-party protocol to n-party version.
Nevertheless, all the players are divided into three sets. In each set, players elect a
leader and send shares to their leader. In the end, leaders perform the rational three-
party protocol. This generalization is trivial. Compared with Ref. [13], in our n-party
protocol, each player performs the protocol equally. Ours ismore like a rational n-party
protocol than Halpern et al.’s [13].

In summary, our protocol is better than Halpern et al.’s [13] and Maitra et al.’s [17]
in these aspects.

5 Conclusion

In this paper, rational quantumMCprotocolwas investigated. Processes of our protocol
are learned and improved from Ref. [13]. This is the first rational quantum multifunc-
tional computation protocol. For any problem, if the key of a quantum solution is a
computation which is homomorphic, this problem could be resolved by our protocol.
Besides that, our rational protocol was analyzed in detail. It is secure, multifunctional
and efficient. No extra assumption about players’ strategies holds in our protocol.
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