
Quantum Information Processing (2018) 17:201
https://doi.org/10.1007/s11128-018-1959-x

Braiding, Majorana fermions, Fibonacci particles and
topological quantum computing

Louis H. Kauffman1,3 · Samuel J. Lomonaco2

Received: 13 May 2016 / Accepted: 12 June 2018 / Published online: 30 June 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
This paper is an introduction to relationships between topology, quantum computing,
and the properties of Fermions. In particular, we study the remarkable unitary braid
group representations associated with Majorana fermions.
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computing

1 Introduction

In this paper, we study a Clifford algebra generalization of the quaternions and its rela-
tionshipwith braid group representations related toMajorana fermion operators.Majo-
rana fermion operators a and b are defined, so that the creation and annihilation oper-
ators ψ† and ψ for a single standard Fermion satisfy the well-known algebraic rules:

(ψ†)2 = ψ2 = 0,

ψψ† + ψ†ψ = 1.

Remarkably, these equations are satisfied if we take

ψ = a + ib,

ψ† = a − ib
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where the Majorana operators a, b satisfy

a† = a, b† = b,

a2 = b2 = 1, ab + ba = 0.

In certain situations, it has been conjectured and partially verified by experiments that
electrons (in low temperature nanowires) may behave as though each electron were
physically a pair of Majorana particles described by these Majorana operators. In
this case the mathematics of the braid group representations that we study may have
physical reality.

Particles corresponding to the Clifford algebra generated by a and b described in
the last paragraph are called Majorana particles because they satisfy a† = a and
b† = b indicating that they are their own anti-particles. Majorana [68] analyzed real
solutions to the Dirac equation [16,55] and conjectured the existence of such particles
that would be their own anti-particle. It has been conjectured that the neutrino is such
a particle. Only more recently [26,57] has it been suggested that electrons may be
composed of pairs of Majorana particles. It is common to speak of Majorana particles
when referring to particles that satisfy the interaction rules for the original Majorana
particles. These interaction rules are, for a given particle P , that P can interact with
another identical P to produce a single P or to produce an annihilation. For this, we
write

PP = P + 1

where the right-hand side is to be read as a superposition of the possibilities P and
1 where 1 stands for the state of annihilation, the absence of the particle P . We
refer to this equation as the fusion rules for a Majorana fermion. Thus there are two
algebraic descriptions for Majorana fermions—the fusion rules and the associated
Clifford algebra. One may use both the Clifford algebra and the fusion rules in a
single physical situation. However, for studying braiding, it turns out that the Clifford
algebra leads to braiding and so does the fusion algebra in the so-called Fibonacci
model (while the Fibonacci model is not directly related to the Clifford algebra).
Thus we shall discuss two forms of braiding. We shall see mathematical commonality
between them. It is a matter of speculation whether both forms of braiding could be
present in a single physical system.

Braiding operators associated with Majorana operators can be very simply
described. Let {c1, c2, . . . , cn} denote a collection of Majorana operators such that
(ck)2 = 1 for k = 1, . . . , n and ci c j + c j ci = 0 when i �= j . Take the indices
{1, 2, ..., n} as a set of residues modulo n so that n + 1 = 1. Define operators

τk = (1 + ck+1ck)/
√
2

for k = 1, . . . n where it is understood that cn+1 = c1 since n + 1 = 1 modulo n.
Then one can verify that

τiτ j = τ jτi
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when |i − j | ≥ 2 and that

τiτi+1τi = τi+1τiτi+1

for all i = 1, . . . n. Thus

{τ1, . . . , τn−1}

describes a representation of the n-strand Artin Braid Group Bn . As we shall see
in Sect. 3, this representation has very interesting properties and it leads to unitary
representations of the braid group that can support partial topological computing.What
is missing to support full topological quantum computing in this representation is a
sufficient structure of U (2) transformations. These must be supplied along with the
braiding operators. It remains to be seen whether the braiding of Majorana operator
constituents of electrons can be measured and whether the physical world will yield
this form of partial topological computing.

The Fibonacci model for topological quantum computing is based on the fusion
rules for aMajorana fermion as we have described them above. The particles described
as Fibonacci anyons correspond, in theory, to collectivities of electrons, as in the quan-
tum Hall effect. Fusion rules for such quasi-particles were conjectured in the work of
Moore andRead [70] as part of a larger conjecture that links the fractional quantumHall
effect with Chern–Simons Theory and with the braiding representations associated via
conformal field theory, with Chern–Simons Theory. These braiding representations
have been described in the context of combinatorial topology via Temperley–Lieb
recoupling theory [40,44], and it is this basis for the braiding of Fibonacci particles
that we shall describe here. In this form, the Chern–Simons theory is not directly
mentioned in constructing the braiding and our work is based on the bracket model
of the Jones polynomial. The fusion rule PP = P + 1 is an expression of the pos-
sibilities in recoupling a Jones–Wenzl projector, as we shall see in Sect. 9. Thus our
Fibonacci particles can be regarded as Majorana fermions in the sense of Majorana, in
that they are their own anti-particles, but we do not use the creation/annihilation alge-
bra for them, nor do we directly associate the braiding representations associated with
the Clifford algebra of Majorana operators. For this reason, we refrain from calling
Fibonacci particles by the termMajorana and reserve the termMajorana particle to one
that is associated with the Clifford algebra as described above. Nevertheless, it should
be pointed out that recent research analyzes edge effects in the quasi-particles of the
quantum Hall system by looking at Majorana modes in the electrons that compose the
quasi-particles [5].

The purpose of this paper is to discuss these braiding representations, important
for relationships among physics, quantum information and topology. A new result in
this paper is the Clifford Braiding Theorem of Sect. 3. This theorem shows that the
Majorana operators give rise to a particularly robust representation of the braid group
that is then further represented to find the phases of the Fermions under their exchanges
in a plane space. This more robust representation in our braiding theorem will be the
subject of further work. The latter part of the paper investigates the representations
of the braid group that are called the Fibonacci Model for interacting anyons in a
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plane physical space. Here the anyons are described via their fusion algebra and
they represent collectivities of electrons. In modeling the quantum Hall effect [12,
17,77,81], the braiding of quasi-particles (collective excitations) leads to non-trivial
representations of theArtin braid group. Such particles are calledAnyons. The braiding
in these models is related to topological quantum field theory.

Topological quantum computing For the sake of background, here is a very condensed
presentation of how unitary representations of the braid group are constructed via
topological quantum field theoretic methods, leading to the Fibonacci model and its
generalizations. One has a mathematical particle with label P that can interact with
itself to produce either itself labeled P or itself with the null label ∗. We shall denote
the interaction of two particles P and Q by the expression PQ, but it is understood
that the “value” of PQ is the result of the interaction, and this may partake of a number
of possibilities. Thus for our particle P , we have that PP may be equal to P or to ∗
in a given situation. When ∗ interacts with P the result is always P. When ∗ interacts
with ∗ the result is always ∗. One considers process spaces where a row of particles
labeled P can successively interact, subject to the restriction that the end result is
P. For example, the space V [(ab)c] denotes the space whose basis consists in the
possible interaction sequences of three particles labeled P . The particles are placed in
the positions a, b, c. Thus we begin with (PP)P . In a typical sequence of interactions,
the first two P ’s interact to produce a ∗, and the ∗ interacts with P to produce P .

(PP)P −→ (∗)P −→ P.

In another possibility, the first two P’s interact to produce a P, and the P interacts
with P to produce P .

(PP)P −→ (P)P −→ P.

It follows from this analysis that the spaceof linear combinations of processesV [(ab)c]
is two dimensional. The two processes we have just described can be taken to be the
qubit basis for this space. One obtains a representation of the three-strand Artin braid
group on V [(ab)c] by assigning appropriate phase changes to each of the generating
processes. One can think of these phases as corresponding to the interchange of the
particles labeled a and b in the association (ab)c. The other operator for this repre-
sentation corresponds to the interchange of b and c. This interchange is accomplished
by a unitary change of basis mapping

F : V [(ab)c] −→ V [a(bc)].

If

A : V [(ab)c] −→ V [(ba)c]

is the first braiding operator (corresponding to an interchange of the first two particles
in the association) then the second operator
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Fig. 1 Braiding Anyons

F

R

B : V [(ab)c] −→ V [(ac)b]

is accomplished via the formula B = F−1RF where the R in this formula acts in the
second vector space V [a(bc)] to apply the phases for the interchange of b and c. These
issues are illustrated in Fig. 1, where the parenthesization of the particles is indicated
by circles and by also by trees. The trees can be taken to indicate patterns of particle
interaction, where two particles interact at the branch of a binary tree to produce the
particle product at the root.

In this scheme, vector spaces corresponding to associated strings of particle inter-
actions are interrelated by recoupling transformations that generalize the mapping F
indicated above. A full representation of the Artin braid group on each space is defined
in terms of the local interchange phase gates and the recoupling transformations. These
gates and transformations have to satisfy a number of identities in order to produce a
well-defined representation of the braid group. These identities were discovered orig-
inally in relation to topological quantum field theory. In our approach, the structure
of phase gates and recoupling transformations arise naturally from the structure of
the bracket model for the Jones polynomial. Thus we obtain a knot-theoretic basis for
topological quantum computing.

The remarkable fact about the Fibonacci model is that it is truly universal for quan-
tum computing and so, mathematically, is a basis for topological quantum computing.
At the level of three braid strands the unitary transformations of the Fibonacci model
generate a dense set of elements of SU (2) and the same applies with more braid
strands to SU (N ) where N is a Fibonacci number. Enough unitary transformations
are produced to support all quantum computing within these coherent representations
of the Artin braid group. True topological quantum computing would be obtained if
the phases in the fractional quantum Hall effect could be correspondingly measured.
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It is hoped that the mathematics we explain here will form a bridge between the-
oretical models of anyons and their applications to quantum computing. We have
summarized the recoupling approach in order to contrast it with the way that braiding
of Majorana fermions occurs in the present paper via natural representations of Clif-
ford algebras and alsowith the representations of the quaternions as SU (2) to the Artin
braid group. The recoupling theory ismotivated by a hypothesis that one could observe
the Fibonacci particles by watching their interactions and fusions. It is possible that
this is a correct hypothesis for the vortices of the quantum Hall effect. It is less likely
to be the right framework for electrons in one-dimensional nanowires. Nevertheless,
these two modes of creating braid group representations intersect at the place where
there are only three Majorana operators, generating a copy of the quaternions. It is
possible that by handling Majorana fermions in triples in this way, one can work with
the very rich braid group representations that are associated with the quaternions. We
make the juxtaposition in this paper and intend further study.

The paper is organized as follows. There are 13 sections in this paper including the
introduction. Section 2 is a discussion of braids and the Artin braid group. Section 3
discusses Majorana fermions from the point of view of their quantum field theoretic
annihilation and creation algebra and shows how the operator algebras for standard
Fermions arise from the Clifford algebras associated with Majorana fermions. We
then show how fundamental braid group representations arise from these Clifford
algebras. Section 4 discusses how appropriate unitary braiding operators can create
universal gates for topological or partially topological quantum computing. Section 5
discusses the general case of SU (2) representations of the Artin braid group. This
section is central to the paper as a whole. We see that the braid group representations
for triples of Majorana fermions fit into this mold and that the key representation of
the three strand braid group that is generalized to the Fibonacci model also occurs
here. Section 6 introduces the Kauffman bracket model of the Jones polynomial and
shows how to construct a quantum algorithm for it that supports its calculation for
three-strand braids. This will be generalized later in the paper. Section 7 discusses the
basics of quantum topology, elements of cobordism, Temperley–Lieb algebra and the
basics of topological quantum field theory (TQFT). Then Sect. 8 discusses braiding
and TQFT. Section 9 introduces spin networks and the related TQFT formalism.
Sections 10 and 11 show how to construct the Fibonacci model using these tools. It
is here that properties of the Jones–Wenzl projectors allow the modeling of specific
fusion algebras.

The next section of the paper applies the unitary braiding of the Fibonacci model to
show how to formulate the topological computation of knot invariants and three-
manifold invariants. Section 12 applies the (generalized) Fibonacci model to the
quantum computation of colored Jones polynomials and the Wittten–Reshetikhin–
Turaev invariant of three manifolds. Section 13 is a reconstruction of the Fibonacci
model without using the recoupling theory directly, but using its underpinning, the
Temperley–Lieb algebra.

Remark The reader, particularly a physicist reader, of this papermayfind that it appears
sketchy since we have not done any heavy calculations. Our intent is to give a clear
conceptual account of the mathematics involved in the constructions in the paper.
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Fig. 2 Braid generators
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The mathematics is fully rigorous. We have emphasized abstract arguments in an
expository context. Thus we request that the reader, finding the atmosphere somewhat
rarefied, to please reread the text and to work at supplying examples of his/her own
that ground the work in his own ideas and understandings. We will be happy if this
paper becomes a useful source of discussion about topological quantum computing
and its possibilities in the physical and mathematical worlds.

2 Braids

A braid is an embedding of a collection of strands that have their ends in two rows
of points that are set one above the other with respect to a choice of vertical. The
strands are not individually knotted and they are disjoint from one another. See Figs. 2
and 3 for illustrations of braids and moves on braids. Braids can be multiplied by
attaching the bottom row of one braid to the top row of the other braid. Taken up to
ambient isotopy, fixing the endpoints, the braids form a group under this notion of
multiplication. In Fig. 2 we illustrate the form of the basic generators of the braid
group, and the form of the relations among these generators. Figure 3 illustrates how
to close a braid by attaching the top strands to the bottom strands by a collection
of parallel arcs. A key theorem of Alexander states that every knot or link can be
represented as a closed braid. TheMarkov theorem [11] gives an equivalence relation
on braids such that two braids are Markov equivalent if and only if their braid closures
are ambient isotopic knots or links. Thus the theory of braids is critical to the theory
of knots and links. Figure 3 illustrates the famous Borromean rings as the closure of
a braid. The Borromean rings are a link of three unknotted loops such that any two of
the loops are unlinked.

Let Bn denote the Artin braid group on n strands.We recall here that Bn is generated
by elementary braids {s1, . . . , sn−1} with relations
1. si s j = s j si for |i − j | > 1,
2. si si+1si = si+1si si+1 for i = 1, . . . n − 2.
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Fig. 3 Borromean rings as a
braid closure

b CL(b)

See Fig. 2 for an illustration of the elementary braids and their relations. Note that
the braid group has a diagrammatic topological interpretation, where a braid is an
intertwining of strands that lead from one set of n points to another set of n points.
The braid generators si are represented by diagrams where the i-th and (i + 1)th
strands wind around one another by a single half-twist (the sense of this turn is shown
in Fig. 2), and all other strands drop straight to the bottom. Braids are diagrammed
vertically as in Fig. 2, and the products are taken in order from top to bottom. The
product of two braid diagrams is accomplished by adjoining the top strands of one
braid to the bottom strands of the other braid.

In Fig. 2 we have restricted the illustration to the four-stranded braid group B4.
In that figure the three braid generators of B4 are shown, and then the inverse of the
first generator is drawn. Following this, one sees the identities s1s

−1
1 = 1 (where the

identity element in B4 consists in four vertical strands), s1s2s1 = s2s1s2, and finally
s1s3 = s3s1.

Braids are a key structure in mathematics. It is not just that they are a collection
of groups with a vivid topological interpretation. From the algebraic point of view,
the braid groups Bn are important extensions of the symmetric groups Sn . Recall that
the symmetric group Sn of all permutations of n distinct objects has presentation as
shown below.

1. s2i = 1 for i = 1, . . . n − 1,
2. si s j = s j si for |i − j | > 1,
3. si si+1si = si+1si si+1 for i = 1, . . . n − 2.

Thus Sn is obtained from Bn by setting the square of each braiding generator equal to
one. We have short exact sequence

1 −→ Pn −→ Bn −→ Sn −→ 1

exhibiting the Artin braid group as an extension of the symmetric group. The kernel
of the surjection of Bn to Sn is Pn, the pure braid group on n strands.

In the next sections, we shall show how unitary representations of the Artin braid
group, rich enough to provide a dense set of transformations in the unitary groups,
arise in relation to Fermions,Majorana fermions and Fibonacci particles and their gen-
eralizations. Braid groups are in principle fundamental to quantum computation and
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quantum information theory. More information about braids will appear throughout
the rest of the paper. The purpose of this short section has been to give an orientation
and basic definitions for braiding.

3 Fermions, Majorana fermions, and braiding

Fermion algebra Recall Fermion algebra. One has Fermion annihilation operators ψ

and their conjugate creation operators ψ†. One has ψ2 = 0 = (ψ†)2. There is a
fundamental commutation relation

ψψ† + ψ†ψ = 1.

If you have more than one of them say ψ and φ, then they anti-commute:

ψφ = −φψ.

The Majorana fermions c satisfy c† = c so that they are their own anti-particles.
There is a lot of interest in these as quasi-particles, and they are related to braiding
and to topological quantum computing. A group of researchers [9,71] have found
quasiparticle Majorana fermions in edge effects in nanowires. (A line of Fermions
could have a Majorana fermion happen non-locally from one end of the line to the
other.) The Fibonacci model that we discuss is also based on Majorana particles,
possibly related to collective electronic excitations. If P is aMajorana fermion particle,
then P can interact with itself to either produce itself or to annihilate itself. This is
the simple “fusion algebra” for this particle. One can write P2 = P + 1 to denote the
two possible self-interactions the particle P . The patterns of interaction and braiding
of such a particle P give rise to the Fibonacci model.

Majorana operators make Fermion operators Majoranas [68] are related to standard
Fermions as follows: The algebra for Majoranas is x = x† and xy = −yx if x and
y are distinct Majorana fermions with x2 = 1 and y2 = 1. Thus the operator algebra
for a collection of Majorana particles is a Clifford algebra. One can make a standard
Fermion from two Majoranas via

ψ = (x + iy)/2,

ψ† = (x − iy)/2.

Note, for example, that

ψ2 = (x + iy)(x + iy)/4 = x2 − y2 + i(xy + yx) = 0 + i0 = 0.

Similarly, one can mathematically make two Majoranas from any single Fermion via

x = (ψ + ψ†)/2

y = (ψ + ψ†)/(2i).
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This simple relationship between the Fermion creation and annihilation algebra and
an underlying Clifford algebra has long been a subject of speculation in physics.
Only recently have experiments shown (indirect) evidence [71] forMajorana fermions
underlying the electron.

Braiding Given a set of Majorana operators

{c1, c2, c3, . . . , cn},

then there are natural braiding operators [26,57] that act on the vector space with these
ck as the basis. First, we define operators by the algebra elements

τk = (1 + ck+1ck)/
√
2,

τ−1
k = (1 − ck+1ck)/

√
2

for k = 1, . . . , n where we work with the set {1, 2, . . . , n−1, n} as the set of residues
modulo n so that n + 1 denotes 1. The operators τk satisfy the braiding relations as
we will show below. Ivanov [26] studies a simpler representation of the braid group
where the braiding operators Tk acting on the vector space with basis {c1, c2, . . . , cn}
are defined as follows.

Tk : Span{c1, c2, . . . , , cn} −→ Span{c1, c2, . . . , , cn}

via

Tk(x) = τk xτ
−1
k .

The braiding is simply:

Tk(ck) = ck+1,

Tk(ck+1) = −ck,

and Tk is the identity otherwise. This gives a very nice unitary representation of the
Artin braid group, and it deserves better understanding.

That there is much more to this braiding is indicated by the following result.

Clifford braiding theoremLetC be theClifford algebra over the real numbers generated
by linearly independent elements {c1, c2, . . . cn}with c2k = 1 for all k and ckcl = −clck
for k �= l. Then the algebra elements τk = (1 + ck+1ck)/

√
2, form a representation

of the (circular) Artin braid group. That is, we have {τ1, τ2, . . . τn−1, τn} where τk =
(1+ck+1ck)/

√
2 for 1 ≤ k < n and τn = (1+c1cn)/

√
2, and τkτk+1τk = τk+1τkτk+1

for all k and τiτ j = τ jτi when |i − j | ≥ 2. Note that each braiding generator τk has
order 8. Note also that we can formally write τk = exp(ck+1ckπ/4).
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Proof Let ak = ck+1ck . Examine the following calculation:

τkτk+1τk =
(

1

2
√
2

)
(1 + ak+1)(1 + ak)(1 + ak+1)

=
(

1

2
√
2

)
(1 + ak + ak+1 + ak+1ak)(1 + ak+1)

=
(

1

2
√
2

)
(1 + ak + ak+1 + ak+1ak + ak+1 + akak+1 + ak+1ak+1 + ak+1akak+1)

=
(

1

2
√
2

)
(1 + ak + ak+1 + ck+2ck + ak+1 + ckck+2 − 1 − ckck+1)

=
(

1

2
√
2

)
(ak + ak+1 + ak+1 + ck+1ck)

=
(

1

2
√
2

)
(2ak + 2ak+1)

=
(

1√
2

)
(ak + ak+1).

Since the end result is symmetric under the interchange of k and k + 1, we conclude
that

τkτk+1τk = τk+1τkτk+1.

Note that this braiding relation works circularly if we define τn = (1 + c1cn)/
√
2. It

is easy to see that τiτ j = τ jτi when |i − j | ≥ 2. This completes the proof. // �	
Undoubtedly, this representation of the (circular) Artin braid group is significant for

the topological physics of Majorana fermions. This part of the structure needs further
study.

It is worth noting that a triple of Majorana fermions say x, y, z gives rise to a
representation of the quaternion group. This is a generalization of the well-known
association of Pauli matrices and quaternions. We have x2 = y2 = z2 = 1 and, when
different, they anti-commute. Let I = yx, J = zy, K = xz. Then

I 2 = J 2 = K 2 = I J K = −1,

giving the quaternions. The operators

A = (1/
√
2)(1 + I )

B = (1/
√
2)(1 + J )

C = (1/
√
2)(1 + K )

braid one another:

ABA = BAB, BCB = CBC, ACA = CAC .
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This is a special case of the braid group representation described above for an arbitrary
list of Majorana fermions. These braiding operators are entangling and so can be used
for universal quantum computation, but they give only partial topological quantum
computation due to the interaction with single-qubit operators not generated by them.

Here is the derivation of the braiding relation in the quaternion case.

ABA = (1/2
√
2)(1 + I )(1 + J )(1 + I )

= (1/2
√
2)(1 + I + J + I J )(1 + I )

= (1/2
√
2)(1 + I + J + I J + I + I 2 + J I + I J I )

= (1/2
√
2)(1 + I + J + I J + I − 1 − I J + J )

= (1/
√
2)(I + J ).

The same form of computation yields BAB = (1/
√
2)(J + I ). And so

ABA = BAB.

and so a natural braid group representation arises from the Majorana fermions.
These braiding operators can be seen to act on the vector space over the complex

numbers that is spanned by the Majorana fermion operators x, y, z. To see how this
works, consider

τ = 1 + yx√
2

,

T (p) = τ pτ−1 =
(
1 + yx√

2

)
p

(
1 − yx√

2

)
,

and verify that T (x) = y and T (y) = −x . Now view Fig. 4 where we have illustrated
a topological interpretation for the braiding of two Fermions. In the topological inter-
pretation the two Fermions are connected by a flexible belt. On interchange, the belt
becomes twisted by 2π . In the topological interpretation, a twist of 2π corresponds to
a phase change of −1. (For more information on this topological interpretation of 2π
rotation for Fermions, see [40].) Without a further choice, it is not evident which par-
ticle of the pair should receive the phase change. The topology alone tells us only the
relative change of phase between the two particles. The Clifford algebra for Majorana
fermions makes a specific choice in the matter and in this way fixes the representation
of the braiding.

A remarkable feature of this braiding representation of Majorana fermions is that it
applies to give a representation of the n-strand braid group Bn for any row of n Majo-
rana fermions. It is not restricted to the quaternion algebra. Nevertheless, we shall
now examine the braiding representations of the quaternions. These representations
are very rich and can be used in situations (such as Fibonacci particles) involving par-
ticles that are their own anti-particles (analogous to theMajorana fermions underlying
electrons). Such particles can occur in collectivities of electrons as in the quantum
Hall effect. In such situations, it is theorized that one can examine the local interaction
properties of the Majorana particles and then the braidings associated with triples of
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Fig. 4 Braiding action on a pair
of fermions

T(x) = y
T(y) = - x

x
x

x x

y

y

y

y

them (the quaternion cases) can come into play very strongly. In the case of electrons
in nanowires, one at the present time must make carry on with long-range correlations
between ends of the wires and forego such local interactions. Nevertheless, it is the
purpose of this paper to juxtapose the full story about three-strand braid group repre-
sentations of the quaternions in the hope that this will lead to deeper understanding of
the possibilities for even the electronic Majorana fermions.

4 Braiding operators and universal quantum gates

A key concept in the construction of quantum link invariants is the association of a
Yang–Baxter [8,84,85] operator R to each elementary crossing in a link diagram. The
operator R is a linear mapping

R : V ⊗ V −→ V ⊗ V

defined on the twofold tensor product of a vector space V , generalizing the permuta-
tion of the factors (i.e., generalizing a swap gate when V represents one qubit). Such
transformations are not necessarily unitary in topological applications. It is useful to
understand when they can be replaced by unitary transformations for the purpose of
quantum computing. Such unitary R-matrices can be used to make unitary represen-
tations of the Artin braid group.

A solution to the Yang–Baxter equation, as described in the last paragraph is a
matrix R, regarded as a mapping of a twofold tensor product of a vector space V ⊗ V
to itself that satisfies the equation

(R ⊗ I )(I ⊗ R)(R ⊗ I ) = (I ⊗ R)(R ⊗ I )(I ⊗ R).
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Fig. 5 Yang–Baxter equation

=
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From the point of view of topology, the matrix R is regarded as representing an ele-
mentary bit of braiding represented by one string crossing over another. In Fig. 5 we
have illustrated the braiding identity that corresponds to the Yang–Baxter equation.
Each braiding picture with its three input lines (below) and output lines (above) cor-
responds to a mapping of the three fold tensor product of the vector space V to itself,
as required by the algebraic equation quoted above. The pattern of placement of the
crossings in the diagram corresponds to the factors R ⊗ I and I ⊗ R. This crucial
topological move has an algebraic expression in terms of such a matrix R. We need to
study solutions of the Yang–Baxter equation that are unitary. Then the R matrix can
be seen either as a braiding matrix or as a quantum gate in a quantum computer.

4.1 Universal gates

A two-qubit gate G is a unitary linear mapping G : V ⊗ V −→ V ⊗ V where V
is a two complex-dimensional vector space. We say that the gate G is universal for
quantum computation (or just universal) if G together with local unitary transforma-
tions (unitary transformations from V to V ) generates all unitary transformations of
the complex vector space of dimension 2n to itself. It is well known [72] that CNOT
is a universal gate. (On the standard basis, CNOT is the identity when the first qubit
is |0〉, and it flips the second qubit, leaving the first alone, when the first qubit is |1〉.)
A gate G, as above, is said to be entangling if there is a vector

|αβ〉 = |α〉 ⊗ |β〉 ∈ V ⊗ V

such that G|αβ〉 is not decomposable as a tensor product of two qubits. Under these
circumstances, one says that G|αβ〉 is entangled.

In [13], the Brylinski give a general criterion of G to be universal. They prove that
a two-qubit gate G is universal if and only if it is entangling.

Remark A two-qubit pure state

|φ〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉

is entangled exactly when the determinant of the state |φ〉 is not zero. We define the
determinant of the state to be (ad − bc). We have that (ad − bc) �= 0 implies that
the state is not a tensor product of two single-qubit states. It is easy to use this fact to
check when a specific gate is, or is not, entangling.

123



Braiding, Majorana fermions, Fibonacci particles and… Page 15 of 81 201

Remark There are many gates other than CNOT that can be used as universal gates
in the presence of local unitary transformations. Some of these are themselves topo-
logical (unitary solutions to the Yang–Baxter equation, see [8,50]) and themselves
generate representations of the Artin braid group. Replacing CNOT by a solution to
the Yang–Baxter equation does not place the local unitary transformations as part of
the corresponding representation of the braid group. Thus such substitutions give only
a partial solution to creating topological quantum computation.

4.2 Majorana fermions generate universal braiding gates

Recall that in Sect. 3 we showed how to construct braid group representations. Let
Tk : Vn −→ Vn defined by

Tk(v) = τkvτ−1
k

be defined as in Sect. 3. Note that τ−1
k = 1√

2
(1− ck+1ck). It is then easy to verify that

Tk(ck) = ck+1,

Tk(ck+1) = −ck

and that Tk is the identity otherwise.
For universality, take n = 4 and regard each Tk as operating on V ⊗ V where

V is a single-qubit space. Then the braiding operator T2 satisfies the Yang–Baxter
equation and is an entangling operator. So we have universal gates (in the presence of
single-qubit unitary operators) from Majorana fermions. If experimental work shows
thatMajorana fermions can be detected and controlled, then it is possible that quantum
computers based on these topological unitary representationswill be constructed. Note
that the matrix form R of T2 is

R =

⎛
⎜⎜⎝
1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠

Here we take the ordered basis {|00〉, |01〉, |10〉, |11〉} for the corresponding 2-qubit
space V ⊗ V so that

R|00〉 = |00〉, R|01〉 = |10〉,
R|10〉 = −|01〉, R|11〉 = |11〉.

It is not hard to verify that R satisfies the Yang–Baxter equation. To see that it is
entangling we take the state |φ〉 = a|0〉 + b|1〉 and test R on

|φ〉 ⊗ |φ〉 = a2|00〉 + ab|01〉 + ab|10〉 + b2|11〉
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and find that

R(|φ〉 ⊗ |φ〉) = a2|00〉 + ab|10〉 − ab|01〉 + b2|11〉.

The determinant of this state is a2b2+(ab)(ab) = 2a2b2. Thus when both a and b are
nonzero, we have that R(|φ〉 ⊗ |φ〉) is entangled. This proves that R is an entangling
operator, as we have claimed. This calculation shows that a fragment of the Majorana
operator braiding can be used to make a universal quantum gate, and so to produce
partial topological quantum computing if realized physically.

In fact we can say more by using the braiding operators τk = 1√
2
(1 + ck+1ck), as

these operators have natural matrix representations. In particular, consider the Bell-
Basis Matrix BI I that is given as follows:

BI I = 1√
2

⎡
⎢⎢⎣

1 0 0 1
0 1 1 0
0 −1 1 0

−1 0 0 1

⎤
⎥⎥⎦ = 1√

2

(
I + M

) (
M2 = −1

)
(1)

where

M =

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎤
⎥⎥⎦ (2)

and we define

Mi = I ⊗ I ⊗ · · · I ⊗ M ⊗ I ⊗ I ⊗ · · · ⊗ I

where there are n tensor factors in all and M occupies the i and i +1th positions. Then
one can verify that theses matrices satisfy the relations of an “extraspecial 2-group”
[18,60]. The relations are as follows.

MiMi±1 = −Mi±1Mi , M2 = −I , (3)

MiMj = MjMi,
∣∣i − j

∣∣ ≥ 2. (4)

Kauffman and Lomonaco [50] observed that BI I satisfies the Yang–Baxter equation
and is an entangling gate. Hence, BI I = 1√

2

(
I + M

) (
M2 = −1

)
is a universal

quantum gate in the sense of this section. It is of interest to understand the possible
relationships of topological entanglement (linking and knotting) and quantum entan-
glement. See [6,50] for more than one point of view on this question.

Remarks The operators Mi take the place here of the products of Majorana fermions
ci+1ci in the Ivanov picture of braid group representation in the form τi = (1/

√
2)(1+

ci+1ci ). This observation gives a concrete interpretation of these braiding operators
and relates them to a Hamiltonian for a physical system by an observation of Mo-Lin
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Ge [60]. Mo-Lin Ge shows that the observation of Ivanov [26] that τk = (1/
√
2)(1+

ck+1ck) = exp(ck+1ckπ/4) can be extended by defining

R̆k(θ) = eθck+1ck .

Then R̆i (θ) satisfies the full Yang–Baxter equation with rapidity parameter θ . That is,
we have the equation

R̆i (θ1)R̆i+1(θ2)R̆i (θ3) = R̆i+1(θ3)R̆i (θ2)R̆i+1(θ1).

Thismakeswhether very clear that R̆i (θ) has physical significance and suggests exam-
ining the physical process for a temporal evolution of the unitary operator R̆i (θ).

In fact, following [60], we can construct aKitaev chain [57,58] based on the solution
R̆i (θ) of the Yang–Baxter Equation. Let a unitary evolution be governed by R̆k(θ).
When θ in the unitary operator R̆k(θ) is time dependent, we define a state |ψ(t)〉 by
|ψ(t)〉 = R̆k |ψ(0)〉. With the Schrodinger equation i� ∂

∂t |ψ(t)〉 = Ĥ(t)|ψ(t)〉, one
obtains:

i�
∂

∂t
[R̆k |ψ(0)〉] = Ĥ(t)R̆k |ψ(0)〉. (5)

Then the Hamiltonian Ĥk(t) related to the unitary operator R̆k(θ) is obtained by the
formula:

Ĥi (t) = i�
∂ R̆k

∂t
R̆−1
k . (6)

Substituting R̆k(θ) = exp(θck+1ck) into equation (6), we have:

Ĥk(t) = i�θ̇ck+1ck . (7)

This Hamiltonian describes the interaction between k-th and (k + 1)-th sites via the
parameter θ̇ . When θ = n × π

4 , the unitary evolution corresponds to the braiding
progress of two nearest Majorana fermion sites in the system as we have described it
above. Here n is an integer and signifies the time of the braiding operation. We remark
that it is interesting to examine this periodicity of the appearance of the topological
phase in the time evolution of this Hamiltonian. (Compare with discussion in [25].)
For applications, one may consider processes that let the Hamiltonian take the system
right to one of these topological points and then this Hamiltonian cuts off. One may
also think of a mode of observation that is tuned in frequency with the appearances
of the topological phase. This goes beyond the work of Ivanov, who examines the
representation on Majoranas obtained by conjugating by these operators. The Ivanov
representation is of order two, while this representation is of order eight.

5 SU(2) representations of the Artin braid group

The purpose of this section is to determine all the representations of the three strand
Artin braid group B3 to the special unitary group SU (2) and concomitantly to the
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unitary group U (2). One regards the groups SU (2) and U (2) as acting on a single
qubit, and so U (2) is usually regarded as the group of local unitary transformations
in a quantum information setting. If one is looking for a coherent way to represent all
unitary transformations by way of braids, thenU (2) is the place to start. Here we will
show that there are many representations of the three-strand braid group that generate
a dense subset of SU (2). Thus it is a fact that local unitary transformations can be
“generated by braids” in many ways.

We begin with the structure of SU (2). A matrix in SU (2) has the form

M =
(

z w

−w̄ z̄

)
,

where z and w are complex numbers, and z̄ denotes the complex conjugate of z.
To be in SU (2) it is required that Det(M) = 1 and that M† = M−1 where Det
denotes determinant, and M† is the conjugate transpose of M . Thus if z = a + bi and
w = c + di where a, b, c, d are real numbers, and i2 = −1, then

M =
(

a + bi c + di
−c + di a − bi

)

with a2 + b2 + c2 + d2 = 1. It is convenient to write

M = a

(
1 0
0 1

)
+ b

(
i 0
0 −i

)
+ c

(
0 1

−1 0

)
+ d

(
0 i
i 0

)
,

and to abbreviate this decomposition as

M = a + bI + cJ + dK

where

1 ≡
(
1 0
0 1

)
, I ≡

(
i 0
0 −i

)
, J ≡

(
0 1

−1 0

)
, K ≡

(
0 i
i 0

)

so that

I 2 = J 2 = K 2 = I J K = −1

and

I J = K , J K = I , K I = J

J I = −K , K J = −I , I K = −J .

The algebra of 1, I , J , K is called the quaternions after William Rowan Hamilton
who discovered this algebra prior to the discovery of matrix algebra. Thus the unit
quaternions are identified with SU (2) in this way. We shall use this identification, and
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some facts about the quaternions to find the SU (2) representations of braiding. First
we recall some facts about the quaternions.

1. Note that if q = a + bI + cJ + dK (as above), then q† = a − bI − cJ − dK so
that qq† = a2 + b2 + c2 + d2 = 1.

2. A general quaternion has the form q = a + bI + cJ + dK where the value of
qq† = a2 + b2 + c2 + d2, is not fixed to unity. The length of q is by definition√
qq†.

3. A quaternion of the form r I + s J + t K for real numbers r , s, t is said to be a pure
quaternion. We identify the set of pure quaternions with the vector space of triples
(r , s, t) of real numbers R3.

4. Thus a general quaternion has the form q = a + bu where u is a pure quaternion
of unit length and a and b are arbitrary real numbers. A unit quaternion (element
of SU (2)) has the addition property that a2 + b2 = 1.

5. If u is a pure unit length quaternion, then u2 = −1. Note that the set of pure unit
quaternions forms the two-dimensional sphere S2 = {(r , s, t)|r2 + s2 + t2 = 1}
in R3.

6. If u, v are pure quaternions, then

uv = −u · v + u × v

where u · v is the dot product of the vectors u and v, and u × v is the vector cross
product of u and v. In fact, one can take the definition of quaternion multiplication
as

(a + bu)(c + dv) = ac + bc(u) + ad(v) + bd(−u · v + u × v),

and all the above properties are consequences of this definition. Note that quater-
nion multiplication is associative.

7. Let g = a + bu be a unit length quaternion so that u2 = −1 and a =
cos(θ/2), b = sin(θ/2) for a chosen angle θ . Define φg : R3 −→ R3 by the
equation φg(P) = gPg†, for P any point in R3, regarded as a pure quaternion.
Then φg is an orientation preserving rotation of R3 (hence an element of the rota-
tion group SO(3)). Specifically, φg is a rotation about the axis u by the angle θ .
The mapping

φ : SU (2) −→ SO(3)

is a two-to-one surjective map from the special unitary group to the rotation group.
In quaternionic form, this result was proved by Hamilton and by Rodrigues in the
middle of the nineteenth century. The specific formula for φg(P) as shown below:

φg(P) = gPg−1 = (a2 − b2)P + 2ab(P × u) + 2(P · u)b2u.

We want a representation of the three-strand braid group in SU (2). This means
that we want a homomorphism ρ : B3 −→ SU (2), and hence we want elements
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g = ρ(s1) and h = ρ(s2) in SU (2) representing the braid group generators s1 and
s2. Since s1s2s1 = s2s1s2 is the generating relation for B3, the only requirement on g
and h is that ghg = hgh. We rewrite this relation as h−1gh = ghg−1, and analyze its
meaning in the unit quaternions.

Suppose that g = a + bu and h = c + dv where u and v are unit pure quaternions
so that a2 + b2 = 1 and c2 + d2 = 1. then ghg−1 = c + dφg(v) and h−1gh =
a + bφh−1(u). Thus it follows from the braiding relation that a = c, b = ±d, and
that φg(v) = ±φh−1(u). However, in the case where there is a minus sign, we have
g = a + bu and h = a − bv = a + b(−v). Thus we can now prove the following
theorem.

Theorem Let u and v be pure unit quaternions and g = a + bu and h = c+ dv have
unit length. Then (without loss of generality), the braid relation ghg = hgh is true if
and only if h = a + bv, and φg(v) = φh−1(u). Furthermore, given that g = a + bu

and h = a+bv, the condition φg(v) = φh−1(u) is satisfied if and only if u ·v = a2−b2

2b2
when u �= v. If u = v, then g = h and the braid relation is trivially satisfied.

Proof We have proved the first sentence of the theorem in the discussion prior to its
statement. Therefore assume that g = a+ bu, h = a+ bv, and φg(v) = φh−1(u). We
have already stated the formula for φg(v) in the discussion about quaternions:

φg(v) = gvg−1 = (a2 − b2)v + 2ab(v × u) + 2(v · u)b2u.

By the same token, we have

φh−1(u) = h−1uh = (a2 − b2)u + 2ab(u × −v) + 2(u · (−v))b2(−v)

= (a2 − b2)u + 2ab(v × u) + 2(v · u)b2(v).

Hence we require that

(a2 − b2)v + 2(v · u)b2u = (a2 − b2)u + 2(v · u)b2(v).

This equation is equivalent to

2(u · v)b2(u − v) = (a2 − b2)(u − v).

If u �= v, then this implies that

u · v = a2 − b2

2b2
.

This completes the proof of the theorem. // �	
The Majorana fermion example Note the case of the theorem where

g = a + bu, h = a + bv.
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Suppose that u · v = 0. Then the theorem tells us that we need a2 − b2 = 0 and since
a2 + b2 = 1, we conclude that a = 1/

√
2 and b likewise. For definiteness, then we

have for the braiding generators (since I , J and K are mutually orthogonal) the three
operators

A = 1√
2
(1 + I ),

B = 1√
2
(1 + J ),

C = 1√
2
(1 + K ).

Each pair satisfies the braiding relation so that ABA = BAB, BCB = CBC, ACA =
CAC . We have already met this braiding triplet in our discussion of the construction
of braiding operators from Majorana fermions in Sect. 3. This shows (again) how
close Hamilton’s quaternions are to topology and how braiding is fundamental to the
structure of Fermionic physics.

The Fibonacci example Let

g = eIθ = a + bI

where a = cos(θ) and b = sin(θ). Let

h = a + b[(c2 − s2)I + 2csK ]

where c2 + s2 = 1 and c2 − s2 = a2−b2

2b2
. Then we can rewrite g and h in matrix

form as the matrices G and H . Instead of writing the explicit form of H , we write
H = FGF† where F is an element of SU (2) as shown below.

G =
(
eiθ 0
0 e−iθ

)

F =
(
ic is
is −ic

)

This representation of braiding where one generator G is a simple matrix of phases,
while the other generator H = FGF† is derived from G by conjugation by a unitary
matrix and has the possibility for generalization to representations of braid groups (on
greater than three strands) to SU (n) orU (n) for n greater than 2. In fact, we shall see
just such representations [51] by using a version of topological quantum field theory.
The simplest example is given by

g = e7π I/10

f = I τ + K
√

τ

h = f g f −1
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where τ 2 + τ = 1. Then g and h satisfy ghg = hgh and generate a representation of
the three-strand braid group that is dense in SU (2). We shall call this the Fibonacci
representation of B3 to SU (2).

At this point, we can close this section with the speculation that braid group rep-
resentations such as this Fibonacci representation can be realized in the context of
electrons in nanowires. The formalism is the same as our basic Majorana representa-
tion. It has the form of a braiding operators of the form

exp(θ yx)

where x and y areMajorana operators and the angle θ is not equal to π/4 as is required
in the full Majorana representation. For a triple {x, y, z} of Majorana operators, any
quaternion representation is available. Note how this will effect the conjugation rep-
resentation: Let T = r + syx where r and s are real numbers with r2 + s2 = 1 (the
cosine and sine of θ ), chosen so that a representation of the braid group is formed at
the triplet (quaternion level). Then T−1 = r − syx and the reader can verify that

T xT−1 = (r2 − s2)x + 2rsy,

T yT−1 = (r2 − s2)y − 2rsx .

Thus we see that the original Fermion exchange occurs with r = s and then the
sign on −2rs is the well-known sign change in the exchange of Fermions. Here it
is generalized to a more complex linear combination of the two particle/operators. It
remains to be seen what is the meaning of this pattern at the level ofMajorana particles
in nanowires.

6 The bracket polynomial and the Jones polynomial

We now discuss the Jones polynomial. We shall construct the Jones polynomial by
using the bracket state summation model [45]. The bracket polynomial, invariant
under Reidemeister moves II and III, can be normalized to give an invariant of all
three Reidemeister moves. This normalized invariant, with a change of variable, is
the Jones polynomial [28–31]. The Jones polynomial was originally discovered by a
different method than the one given here.

The bracket polynomial , < K >=< K > (A), assigns to each unoriented link
diagram K a Laurent polynomial in the variable A, such that

1. If K and K ′ are regularly isotopic diagrams, then < K >=< K ′ >.
2. If K 	 O denotes the disjoint union of K with an extra unknotted and unlinked

component O (also called ‘loop’ or ‘simple closed curve’ or ‘Jordan curve’), then

< K 	 O >= δ < K >,

where

δ = −A2 − A−2.
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Fig. 6 Bracket smoothings

AA
-1A

-1A

A
-1A

< > = A < > + < >-1A

< > = A< > + < >-1A

3. < K > satisfies the following formulas

< χ >= A < � > +A−1 <)(>

< χ >= A−1 < � > +A <)(>,

where the small diagrams represent parts of larger diagrams that are identical except at
the site indicated in the bracket. We take the convention that the letter chi, χ , denotes a
crossing where the curved line is crossing over the straight segment. The barred letter
denotes the switch of this crossing, where the curved line is undercrossing the straight
segment. See Fig. 6 for a graphic illustration of this relation, and an indication of the
convention for choosing the labels A and A−1 at a given crossing.

It is easy to see that Properties 2 and 3 define the calculation of the bracket on
arbitrary link diagrams. The choices of coefficients (A and A−1) and the value of δ

make the bracket invariant under the Reidemeister moves II and III. Thus Property 1
is a consequence of the other two properties.

In computing the bracket, one finds the following behavior under Reidemeister
move I:

< γ >= −A3 <�>

and

< γ >= −A−3 <�>

where γ denotes a curl of positive type as indicated in Fig. 7, and γ indicates a
curl of negative type, as also seen in this figure. The type of a curl is the sign of the
crossing when we orient it locally. Our convention of signs is also given in Fig. 7.
Note that the type of a curl does not depend on the orientation we choose. The small
arcs on the right-hand side of these formulas indicate the removal of the curl from the
corresponding diagram.
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Fig. 7 Crossing signs and curls
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Fig. 8 Trefoil and two relatives

K U U'

The bracket is invariant under regular isotopy and can be normalized to an invariant
of ambient isotopy by the definition

fK (A) = (−A3)−w(K ) < K > (A),

where we chose an orientation for K , and wherew(K ) is the sum of the crossing signs
of the oriented link K . w(K ) is called the writhe of K . The convention for crossing
signs is shown in Fig. 7.

One useful consequence of these formulas is the following switching formula

A < χ > −A−1 < χ >= (A2 − A−2) < � > .

Note that in these conventions the A-smoothing of χ is �, while the A-smoothing
of χ is )(. Properly interpreted, the switching formula above says that you can switch
a crossing and smooth it either way and obtain a three diagram relation. This is use-
ful since some computations will simplify quite quickly with the proper choices of
switching and smoothing. Remember that it is necessary to keep track of the dia-
grams up to regular isotopy (the equivalence relation generated by the second and
third Reidemeister moves). Here is an example. See Fig. 8.

Figure 8 shows a trefoil diagram K , an unknot diagram U and another unknot
diagram U ′. Applying the switching formula, we have

A−1 < K > −A < U >= (A−2 − A2) < U ′ >

and < U >= −A3 and < U ′ >= (−A−3)2 = A−6. Thus

A−1 < K > −A(−A3) = (A−2 − A2)A−6.
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Hence

A−1 < K >= −A4 + A−8 − A−4.

Thus

< K >= −A5 − A−3 + A−7.

This is the bracket polynomial of the trefoil diagram K .
Since the trefoil diagram K has writhe w(K ) = 3, we have the normalized poly-

nomial

fK (A) = (−A3)−3 < K >= −A−9(−A5 − A−3 + A−7) = A−4 + A−12 − A−16.

The bracket model for the Jones polynomial is quite useful both theoretically and in
terms of practical computations. One of the neatest applications is to simply compute,
as we have done, fK (A) for the trefoil knot K and determine that fK (A) is not equal
to fK (A−1) = f−K (A). This shows that the trefoil is not ambient isotopic to its mirror
image, a fact that is much harder to prove by classical methods.

The state summation In order to obtain a closed formula for the bracket, we now
describe it as a state summation. Let K be any unoriented link diagram. Define a
state, S, of K to be a choice of smoothing for each crossing of K . There are two
choices for smoothing a given crossing, and thus there are 2N states of a diagram
with N crossings. In a state, we label each smoothing with A or A−1 according to the
left-right convention discussed in Property 3 (see Fig. 6). The label is called a vertex
weight of the state. There are two evaluations related to a state. The first one is the
product of the vertex weights, denoted

< K |S > .

The second evaluation is the number of loops in the state S, denoted

||S||.

Define the state summation, < K >, by the formula

< K >=
∑
S

< K |S > δ||S||−1.

It follows from this definition that < K > satisfies the equations

< χ >= A < � > +A−1 <)(>,

< K 	 O >= δ < K >,

< O >= 1.

The first equation expresses the fact that the entire set of states of a given diagram is
the union, with respect to a given crossing, of those states with an A-type smoothing
and those with an A−1-type smoothing at that crossing. The second and the third
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equation are clear from the formula defining the state summation. Hence this state
summation produces the bracket polynomial as we have described it at the beginning
of the section.

Remark By a change of variables one obtains the original Jones polynomial, VK (t),
for oriented knots and links from the normalized bracket:

VK (t) = fK
(
t−

1
4

)
.

Remark The bracket polynomial provides a connection between knot theory and
physics, in that the state summation expression for it exhibits it as a generalized
partition function defined on the knot diagram. Partition functions are ubiquitous in
statistical mechanics, where they express the summation over all states of the physical
system of probability weighting functions for the individual states. Such physical par-
tition functions contain large amounts of information about the corresponding physical
system. Some of this information is directly present in the properties of the function,
such as the location of critical points and phase transition. Some of the information can
be obtained by differentiating the partition function, or performing other mathematical
operations on it.

There is much more in this connection with statistical mechanics in that the local
weights in a partition function are often expressed in terms of solutions to a matrix
equation called the Yang–Baxter equation, that turns out to fit perfectly invariance
under the third Reidemeister move. As a result, there are many ways to define partition
functions of knot diagrams that give rise to invariants of knots and links. The subject
is intertwined with the algebraic structure of Hopf algebras and quantum groups,
useful for producing systematic solutions to the Yang–Baxter equation. In fact Hopf
algebras are deeply connected with the problem of constructing invariants of three-
dimensional manifolds in relation to invariants of knots. We have chosen, in this
survey paper, to not discuss the details of these approaches, but rather to proceed
to Vassiliev invariants and the relationships with Witten’s functional integral. The
reader is referred to [30,31,39,40,44–47,56,75,76,79,80] for more information about
relationships of knot theory with statistical mechanics, Hopf algebras and quantum
groups. For topology, the key point is that Lie algebras can be used to construct
invariants of knots and links.

6.1 Quantum computation of the Jones polynomial

Can the invariants of knots and links such as the Jones polynomial be configured as
quantum computers? This is an important question because the algorithms to compute
the Jones polynomial are known to be �P-hard [27], and so corresponding quantum
algorithmsmay shed light on the relationship of this level of computational complexity
with quantum computing (See [22]). Such models can be formulated in terms of the
Yang–Baxter equation [40,42,45,47,49]. The next paragraph explains how this comes
about.
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Fig. 9 A knot quantum
computer

M

<CAP|

|CUP>

Z     = <CAP| M |CUP>K

(measurement)

(preparation)

(unitary braiding)

In Fig. 9, we indicate how topological braiding plus maxima (caps) and minima
(cups) can be used to configure the diagram of a knot or link. This also can be translated
into algebra by the association of a Yang–Baxter matrix R (not necessarily the R of
the previous sections) to each crossing and other matrices to the maxima and minima.
There are models of very effective invariants of knots and links such as the Jones
polynomial that can be put into this form [42,49]. In this way of looking at things,
the knot diagram can be viewed as a picture, with time as the vertical dimension,
of particles arising from the vacuum, interacting (in a two-dimensional space) and
finally annihilating one another. The invariant takes the form of an amplitude for this
process that is computed through the association of the Yang–Baxter solution R as
the scattering matrix at the crossings and the minima and maxima as creation and
annihilation operators. Thus we can write the amplitude in the form

ZK = 〈CU P|M |CAP〉

where 〈CU P| denotes the composition of cups, M is the composition of elementary
braiding matrices, and |CAP〉 is the composition of caps. We regard 〈CU P| as the
preparation of this state, and |CAP〉 as the measurement of this state. In order to view
ZK as a quantum computation, M must be a unitary operator. This is the case when the
R-matrices (the solutions to the Yang–Baxter equation used in the model) are unitary.
Each R-matrix is viewed as a quantum gate (or possibly a composition of quantum
gates), and the vacuum–vacuum diagram for the knot is interpreted as a quantum
computer. This quantum computer will probabilistically (via quantum amplitudes)
compute the values of the states in the state sum for ZK .

We should remark, however, that it is not necessary that the invariant be modeled
via solutions to the Yang–Baxter equation. One can use unitary representations of
the braid group that are constructed in other ways. In fact, the presently successful
quantum algorithms for computing knot invariants indeed use such representations of
the braid group, and we shall see this below. Nevertheless, it is useful to point out this
analogy between the structure of the knot invariants and quantum computation.
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Quantum algorithms for computing the Jones polynomial have been discussed
elsewhere. See [3,4,35,42,49,50,83]. Here, as an example, we give a local unitary
representation that can be used to compute the Jones polynomial for closures of 3-
braids. We analyze this representation by making explicit how the bracket polynomial
is computed from it, and showing how the quantum computation devolves to finding
the trace of a unitary transformation.

The idea behind the construction of this representation depends upon the algebra
generated by two single qubit density matrices (ket-bras). Let |v〉 and |w〉 be two
qubits in V , a complex vector space of dimension two over the complex numbers. Let
P = |v〉〈v| and Q = |w〉〈w| be the corresponding ket-bras. Note that

P2 = |v|2P,

Q2 = |w|2Q,

PQP = |〈v|w〉|2P,

QPQ = |〈v|w〉|2Q.

P and Q generate a representation of the Temperley–Lieb algebra (See Sect. 9). One
can adjust parameters to make a representation of the three-strand braid group in the
form

s1 �−→ r P + s I ,

s2 �−→ t Q + uI ,

where I is the identity mapping on V and r , s, t, u are suitably chosen scalars. In the
following, we use this method to adjust such a representation so that it is unitary. Note
also that this is a local unitary representation of B3 to U (2).

Here is a specific representation depending on two symmetric matrices U1 and U2
with

U1 =
[
d 0
0 0

]
= d|w〉〈w|

and

U2 =
[

d−1
√
1 − d−2√

1 − d−2 d − d−1

]
= d|v〉〈v|

wherew = (1, 0), and v = (d−1,
√
1 − d−2), assuming the entries of v are real. Note

that U 2
1 = dU1 and U 2

2 = dU1. Moreover, U1U2U1 = U1 and U2U1U2 = U1. This
is an example of a specific representation of the Temperley–Lieb algebra [42,45].
The desired representation of theArtin braid group is given on the two braid generators
for the three strand braid group by the equations:

�(s1) = AI + A−1U1,

�(s2) = AI + A−1U2.
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Here I denotes the 2 × 2 identity matrix.
For any A with d = −A2 − A−2 these formulas define a representation of the braid

group. With A = eiθ , we have d = −2cos(2θ). We find a specific range of angles θ

in the following disjoint union of angular intervals

θ ∈ [0, π/6] 	 [π/3, 2π/3] 	 [5π/6, 7π/6] 	 [4π/3, 5π/3] 	 [11π/6, 2π ]

that give unitary representations of the three-strand braid group. Thus a specialization
of a more general representation of the braid group gives rise to a continuous family
of unitary representations of the braid group.

Lemma Note that the traces of these matrices are given by the formulas tr(U1) =
tr(U2) = d while tr(U1U2) = tr(U2U1) = 1. If b is any braid, let I (b) denote the
sum of the exponents in the braid word that expresses b. For b a three-strand braid, it
follows that

�(b) = AI (b) I + �(b)

where I is the 2×2 identitymatrix and�(b) is a sumof products in the Temperley–Lieb
algebra involving U1 and U2.

We omit the proof of this lemma. It is a calculation. To see it, consider an example.
Suppose that b = s1s

−1
2 s1. Then

�(b) = �(s1s
−1
2 s1) = �(s1)�(s−1

2 )�(s1)

= (AI + A−1U1)(A
−1 I + AU2)(AI + A−1U1).

The sum of products over the generators U1 and U2 of the Temperley–Lieb algebra
comes from expanding this expression.

Since the Temperley–Lieb algebra in this dimension is generated by I ,U1,U2,U1U2
andU2U1, it follows that the value of the bracket polynomial of the closure of the braid
b, denoted < b >, can be calculated directly from the trace of this representation,
except for the part involving the identity matrix. The result is the equation

< b >= AI (b)d2 + tr(�(b))

where b denotes the standard braid closure of b, and the sharp brackets denote the
bracket polynomial. From this we see at once that

< b >= tr(�(b)) + AI (b)(d2 − 2).

It follows from this calculation that the question of computing the bracket poly-
nomial for the closure of the three-strand braid b is mathematically equivalent to the
problem of computing the trace of the unitary matrix �(b).
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The Hadamard test
In order to (quantum) compute the trace of a unitary matrix U , one can use the

Hadamard test to obtain the diagonal matrix elements 〈ψ |U |ψ〉 of U . The trace is
then the sum of these matrix elements as |ψ〉 runs over an orthonormal basis for the
vector space. We first obtain

1

2
+ 1

2
Re〈ψ |U |ψ〉

as an expectation by applying the Hadamard gate H

H |0〉 = 1√
2
(|0〉 + |1〉)

H |1〉 = 1√
2
(|0〉 − |1〉)

to the first qubit of

CU ◦ (H ⊗ 1)|0〉|ψ〉 = 1√
2
(|0〉 ⊗ |ψ〉 + |1〉 ⊗U |ψ〉.

Here CU denotes controlledU , acting asU when the control bit is |1〉 and the identity
mapping when the control bit is |0〉. We measure the expectation for the first qubit |0〉
of the resulting state

1

2
(H |0〉 ⊗ |ψ〉 + H |1〉 ⊗U |ψ〉) = 1

2
((|0〉 + |1〉) ⊗ |ψ〉 + (|0〉 − |1〉) ⊗U |ψ〉)

= 1

2
(|0〉 ⊗ (|ψ〉 +U |ψ〉) + |1〉 ⊗ (|ψ〉 −U |ψ〉)).

This expectation is

1

2
(〈ψ | + 〈ψ |U †)(|ψ〉 +U |ψ〉) = 1

2
+ 1

2
Re〈ψ |U |ψ〉.

The imaginary part is obtained by applying the same procedure to

1√
2
(|0〉 ⊗ |ψ〉 − i |1〉 ⊗U |ψ〉

This is the method used in [3,4], and the reader may wish to contemplate its efficiency
in the context of this simple model. Note that the Hadamard test enables this quantum
computation to estimate the trace of any unitary matrix U by repeated trials that
estimate individual matrix entries 〈ψ |U |ψ〉. We shall return to quantum algorithms
for the Jones polynomial and other knot polynomials in a subsequent paper.
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7 Quantum topology, cobordism categories, Temperley–Lieb
algebra, and topological quantum field theory

The purpose of this section is to discuss the general idea behind topological quantum
field theory, and to illustrate its application to basic quantum mechanics and quantum
mechanical formalism. It is useful in this regard to have available the concept of
category, and we shall begin the section by discussing this far-reaching mathematical
concept.

Definition A category Cat consists in two related collections:

1. Obj(Cat), the objects of Cat, and
2. Morph(Cat), the morphisms of Cat .

satisfying the following axioms:

1. Each morphism f is associated with two objects of Cat , the domain of f and the
codomain of f. Letting A denote the domain of f and B denote the codomain of
f , it is customary to denote the morphism f by the arrow notation f : A −→ B.

2. Given f : A −→ B and g : B −→ C where A, B and C are objects of Cat , then
there exists an associated morphism g ◦ f : A −→ C called the composition of f
and g.

3. To each object A of Cat there is a unique identity morphism 1A : A −→ A such
that 1A ◦ f = f for any morphism f with codomain A, and g ◦ 1A = g for any
morphism g with domain A.

4. Given three morphisms f : A −→ B, g : B −→ C and h : C −→ D, then
composition is associative. That is

(h ◦ g) ◦ f = h ◦ (g ◦ f ).

If Cat1 and Cat2 are two categories, then a functor F : Cat1 −→ Cat2 con-
sists in functions FO : Obj(Cat1) −→ Obj(Cat2) and FM : Morph(Cat1) −→
Morph(Cat2) such that identity morphisms and composition of morphisms are pre-
served under these mappings. That is (writing just F for FO and FM ),

1. F(1A) = 1F(A),
2. F( f : A −→ B) = F( f ) : F(A) −→ F(B),
3. F(g ◦ f ) = F(g) ◦ F( f ).

A functor F : Cat1 −→ Cat2 is a structure preserving mapping from one category
to another. It is often convenient to think of the image of the functor F as an inter-
pretation of the first category in terms of the second. We shall use this terminology
below and sometimes refer to an interpretation without specifying all the details of
the functor that describes it.

The notion of category is a broad mathematical concept, encompassing many fields
of mathematics. Thus one has the category of sets where the objects are sets (col-
lections) and the morphisms are mappings between sets. One has the category of
topological spaces where the objects are spaces and the morphisms are continuous
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mappings of topological spaces. One has the category of groups where the objects are
groups and the morphisms are homomorphisms of groups. Functors are structure pre-
serving mappings from one category to another. For example, the fundamental group
is a functor from the category of topological spaces with base point, to the category
of groups. In all the examples mentioned so far, the morphisms in the category are
restrictions of mappings in the category of sets, but this is not necessarily the case.
For example, any group G can be regarded as a category, Cat(G), with one object
∗. The morphisms from ∗ to itself are the elements of the group and composition is
group multiplication. In this example, the object has no internal structure and all the
complexity of the category is in the morphisms.

The Artin braid group Bn can be regarded as a category whose single object is an
ordered row of points [n] = {1, 2, 3, ..., n}. The morphisms are the braids themselves
and composition is the multiplication of the braids. A given ordered row of points is
interpreted as the starting or ending rowof points at the bottomor the top of the braid. In
the case of the braid category, the morphisms have both external and internal structure.
Each morphism produces a permutation of the ordered row of points (corresponding
to the beginning and ending points of the individual braid strands), and weaving of
the braid is extra structure beyond the object that is its domain and codomain. Finally,
for this example, we can take all the braid groups Bn (n a positive integer) under the
wing of a single category, Cat(B), whose objects are all ordered rows of points [n],
and whose morphisms are of the form b : [n] −→ [n] where b is a braid in Bn . The
reader may wish to have morphisms between objects with different n. We will have
this shortly in the Temperley–Lieb category and in the category of tangles.

The n-Cobordism Category,Cob[n], has as its objects smooth manifolds of dimen-
sion n, and as its morphisms, smooth manifolds Mn+1 of dimension n + 1 with a
partitionof theboundary, ∂Mn+1, into twocollections ofn-manifolds thatwedenote by
L(Mn+1) and R(Mn+1).We regardMn+1 as amorphism from L(Mn+1) to R(Mn+1)

Mn+1 : L(Mn+1) −→ R(Mn+1).

Aswe shall see, these cobordismcategories are highly significant for quantummechan-
ics, and the simplest one, Cob[0] is directly related to the Dirac notation of bras and
kets and to the Temperley–Lieb algebra. We shall concentrate in this section on these
cobordism categories, and their relationships with quantum mechanics.

One can choose to consider either oriented or non-oriented manifolds, and within
unoriented manifolds, there are those that are orientable and those that are not ori-
entable. In this section, we will implicitly discuss only orientable manifolds, but we
shall not specify an orientation. In the next section, with the standard definition of
topological quantum field theory, the manifolds will be oriented. The definitions of
the cobordism categories for oriented manifolds go over mutatis mutandis.

Lets begin with Cob[0]. Zero-dimensional manifolds are just collections of points.
The simplest zero-dimensional manifold is a single point p. We take p to be an object
of this category and also ∗, where ∗ denotes the empty manifold (i.e., the empty set
in the category of manifolds). The object ∗ occurs in Cob[n] for every n, since it is
possible that either the left set or the right set of a morphism is empty. A line segment
S with boundary points p and q is a morphism from p to q.

123



Braiding, Majorana fermions, Fibonacci particles and… Page 33 of 81 201

Fig. 10 Elementary cobordisms

Identity

p
f: p                 p

p

pp *
pp*

S : p −→ q

See Fig. 10. In this figure we have illustrated the morphism from p to p. The simplest
convention for this category is to take this morphism to be the identity. Thus if we look
at the subcategory of Cob[0] whose only object is p, then the only morphism is the
identity morphism. Two points occur as the boundary of an interval. The reader will
note that Cob[0] and the usual arrow notation for morphisms are very closely related.
This is a place where notation and mathematical structure share common elements.
In general the objects of Cob[0] consist in the empty object ∗ and non-empty rows of
points, symbolized by

p ⊗ p ⊗ · · · ⊗ p ⊗ p.

Figure 10 also contains a morphism

p ⊗ p −→ ∗

and the morphism

∗ −→ p ⊗ p.

The first represents a cobordism of two points to the empty set (via the bounding
curved interval). The second represents a cobordism from the empty set to two points.

In Fig. 11, we have indicated more morphisms in Cob[0], and we have named the
morphisms just discussed as

|�〉 : p ⊗ p −→ ∗,

〈�| : ∗ −→ p ⊗ p.

The point to notice is that the usual conventions for handling Dirac bra–kets are
essentially the same as the composition rules in this topological category. Thus in
Fig. 11 we have that

〈�| ◦ |�〉 = 〈�|�〉 : ∗ −→ ∗
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Identity
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Fig. 11 Bras, Kets, and projectors

represents a cobordism from the empty manifold to itself. This cobordism is topologi-
cally a circle and, in the Dirac formalism is interpreted as a scalar. In order to interpret
the notion of scalar, we would have to map the cobordism category to the category of
vector spaces and linear mappings. We shall discuss this after describing the similar-
ities with quantum mechanical formalism. Nevertheless, the reader should note that
if V is a vector space over the complex numbers C, then a linear mapping from C to
C is determined by the image of 1, and hence is characterized by the scalar that is the
image of 1. In this sense a mapping C −→ C can be regarded as a possible image in
vector spaces of the abstract structure 〈�|�〉 : ∗ −→ ∗. It is therefore assumed that
in Cob[0] the composition with the morphism 〈�|�〉 commutes with any other mor-
phism. In that way 〈�|�〉 behaves like a scalar in the cobordism category. In general,
an n + 1 manifold without boundary behaves as a scalar in Cob[n], and if a manifold
Mn+1 can be written as a union of two submanifolds Ln+1 and Rn+1 so that that an
n-manifold Wn is their common boundary:

Mn+1 = Ln+1 ∪ Rn+1

with

Ln+1 ∩ Rn+1 = Wn

then, we can write

〈Mn+1〉 = 〈Ln+1 ∪ Rn+1〉 = 〈Ln+1|Rn+1〉,

and 〈Mn+1〉 will be a scalar (morphism that commutes with all other morphisms) in
the category Cob[n].

Getting back to the contents of Fig. 11, note how the zero-dimensional cobordism
category has structural parallels to the Dirac ket-bra formalism

U = |�〉〈�|
UU = |�〉〈�|�〉〈�| = 〈�|�〉|�〉〈�| = 〈�|�〉U .
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Fig. 12 Permutations

S

I

S    =  I2

SU = US = U

Fig. 13 Projectors in tensor lines
and elementary topology
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In the cobordism category, the bra–ket and ket–bra formalism is seen as patterns of
connection of the one manifold that realizes the cobordisms.

Now see Fig. 12. This figure illustrates a morphism S in Cob[0] that requires
two crossed line segments for its planar representation. Thus S can be regarded as
a non-trivial permutation, and S2 = I where I denotes the identity morphisms for
a two-point row. From this example, it is clear that Cob[0] contains the structure of
all the symmetric groups and more. In fact, if we take the subcategory of Cob[0]
consisting of all morphisms from [n] to [n] for a fixed positive integer n, then this
gives the well-known Brauer algebra (see [10]) extending the symmetric group by
allowing any connections among the points in the two rows. In this sense, one could
call Cob[0] the Brauer category. We shall return to this point of view later.

In this section, we shall be concentrating on the part ofCob[0] that does not involve
permutations. This part can be characterized by those morphisms that can be repre-
sented by planar diagrams without crossings between any of the line segments (the
one-manifolds). We shall call this crossingless subcategory of Cob[0] the Temperley–
Lieb Category and denote it by CatT L . In CatT L we have the subcategory T L[n]
whose only objects are the row of n points and the empty object ∗, and whose mor-
phisms can all be represented by configurations that embed in the plane as in the
morphisms P and Q in Fig. 13. Note that with the empty object ∗, the morphism
whose diagram is a single loop appears in T L[n] and is taken to commute with all
other morphisms.

The Temperley–Lieb Algebra, AlgT L[n] is generated by the morphisms in T L[n]
that go from [n] to itself. Up tomultiplication by the loop, the product (composition) of
two suchmorphisms is another flat morphism from [n] to itself. For algebraic purposes
the loop ∗ −→ ∗ is taken to be a scalar algebraic variable δ that commutes with all
elements in the algebra. Thus the equation
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Fig. 14 Basic Temperley–Lieb relation

UU = 〈�|�〉U .

becomes

UU = δU

in the algebra. In the algebra, we are allowed to add morphisms formally and this
addition is taken to be commutative. Initially the algebra is takenwith coefficients in the
integers, but a different commutative ring of coefficients can be chosen and the value of
the loopmaybe taken in this ring. For example, for quantummechanical applications, it
is natural towork over the complex numbers. Themultiplicative structure of AlgT L[n]
can be described by generators and relations as follows: Let In denote the identity
morphism from [n] to [n]. Let Ui denote the morphism from [n] to [n] that connects
k with k for k < i and k > i + 1 from one row to the other, and connects i to i + 1
in each row. Then the algebra AlgT L[n] is generated by {In,U1,U2, . . . ,Un−1} with
relations

U 2
i = δUi

UiUi+1Ui = Ui

UiU j = UjUi : |i − j | > 1.

These relations are illustrated for three strands in Fig. 13. We leave the commuting
relation for the reader to draw in the case where n is four or greater. For a proof that
these are indeed all the relations, see [41].

Figures 13 and 14 indicate how the zero-dimensional cobordism category contains
structure that goes well beyond the usual Dirac formalism. By tensoring the ket–bra on
one side or another by identitymorphisms, we obtain the beginnings of the Temperley–
Lieb algebra and the Temperley–Lieb category. Thus Fig. 14 illustrates the morphisms
P and Q obtained by such tensoring, and the relation PQP = P which is the same
as U1U2U1 = U1
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Fig. 15 Key to teleportation

φ|    >

ψ|    >

Θ

Ω

ΩΘ
φ|    > ψ|    >

ΩΘφ|    > ψ|    > =

|     >

<     |

Θ|     >

Ω<     | Ω

Θ

Note the composition at the bottom of Fig. 14. Here we see a composition of
the identity tensored with a ket, followed by a bra tensored with the identity. The
diagrammatic for this association involves “straightening” the curved structure of the
morphism to a straight line. In Fig. 15 we have elaborated this situation even further,
pointing out that in this category each of the morphisms 〈�| and |�〉 can be seen,
by straightening, as mappings from the generating object to itself. We have denoted
these corresponding morphisms by � and �, respectively. In this way, there is a
correspondence between morphisms p ⊗ p −→ ∗ and morphisms p −→ p.

In Fig. 15, we have illustrated the generalization of the straightening procedure
of Fig. 14. In Fig. 14 the straightening occurs because the connection structure in
the morphism of Cob[0] does not depend on the wandering of curves in diagrams
for the morphisms in that category. Nevertheless, one can envisage a more complex
interpretation of the morphisms where each one manifold (line segment) has a label,
and a multiplicity of morphisms can correspond to a single line segment. This is
exactly what we expect in interpretations. For example, we can interpret the line
segment [1] −→ [1] as a mapping from a vector space V to itself. Then [1] −→ [1]
is the diagrammatic abstraction for V −→ V , and there are many instances of linear
mappings from V to V .

At the vector space level there is a duality between mappings V ⊗ V −→ C and
linear maps V −→ V . Specifically, let

{|0〉, . . . , |m〉}

be a basis for V . Then � : V −→ V is determined by

�|i〉 = �i j | j〉
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(where we have used the Einstein summation convention on the repeated index j)
corresponds to the bra

〈�| : V ⊗ V −→ C

defined by

〈�|i j〉 = �i j .

Given 〈�| : V ⊗ V −→ C, we associate � : V −→ V in this way.
Comparing with the diagrammatic for the category Cob[0], we say that � : V −→

V is obtained by straightening the mapping

〈�| : V ⊗ V −→ C.

Note that in this interpretation, the bras and kets are defined relative to the tensor
product of V with itself and [2] is interpreted as V ⊗ V . If we interpret [2] as a single
vector space W , then the usual formalisms of bras and kets still pass over from the
cobordism category.

Figure 15 illustrates the straightening of |�〉 and 〈�|, and the straightening of a
composition of these applied to |ψ〉, resulting in |φ〉. In the left-hand part of the bottom
of Fig. 15, we illustrate the preparation of the tensor product |�〉 ⊗ |ψ〉 followed by a
successful measurement by 〈�| in the second two tensor factors. The resulting single-
qubit state, as seen by straightening, is |φ〉 = � ◦ �|ψ〉.

From this, we see that it is possible to reversibly, indeed unitarily, transform a state
|ψ〉 via a combination of preparation and measurement just so long as the straight-
enings of the preparation and measurement (� and �) are each invertible (unitary).
This is the key to teleportation [2,14,43]. In the standard teleportation procedure, one
chooses the preparation� to be (up to normalization) the 2-dimensional identitymatrix
so that |θ〉 = |00〉 + |11〉. If the successful measurement � is also the identity, then
the transmitted state |φ〉 will be equal to |ψ〉. In general, we will have |φ〉 = �|ψ〉.
One can then choose a basis of measurements |�〉, each corresponding to a unitary
transformation � so that the recipient of the transmission can rotate the result by the
inverse of � to reconstitute |ψ〉 if he is given the requisite information. This is the
basic design of the teleportation procedure.

There is much more to say about the category Cob[0] and its relationship with
quantum mechanics. We will stop here, and invite the reader to explore further. Later
in this paper, we shall use these ideas in formulating our representations of the braid
group. For now, we point out how things look as wemove upward toCob[n] for n > 0.
In Fig. 16 we show typical cobordisms (morphisms) inCob[1] from two circles to one
circle and from one circle to two circles. These are often called “pairs of pants”. Their
composition is a surface of genus one seen as a morphism from two circles to two
circles. The bottom of the figure indicates a ket-bra in this dimension in the form of a
mapping from one circle to one circle as a composition of a cobordism of a circle to
the empty set and a cobordism from the empty set to a circle (circles bounding disks).
As we go to higher dimensions the structure of cobordisms becomes more interesting
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Fig. 16 Cobordisms of
1-manifolds are surfaces

and more complicated. It is remarkable that there is so much structure in the lowest
dimensions of these categories.

8 Braiding and topological quantum field theory

The purpose of this section is to discuss in a very general way how braiding is related to
topological quantum field theory. In the section to follow, we will use the Temperley–
Lieb recoupling theory to produce specific unitary representations of the Artin braid
group.

The ideas in the subject of topological quantum field theory (TQFT) are well
expressed in the book [7] by Michael Atiyah and the paper [82] by Edward Witten.
Here is Atiyah’s definition:

Definition A TQFT in dimension d is a functor Z(�) from the cobordism category
Cob[d] to the category Vect of vector spaces and linear mappings which assigns

1. a finite-dimensional vector space Z(�) to each compact, oriented d-dimensional
manifold �,

2. a vector Z(Y ) ∈ Z(�) for each compact, oriented (d + 1)-dimensional manifold
Y with boundary �.

3. a linear mapping Z(Y ) : Z(�1) −→ Z(�2) when Y is a (d + 1)-manifold that is
a cobordism between �1 and �2 (whence the boundary of Y is the union of �1
and −�2.

The functor satisfies the following axioms.

1. Z(�†) = Z(�)† where �† denotes the manifold � with the opposite orientation
and Z(�)† is the dual vector space.

2. Z(�1 ∪ �2) = Z(�1) ⊗ Z(�2) where ∪ denotes disjoint union.
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Fig. 17 Decomposition of a
surface into trinions

Trinion

3. If Y1 is a cobordism from �1 to �2, Y2 is a cobordism from �2 to �3 and Y is the
composite cobordism Y = Y1 ∪�2 Y2, then

Z(Y ) = Z(Y2) ◦ Z(Y1) : Z(�1) −→ Z(�2)

is the composite of the corresponding linear mappings.
4. Z(φ) = C (C denotes the complex numbers) for the empty manifold φ.
5. With � × I (where I denotes the unit interval) denoting the identity cobordism

from � to �, Z(� × I ) is the identity mapping on Z(�).

Note that, in this view a TQFT is basically a functor from the cobordism categories
defined in the last section to Vector Spaces over the complex numbers. We have
already seen that in the lowest dimensional case of cobordisms of zero-dimensional
manifolds, this gives rise to a rich structure related to quantummechanics and quantum
information theory. The remarkable fact is that the case of three dimensions is also
related to quantum theory, and to the lower-dimensional versions of the TQFT. This
gives a significant way to think about three-manifold invariants in terms of lower-
dimensional patterns of interaction. Here follows a brief description.

Regard the three-manifold as a union of two handle bodies with boundary an ori-
entable surface Sg of genus g. The surface is divided up into trinions as illustrated
in Fig. 17. A trinion is a surface with boundary that is topologically equivalent to a
sphere with three punctures. The trinion constitutes, in itself a cobordism in Cob[1]
from two circles to a single circle, or from a single circle to two circles, or from
three circles to the empty set. The pattern of a trinion is a trivalent graphical vertex,
as illustrated in Fig. 17. In that figure we show the trivalent vertex graphical pattern
drawn on the surface of the trinion, forming a graphical pattern for this cobordism. It
should be clear from this figure that any cobordism in Cob[1] can be diagrammed by
a trivalent graph, so that the category of trivalent graphs (as morphisms from ordered
sets of points to ordered sets of points) has an image in the category of cobordisms
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Fig. 18 Trinion associativity

=

Fig. 19 Tube twist A B

C

A B

C

=

of compact one-dimensional manifolds. Given a surface S (possibly with boundary)
and a decomposition of that surface into trinions, we associate with it a trivalent graph
G(S, t) where t denotes the particular trinion decomposition.

In this correspondence, distinct graphs can correspond to topologically identical
cobordisms of circles, as illustrated in Fig. 18. It turns out that the graphical structure
is important, and that it is extraordinarily useful to articulate transformations between
the graphs that correspond to the homeomorphisms of the corresponding surfaces. The
beginning of this structure is indicated in the bottom part of Fig. 18.

In Fig. 19 we illustrate another feature of the relationship between surfaces and
graphs. At the top of the figure we indicate a homeomorphism between a twisted
trinion and a standard trinion. The homeomorphism leaves the ends of the trinion
(denoted A,B andC) fixed while undoing the internal twist. This can be accomplished
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Fig. 20 Trivalent vectors
a b

c

d

e fa b

c

ε V(            )

V(                                )ε

as an ambient isotopy of the embeddings in three-dimensional space that are indicated
by this figure. Below this isotopy we indicate the corresponding graphs. In the graph
category, there will have to be a transformation between a braided and an unbraided
trivalent vertex that corresponds to this homeomorphism.

From the point of view that we shall take in this paper, the key to the mathematical
structure of three-dimensional TQFT lies in the trivalent graphs, including the braiding
of graphical arcs. We can think of these braided graphs as representing idealized
Feynman diagrams, with the trivalent vertex as the basic particle interaction vertex,
and the braiding of lines representing an interaction resulting from an exchange of
particles. In this view one thinks of the particles as moving in a two-dimensional
medium, and the diagrams of braiding and trivalent vertex interactions as indications of
the temporal events in the system,with time indicated in the direction of themorphisms
in the category. Adding such graphs to the category of knots and links is an extension
of the tangle categorywhere one has already extended braids to allow any embedding
of strands and circles that start in n ordered points and end in m ordered points. The
tangle category includes the braid category and the Temperley–Lieb category. These
are both included in the category of braided trivalent graphs.

Thinking of the basic trivalent vertex as the form of a particle interaction there will
be a set of particle states that can label each arc incident to the vertex. In Fig. 20 we
illustrate the labeling of the trivalent graphs by such particle states. In the next two
sections, we will see specific rules for labeling such states. Here it suffices to note
that there will be some restrictions on these labels, so that a trivalent vertex has a
set of possible labelings. Similarly, any trivalent graph will have a set of admissible
labelings. These are the possible particle processes that this graph can support.We take
the set of admissible labelings of a given graph G as a basis for a vector space V (G)

over the complex numbers. This vector space is the space of processes associated with
the graph G. Given a surface S and a decomposition t of the surface into trinions, we
have the associated graphG(S, t) and hence a vector space of processes V (G(S, t)). It
is desirable to have this vector space independent of the particular decomposition into
trinions. If this can be accomplished, then the set of vector spaces and linear mappings
associatedwith the surfaces can constitute a functor from the category of cobordisms of
one-manifolds to vector spaces, and hence gives rise to a one-dimensional topological
quantum field theory. To this end, we need some properties of the particle interactions
that will be described below.

A spin network is, by definition a lableled trivalent graph in a category of graphs that
satisfy the properties outlined in the previous paragraph. We shall detail the require-
ments below.
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Fig. 21 Creation and fusion

The simplest case of this idea is Yang’s original interpretation of the Yang–Baxter
equation [84]. Yang articulated a quantum field theory in one dimension of space and
one dimension of time in which the R-matrix giving the scattering amplitudes for an
interaction of two particles whose (let us say) spins corresponded to the matrix indices
so that Rcd

ab is the amplitude for particles of spin a and spin b to interact and produce
particles of spin c and d. Since these interactions are between particles in a line, one
takes the convention that the particle with spin a is to the left of the particle with spin
b, and the particle with spin c is to the left of the particle with spin d. If one follows
the concatenation of such interactions, then there is an underlying permutation that is
obtained by following strands from the bottom to the top of the diagram (thinking of
time as moving up the page). Yang designed the Yang–Baxter equation for R so that
the amplitudes for a composite process depend only on the underlying permutation
corresponding to the process and not on the individual sequences of interactions.

In taking over the Yang–Baxter equation for topological purposes, we can use the
same interpretation, but think of the diagrams with their under- and over-crossings
as modeling events in a spacetime with two dimensions of space and one dimen-
sion of time. The extra spatial dimension is taken in displacing the woven strands
perpendicular to the page, and allows us to use braiding operators R and R−1 as scat-
tering matrices. Taking this picture to heart, one can add other particle properties to
the idealized theory. In particular, one can add fusion and creation vertices where in
fusion two particles interact to become a single particle and in creation one particle
changes (decays) into two particles. These are the trivalent vertices discussed above.
Matrix elements corresponding to trivalent vertices can represent these interactions.
See Fig. 21.

Once one introduces trivalent vertices for fusion and creation, there is the question
how these interactions will behave in respect to the braiding operators. There will be a
matrix expression for the compositions of braiding and fusion or creation as indicated
in Fig. 22. Here wewill restrict ourselves to showing the diagrammatics with the intent
of giving the reader a flavor of these structures (e.g. braiding in Fig. 23). It is natural
to assume that braiding intertwines with creation as shown in Fig. 24 (similarly with
fusion). This intertwining identity is clearly the sort of thing that a topologist will
love, since it indicates that the diagrams can be interpreted as embeddings of graphs in
three-dimensional space, and it fits with our interpretation of the vertices in terms of
trinions. Figure 25 illustrates the Yang–Baxter equation. The intertwining identity is
an assumption like the Yang–Baxter equation itself, that simplifies the mathematical
structure of the model.
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Fig. 22 Recoupling

F

Fig. 23 Braiding

= R

Fig. 24 Intertwining

=

Fig. 25 Yang Baxter equation

=

RIR I
RI

RI

RI
R I

R I
R I

It is to be expected that there will be an operator that expresses the recoupling
of vertex interactions as shown in Fig. 22 and labeled by Q. This corresponds to the
associativity at the level of trinion combinations shown inFig. 18. The actual formalism
of such an operator will parallel themathematics of recoupling for angularmomentum.
See for example [44]. If one just considers the abstract structure of recoupling then one
sees that for trees with four branches (each with a single root) there is a cycle of length
five as shown in Fig. 26. One can start with any pattern of three vertex interactions and
go through a sequence of five recouplings that bring one back to the same tree from
which one started. It is a natural simplifying axiom to assume that this composition is
the identity mapping. This axiom is called the pentagon identity.

Finally there is a hexagonal cycle of interactions between braiding, recoupling and
the intertwining identity as shown in Fig. 27. One says that the interactions satisfy the
hexagon identity if this composition is the identity.
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Fig. 26 Pentagon identity

F
F F

FF

Fig. 27 Hexagon identity

=

R

R
R

F

F

F

Remark It is worth pointing out how these identities are related to the braiding. The
hexagon identity tells us that

R−1FRF−1RF = I

where I is the identity mapping on the process space for trees with three branches.
Letting

A = R

and

B = F−1RF,
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we see that the hexagon identity is equivalent to the statement

B = R−1F−1R.

Thus

ABA = R(R−1F−1R)R = F−1R2 = (F−1RF)F−1R = (R−1F−1R)F−1R

= (R−1F−1R)R(R−1F−1R) = BAB.

Thus the hexagon relation in this context, implies that A and B satisfy the braiding
relation. The combination of the hexagon and pentagon relations ensures that the braid
group representations that are generated are well defined and fit together as we include
smaller numbers of strands in larger numbers of strands. We omit the further details
of the verification of this statement.

A graphical three-dimensional topological quantum field theory is an algebra of
interactions that satisfies the Yang–Baxter equation, the intertwining identity, the pen-
tagon identity and the hexagon identity. There is not room in this summary to detail
the way that these properties fit into the topology of knots and three-dimensional
manifolds, but a sketch is in order. For the case of topological quantum field theory
related to the group SU (2), there is a construction based entirely on the combinatorial
topology of the bracket polynomial. (See Sects. 11–13 of this paper.) See [40,44] for
more information on this approach.

Now return to Fig. 17 where we illustrate trinions, shown in relation to a trivalent
vertex, and a surface of genus three that is decomposed into four trinions. It turns out
that the vector space V (Sg) = V (G(Sg, t)) to a surface with a trinion decomposition
as t described above, and defined in terms of the graphical topological quantum field
theory, does not depend upon the choice of trinion decomposition. This independence
is guaranteed by the braiding, hexagon, and pentagon identities. One can then associate
a well-defined vector |M〉 in V (Sg) whenever M is a three manifold whose boundary
is Sg . Furthermore, if a closed three-manifold M3 is decomposed along a surface Sg
into the union of M− and M+ where these parts are otherwise disjoint three-manifolds
with boundary Sg, then the inner product I (M) = 〈M−|M+〉 is, up to normalization,
an invariant of the three-manifold M3. With the definition of graphical topological
quantum field theory given above, knots and links can be incorporated as well, so
that one obtains a source of invariants I (M3, K ) of knots and links in orientable
three-manifolds. Here we see the uses of the relationships that occur in the higher-
dimensional cobordism categories, as described in the previous section.

The invariant I (M3, K ) can be formally compared with the Witten [82] integral

Z(M3, K ) =
∫

DAe(ik/4π)S(M,A)WK (A).

It can be shown that up to limits of the heuristics, Z(M, K ) and I (M3, K ) are
essentially equivalent for appropriate choice of gauge group and corresponding spin
networks.
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Fig. 28 A more complex
braiding operator

F R

B = F   RF-1

F -1

By these graphical reformulations, a three-dimensional T QFT is, at base, a highly
simplified theory of point particle interactions in 2+ 1-dimensional spacetime. It can
be used to articulate invariants of knots and links and invariants of threemanifolds. The
reader interested in the SU (2) case of this structure and its implications for invariants
of knots and three manifolds can consult [15,40,44,59]. One expects that physical
situations involving 2+1 spacetime will be approximated by such an idealized theory.
There are also applications to 3+1 quantum gravity [32]. Aspects of the quantumHall
effect may be related to topological quantum field theory [81]. One can study a physics
in two-dimensional space where the braiding of particles or collective excitations
leads to non-trivial representations of the Artin braid group. Such particles are called
Anyons. Such T QFT models would describe applicable physics. One can think about
applications of anyons to quantum computing along the lines of the topological models
described here.

A key point in the application of T QFT to quantum information theory is contained
in the structure illustrated in Fig. 28. Therewe show amore complex braiding operator,
based on the composition of recoupling with the elementary braiding at a vertex.
(This structure is implicit in the Hexagon identity of Fig. 27.) The new braiding
operator is a source of unitary representations of braid group in situations (which exist
mathematically) where the recoupling transformations are themselves unitary. This
kind of pattern is utilized in the work of Freedman and collaborators [19–23] and in
the case of classical angular momentum formalism has been dubbed a “spin network
quantum simulator” by Rasetti and collaborators [24,69]. In the next section, we show
how certain natural deformations [44] of Penrose spin networks [73] can be used to
produce these unitary representations of the Artin braid group and the corresponding
models for anyonic topological quantum computation.

9 Spin networks and Temperley–Lieb recoupling theory

In this section, we discuss a combinatorial construction for spin networks that gener-
alizes the original construction of Roger Penrose. The result of this generalization is
a structure that satisfies all the properties of a graphical T QFT as described in the
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Fig. 29 Basic projectors
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Fig. 30 Two-strand projector
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previous section, and specializes to classical angular momentum recoupling theory
in the limit of its basic variable. The construction is based on the properties of the
bracket polynomial (as already described in Sect. 6). A complete description of this
theory can be found in the book “Temperley–Lieb Recoupling Theory and Invariants
of Three-Manifolds” by Kauffman and Lins [44].

The “q-deformed” spin networks that we construct here are based on the bracket
polynomial relation. See Figs. 29 and 30.

123



Braiding, Majorana fermions, Fibonacci particles and… Page 49 of 81 201

Fig. 31 Vertex a b
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In Figure 29 we indicate how the basic projector (symmetrizer, Jones–Wenzl
projector) is constructed on the basis of the bracket polynomial expansion. In this
technology a symmetrizer is a sum of tangles on n strands (for a chosen integer n).
The tangles are made by summing over braid lifts of permutations in the symmetric
group on n letters, as indicated in Fig. 29. Each elementary braid is then expanded
by the bracket polynomial relation as indicated in Fig. 29 so that the resulting sum
consists of flat tangles without any crossings (these can be viewed as elements in the
Temperley–Lieb algebra). The projectors have the property that the concatenation of
a projector with itself is just that projector, and if you tie two lines on the top or the
bottom of a projector together, then the evaluation is zero. This general definition of
projectors is very useful for this theory. The two-strand projector is shown in Fig. 30.
Here the formula for that projector is particularly simple. It is the sum of two parallel
arcs and two turn-around arcs (with coefficient −1/d, with d = −A2 − A−2 is the
loop value for the bracket polynomial. Figure 30 also shows the recursion formula
for the general projector. This recursion formula is due to Jones and Wenzl and the
projector in this form, developed as a sum in the Temperley–Lieb algebra (see Sect. 9
of this paper), is usually known as the Jones–Wenzl projector.

The projectors are combinatorial analogs of irreducible representations of a group
(the original spin nets were based on SU (2), and these deformed nets are based on
the corresponding quantum group to SU(2)). As such the reader can think of them as
“particles”. The interactions of these particles are governed by how they can be tied
together into three-vertices. See Fig. 31. In Fig. 31 we show how to tie three projectors,
of a, b, c strands respectively, together to form a three-vertex. In order to accomplish
this interaction, we must share lines between them as shown in that figure so that there
are nonnegative integers i, j, k so that a = i + j, b = j + k, c = i + k. This is
equivalent to the condition that a+b+ c is even and that the sum of any two of a, b, c
is greater than or equal to the third. For example a + b ≥ c. One can think of the
vertex as a possible particle interaction where [a] and [b] interact to produce [c]. That
is, any two of the legs of the vertex can be regarded as interacting to produce the third
leg.

There is a basic orthogonality of three vertices as shown in Fig. 32.Here ifwe tie two
three-vertices together so that they form a “bubble” in the middle, then the resulting
network with labels a and b on its free ends is a multiple of an a-line (meaning a line
with an a-projector on it) or zero (if a is not equal to b). The multiple is compatible
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Fig. 32 Orthogonality of
trivalent vertices
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Fig. 33 Recoupling formula
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with the results of closing the diagram in the equation of Fig. 32 so the two free ends
are identified with one another. On closure, as shown in the figure, the left-hand side
of the equation becomes a Theta graph and the right-hand side becomes a multiple of
a “delta” where �a denotes the bracket polynomial evaluation of the a-strand loop
with a projector on it. The �(a, b, c) denotes the bracket evaluation of a theta graph
made from three trivalent vertices and labeled with a, b, c on its edges.

There is a recoupling formula in this theory in the form shown in Fig. 33. Here there
are “6-j symbols”, recoupling coefficients that can be expressed, as shown in Fig. 33,
in terms of tetrahedral graph evaluations and theta graph evaluations. The tetrahedral
graph is shown in Fig. 34. One derives the formulas for these coefficients directly from
the orthogonality relations for the trivalent vertices by closing the left-hand side of
the recoupling formula and using orthogonality to evaluate the right-hand side. This is
illustrated in Fig. 35. The reader should be advised that there are specific calculational
formulas for the theta and tetrahedral nets. These can be found in [44]. Here we are
indicating only the relationships and external logic of these objects (e.g. the specific
braiding formula of Fig. 36).

Finally, there is the braiding relation, as illustrated in Fig. 33.
With the braiding relation in place, this q-deformed spin network theory satisfies the

pentagon, hexagon and braiding naturality identities needed for a topological quantum
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Fig. 34 Tetrahedron network
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Fig. 36 Local braiding formula
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field theory. All these identities follow naturally from the basic underlying topological
construction of the bracket polynomial. One can apply the theory to many different
situations.
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9.1 Evaluations

In this section, we discuss the structure of the evaluations for �n and the theta and
tetrahedral networks. We refer to [44] for the details behind these formulas. Recall
that �n is the bracket evaluation of the closure of the n-strand projector, as illustrated
in Fig. 32. For the bracket variable A, one finds that

�n = (−1)n
A2n+2 − A−2n−2

A2 − A−2 .

One sometimes writes the quantum integer

[n] = (−1)n−1�n−1 = A2n − A−2n

A2 − A−2 .

If

A = eiπ/2r

where r is a positive integer, then

�n = (−1)n
sin((n + 1)π/r)

sin(π/r)
.

Here the corresponding quantum integer is

[n] = sin(nπ/r)

sin(π/r)
.

Note that [n+1] is a positive real number for n = 0, 1, 2, ...r −2 and that [r −1] = 0.
The evaluation of the theta net is expressed in terms of quantum integers by the

formula

�(a, b, c) = (−1)m+n+p [m + n + p + 1]![n]![m]![p]!
[m + n]![n + p]![p + m]!

where

a = m + p, b = m + n, c = n + p.

Note that

(a + b + c)/2 = m + n + p.

When A = eiπ/2r , the recoupling theory becomes finite with the restriction that
only three-vertices (labeled with a, b, c) are admissible when a + b+ c ≤ 2r − 4. All
the summations in the formulas for recoupling are restricted to admissible triples of
this form.
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Fig. 37 Modified three vertex a b
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9.2 Symmetry and unitarity

The formula for the recoupling coefficients given in Fig. 35 has less symmetry than is
actually inherent in the structure of the situation. By multiplying all the vertices by an
appropriate factor, we can reconfigure the formulas in this theory so that the revised
recoupling transformation is orthogonal, in the sense that its transpose is equal to its
inverse. This is a very useful fact. It means that when the resulting matrices are real,
then the recoupling transformations are unitary. We shall see particular applications
of this viewpoint later in the paper.

Figure 37 illustrates this modification of the three-vertex. Let Vert[a, b, c] denote
the original 3-vertex of the Temperley–Lieb recoupling theory. Let ModVert[a, b, c]
denote the modified vertex. Then we have the formula

ModVert[a, b, c] =
√√

�a�b�c√
�(a, b, c)

Vert[a, b, c].

Lemma For the bracket evaluation at the root of unity A = eiπ/2r the factor

f (a, b, c) =
√√

�a�b�c√
�(a, b, c)

is real and can be taken to be a positive real number for (a, b, c) admissible (i.e.,
a + b + c ≤ 2r − 4).

Proof By the results from the previous subsection,

�(a, b, c) = (−1)(a+b+c)/2�̂(a, b, c)

where �̂(a, b, c) is positive real, and

�a�b�c = (−1)(a+b+c)[a + 1][b + 1][c + 1]

where the quantum integers in this formula can be taken to be positive real. It follows
from this that

f (a, b, c) =
√√[a + 1][b + 1][c + 1]

�̂(a, b, c)
,

showing that this factor can be taken to be positive real. // �	
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Fig. 38 Modified bubble identity
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In Fig. 38, we show how this modification of the vertex affects the nonzero term of
the orthogonality of trivalent vertices (compare with Fig. 32). We refer to this as the
“modified bubble identity.” The coefficient in the modified bubble identity is

√
�b�c

�a
= (−1)(b+c−a)/2

√
[b + 1][c + 1]

[a + 1]

where (a, b, c) form an admissible triple. In particular, b + c − a is even, and hence
this factor can be taken to be real.

We rewrite the recoupling formula in this new basis and emphasize that the
recoupling coefficients can be seen (for fixed external labels a, b, c, d) as a matrix
transforming the horizontal “double-Y ” basis to a vertically disposed double-Y basis.
In Figs. 39, 40, and 41, we have shown the form of this transformation, using the
matrix notation

M[a, b, c, d]i j

for the modified recoupling coefficients. In Fig. 39, we derive an explicit formula
for these matrix elements. The proof of this formula follows directly from trivalent–
vertex orthogonality (See Figs. 32 and 35.), and is given in Fig. 39. The result shown
in Figs. 39 and 40 is the following formula for the recoupling matrix elements.

M[a, b, c, d]i j = ModTet

(
a b i
c d j

)
/
√

�a�b�c�d
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Fig. 39 Derivation of modified
recoupling coefficients

Σ=j

a
a

b
b

c c dd

i

k

Σ= Δ j δ j

k

k

=

d

= [ ]ModTet
a b
c d

i
a b
c d i j

=
b

c d

a
i j

Δ    Δ    Δ    Δ   a b c d

a b
c d i

a b
c d

i

j

a b c
Δ

Δ Δ
Δ

Δ Δ
j j

k

k k

Δ j

j

da b
c d

i

a b c
Δ

Δ Δ
Δ

Δ Δ
j j

j

Δ j
da b c

Δ
Δ Δ

Δ
Δ Δ

j j

Fig. 40 Modified recoupling
formula

a b
c d i jΣ=
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Fig. 41 Modified recoupling
matrix
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c d i j
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c d

a
i j
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M[a,b,c,d]i j
= a b

c d i j
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Fig. 42 Modified matrix
transpose
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c d
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ij
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a
i j

Δ    Δ    Δ    Δ   a b c d

a b
c d

T -1

==
where

√
�a�b�c�d is shorthand for the product

√
�a�b

� j

√
�c�d

� j
� j

= (−1)(a+b− j)/2(−1)(c+d− j)/2(−1) j
√

[a + 1][b + 1]
[ j + 1]

√
[c + 1][d + 1]

[ j + 1] [ j + 1]

= (−1)(a+b+c+d)/2
√[a + 1][b + 1][c + 1][d + 1]

In this form, since (a, b, j) and (c, d, j) are admissible triples, we see that this coef-
ficient can be taken to be real, and its value is independent of the choice of i and j .
The matrix M[a, b, c, d] is real-valued.

It follows from Fig. 33 (turn the diagrams by 90 degrees) that

M[a, b, c, d]−1 = M[b, d, a, c].

In Fig. 42 we illustrate the formula

M[a, b, c, d]T = M[b, d, a, c].

It follows from this formula that

M[a, b, c, d]T = M[a, b, c, d]−1.

Hence M[a, b, c, d] is an orthogonal, real-valued matrix.

Theorem In the Temperley–Lieb theory, we obtain unitary (in fact real orthogonal)
recoupling transformations when the bracket variable A has the form A = eiπ/2r for
r a positive integer. Thus we obtain families of unitary representations of the Artin
braid group from the recoupling theory at these roots of unity.

Proof The proof is given the discussion above. // �	
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In Sect. 11, we shall show explicitly how these methods work in the case of the
Fibonacci model where A = e3iπ/5.

10 Fibonacci particles

In this section and the next, we detail how the Fibonacci model for anyonic quantum
computing [57,74] can be constructed by using a version of the two-stranded bracket
polynomial and a generalization of Penrose spin networks. This is a fragment of the
Temperley–Lieb recoupling theory [44]. We already gave in the preceding sections a
general discussion of the theory of spin networks and their relationship with quantum
computing.

The Fibonacci model is a T QFT that is based on a single “particle” with two states
that we shall call the marked state and the unmarked state. The particle in the marked
state can interact with itself either to produce a single particle in the marked state, or to
produce a single particle in the unmarked state. The particle in the unmarked state has
no influence in interactions (an unmarked state interacting with any state S yields that
state S). One way to indicate these two interactions symbolically is to use a box, for
the marked state and a blank space for the unmarked state. Then one has two modes
of interaction of a box with itself:

1. Adjacency:

and
2. Nesting: .

With this convention, we take the adjacency interaction to yield a single box, and the
nesting interaction to produce nothing:

=

=

We take the notational opportunity to denote nothing by an asterisk (*). The syntactical
rules for operating the asterisk are that the asterisk is a stand-in for no mark at all and
that it can be erased or placed wherever it is convenient to do so. Thus

= ∗.

We shall make a recoupling theory based on this particle, but it is worth noting
some of its purely combinatorial properties first. The arithmetic of combining boxes
(standing for acts of distinction) according to these rules has been studied and formal-
ized in [78] and correlated with Boolean algebra and classical logic. Here within and
next to are ways to refer to the two sides delineated by the given distinction. From this
point of view, there are two modes of relationship (adjacency and nesting) that arise
at once in the presence of a distinction.
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Fig. 43 Fibonacci trees
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P
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From here on, we shall denote the Fibonacci particle by the letter P . Thus the two
possible interactions of P with itself are as follows.

1. P, P −→ ∗
2. P, P −→ P

In Fig. 43, we indicate in small tree diagrams the two possible interactions of the
particle P with itself. In the first interaction, the particle vanishes, producing the
asterix. In the second interaction, the particle a single copy of P is produced. These
are the two basic actions of a single distinction relative to itself, and they constitute
our formalism for this very elementary particle.

In Fig. 43, we have indicated the different results of particle processes where we
begin with a left-associated tree structure with three branches, all marked and then four
branches all marked. In each case, we demand that the particles interact successively
to produce an unmarked particle in the end, at the root of the tree. More generally
one can consider a left-associated tree with n upward branches and one root. Let
T (a1, a2, . . . , an : b) denote such a tree with particle labels a1, . . . , an on the top and
root label b at the bottom of the tree. We consider all possible processes (sequences
of particle interactions) that start with the labels at the top of the tree, and end with
the labels at the bottom of the tree. Each such sequence is regarded as a basis vector
in a complex vector space

V a1,a2,...,an
b

associated with the tree. In the case where all the labels are marked at the top and the
bottom label is unmarked, we shall denote this tree by

V 111···11
0 = V (n)

0

where n denotes the number of upward branches in the tree. We see from Fig. 43 that
the dimension of V (3)

0 is 1, and that

dim(V (4)
0 ) = 2.

123



Braiding, Majorana fermions, Fibonacci particles and… Page 59 of 81 201

Fig. 44 Fibonacci sequence

*

**

* ** * *PPPPP PPPP P

P

PP P P

Tree of squences with no occurence of * *

This means that V (4)
0 is a natural candidate in this context for the two-qubit space.

Given the tree T (1, 1, 1, . . . , 1 : 0) (nmarked states at the top, an unmarked state at
the bottom), a process basis vector in V (n)

0 is in direct correspondence with a string of
boxes and asterisks (1’s and 0’s) of length n−2 with no repeated asterisks and ending
in a marked state. See Fig. 43 for an illustration of the simplest cases. It follows from
this that

dim(V (n)
0 ) = fn−2

where fk denotes the k-th Fibonacci number:

f0 = 1, f1 = 1, f2 = 2, f3 = 3, f4 = 5, f5 = 8, . . .

where

fn+2 = fn+1 + fn .

The dimension formula for these spaces follows from the fact that there are fn
sequences of length n − 1 of marked and unmarked states with no repetition of an
unmarked state. This fact is illustrated in Fig. 44.

11 The Fibonacci recouplingmodel

We now show how to make a model for recoupling the Fibonacci particle by using
the Temperley Lieb recoupling theory and the bracket polynomial. Everything we do
in this section will be based on the 2-projector, its properties and evaluations based
on the bracket polynomial model for the Jones polynomial. While we have outlined
the general recoupling theory based on the bracket polynomial in earlier sections of
this paper, the present section is self-contained, using only basic information about the
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Fig. 45 2-Projector
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= = = 0

= 0

= =

=

− 1/δ

−(1/δ)δ− 1/δ

− 1/δ

Fig. 46 Fibonacci particle as
2-projector

=

Forbidden
Process

bracket polynomial, and the essential properties of the 2-projector as shown in Fig. 45.
In this figure, we state the definition of the 2-projector, list its two main properties (the
operator is idempotent and a self-attached strand yields a zero evaluation), and give
diagrammatic proofs of these properties.

In Fig. 46, we show the essence of the Temperley–Lieb recoupling model for the
Fibonacci particle. The Fibonacci particle is, in this mathematical model, identified
with the 2-projector itself. As the reader can see from Fig. 46, there are two basic
interactions of the 2-projector with itself, one giving a 2-projector, the other giving
nothing. This is the pattern of self-interaction of the Fibonacci particle. There is a
third possibility, depicted in Fig. 46, where two 2-projectors interact to produce a 4-
projector. We could remark at the outset, that the 4-projector will be zero if we choose
the bracket polynomial variable A = ei3π/5. Rather than start there, we will assume
that the 4-projector is forbidden and deduce (below) that the theory has to be at this
root of unity.
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Fig. 47 Theta, delta, and
tetrahedron

= =Θ =

=

==Δ

Τ

Fig. 48 LoopEvaluation-1

= =

= = 0−1/δ

Note that in Fig. 46 we have adopted a single strand notation for the particle inter-
actions, with a solid strand corresponding to the marked particle, a dotted strand (or
nothing) corresponding to the unmarked particle. A dark vertex indicates either an
interaction point, or it may be used to indicate the single strand is shorthand for two
ordinary strands. Remember that these are all shorthand expressions for underlying
bracket polynomial calculations.

In Figs. 47, 48, 49, 50, 51 and 52, we have provided complete diagrammatic calcu-
lations of all of the relevant small nets and evaluations that are useful in the two-strand
theory that is being used here. The reader may wish to skip directly to Fig. 53 where
we determine the form of the recoupling coefficients for this theory. We will discuss
the resulting algebra below.

For the reader who does not want to skip the next collection of figures, here is a
guided tour. Figure 47 illustrates three basic nets in case of two strands. These are the
theta, delta and tetrahedron nets. In this figure we have shown the decomposition on
the theta and delta nets in terms of 2-projectors. The Tetrahedron net will be similarly
decomposed in Figs. 51 and 52. The theta net is denoted �, the delta by �, and the
tetrahedron by T . In Fig. 48 we illustrate how a pedant loop has a zero evaluation. In
Fig. 49, we use the identity in Fig. 48 to show how an interior loop (formed by two
trivalent vertices) can be removed and replaced by a factor of �/�. Note how, in this
figure, line two proves that one network is a multiple of the other, while line three
determines the value of the multiple by closing both nets.
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Fig. 49 LoopEvaluation-2
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= − 1/δ = (δ − 1/δ)

(δ − 1/δ) (δ − 1/δ) δ

=Δ δ    − 12

= − 1/δ

= (δ − 1/δ) δ2 − Δ/δΘ

Fig. 50 Calculate theta, delta

Figure 50 illustrates the explicit calculation of the delta and theta nets. The figure
begins with a calculation of the result of closing a single strand of the 2-projector. The
result is a single stand multiplied by (δ − 1/δ) where δ = −A2 − A−2, and A is the
bracket polynomial parameter. We then find that

� = δ2 − 1
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==Τ = = − 1/δ

= − Θ/δ = − 1/δ − Θ/δ

= − (1/δ) − Θ/δ(δ − 1/δ)    δ2

Fig. 51 Calculate tetrahedron-1

= − (1/δ) − Θ/δ(δ − 1/δ)    δ2

= − 1/δ − Θ/δ− (δ − 1/δ)    2

Τ

= (δ − 1/δ)    δ3 − (1/δ)Θ − Θ/δ− (δ − 1/δ)    2

= (δ − 1/δ)    (δ    − 2)    −  2Θ/δ22

Fig. 52 Calculate tetrahedron-2

and

� = (δ − 1/δ)2δ − �/δ = (δ − 1/δ)(δ2 − 2).

Figures 51 and 52 illustrate the calculation of the value of the tetrahedral network T .
The reader should note the first line of Fig. 51 where the tetrahedral net is translated
into a pattern of 2-projectors, and simplified. The rest of these two figures are a
diagrammatic calculation, using the expansion formula for the 2-projector. At the end
of Fig. 52, we obtain the formula for the tetrahedron

T = (δ − 1/δ)2(δ2 − 2) − 2�/δ.
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Fig. 53 Recoupling for
2-projectors
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Figure 53 is the key calculation for this model. In this figure we assume that the
recoupling formulas involve only 0 and 2 strands, with 0 corresponding to the null
particle and 2 corresponding to the 2-projector. (2+ 2 = 4 is forbidden as in Fig. 46.)
From this assumption, we calculate that the recoupling matrix is given by

F =
(
a b
c d

)
=

(
1/� �/�

�/�2 T�/�2

)

Figures 54 and 55 work out the exact formulas for the braiding at a three-vertex in
this theory. When the 3-vertex has three marked lines, then the braiding operator is
multiplication by −A4, as in Fig. 54. When the 3-vertex has two marked lines, then
the braiding operator is multiplication by A8, as shown in Fig. 55.

Notice that it follows from the symmetry of the diagrammatic recoupling formulas
of Fig. 53 that the square of the recoupling matrix F is equal to the identity. That is,

(
1 0
0 1

)
= F2 =

(
1/� �/�

�/�2 T�/�2

) (
1/� �/�

�/�2 T�/�2

)

=
(

1/�2 + 1/� 1/� + T�2/�3

�/�3 + T /(��) 1/� + �2T 2/�4

)
.

Thus we need the relation

1/� + 1/�2 = 1.
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Fig. 54 Braiding at the
three-vertex
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This is equivalent to saying that

�2 = 1 + �,

a quadratic equation whose solutions are

� = (1 ± √
5)/2.
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Furthermore, we know that

� = δ2 − 1

from Fig. 50. Hence

�2 = � + 1 = δ2.

We shall now specialize to the case where

� = δ = (1 + √
5)/2,

leaving the other cases for the exploration of the reader. We then take

A = e3π i/5

so that

δ = −A2 − A−2 = −2cos(6π/5) = (1 + √
5)/2.

Note that δ − 1/δ = 1. Thus

� = (δ − 1/δ)2δ − �/δ = δ − 1.

and

T = (δ − 1/δ)2(δ2 − 2) − 2�/δ = (δ2 − 2) − 2(δ − 1)/δ

= (δ − 1)(δ − 2)/δ = 3δ − 5.

Note that

T = −�2/�2,

from which it follows immediately that

F2 = I .

This proves that we can satisfy this model when � = δ = (1 + √
5)/2.

For this specialization, we see that the matrix F becomes

F =
(

1/� �/�

�/�2 T�/�2

)
=

(
1/� �/�

�/�2 (−�2/�2)�/�2

)
=

(
1/� �/�

�/�2 −1/�

)

This version of F has square equal to the identity independent of the value of �, so
long as �2 = � + 1.
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The final adjustment Our last version of F suffers from a lack of symmetry. It is not
a symmetric matrix, and hence not unitary. A final adjustment of the model gives this
desired symmetry. Consider the result of replacing each trivalent vertex (with three
2-projector strands) by a multiple by a given quantity α. Since the � has two vertices,
it will be multiplied by α2. Similarly, the tetrahedron T will be multiplied by α4. The
� and the δ will be unchanged. Other properties of the model will remain unchanged.
The new recoupling matrix, after such an adjustment is made, becomes

(
1/� �/α2�

α2�/�2 −1/�

)

For symmetry, we require

�/(α2�) = α2�/�2.

We take

α2 =
√

�3/�.

With this choice of α we have

�/(α2�) = ��/(�
√

�3) = 1/
√

�.

Hence the new symmetric F is given by the equation

F =
(

1/� 1/
√

�

1/
√

� −1/�

)
=

(
τ

√
τ√

τ −τ

)

where � is the golden ratio and τ = 1/�. This gives the Fibonacci model. Using
Figs. 54 and 55, we have that the local braiding matrix for the model is given by the
formula below with A = e3π i/5.

R =
(−A4 0

0 A8

)
=

(
e4π i/5 0
0 −e2π i/5

)
.

The simplest example of a braid group representation arising from this theory is the
representation of the three strand braid group generated by S1 = R and S2 = FRF
(Remember that F = FT = F−1. ). The matrices S1 and S2 are both unitary, and
they generate a dense subset of the unitary group SU (2), supplying the first part of
the transformations needed for quantum computing.

12 Quantum computation of colored Jones polynomials and the
Witten–Reshetikhin–Turaev invariant

In this section we make some brief comments on the quantum computation of colored
Jones polynomials. This material will be expanded in a subsequent publication.

123



201 Page 68 of 81 L. H. Kauffman, S. J. Lomonaco

Fig. 56 Evaluation of the plat
closure of a braid
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First, consider Fig. 56. In that figure we illustrate the calculation of the evaluation
of the (a) - colored bracket polynomial for the plat closure P(B) of a braid B. The
reader can infer the definition of the plat closure from Fig. 56. One takes a braid on an
even number of strands and closes the top strands with each other in a row of maxima.
Similarly, the bottom strands are closed with a row of minima. It is not hard to see that
any knot or link can be represented as the plat closure of some braid. Note that in this
figure we indicate the action of the braid group on the process spaces corresponding
to the small trees attached below the braids.

The (a)—colored bracket polynomial of a link L , denoted< L >a, is the evaluation
of that link where each single strand has been replaced by a parallel strands and the
insertion of Jones–Wenzl projector (as discussed in Sect. 9). We then see that we can
use our discussion of the Temperley–Lieb recoupling theory as in Sects. 7,8 and 9
to compute the value of the colored bracket polynomial for the plat closure PB. As
shown in Fig. 56, we regard the braid as acting on a process space Va,a,...,a

0 and take
the case of the action on the vector v whose process space coordinates are all zero.
Then the action of the braid takes the form

Bv(0, . . . , 0) = �x1,...,xn B(x1, . . . , xn)v(x1, . . . , xn)

where B(x1, . . . , xn) denotes the matrix entries for this recoupling transformation and
v(x1, . . . , xn) runs over a basis for the space V a,a,...,a

0 . Here n is even and equal to
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the number of braid strands. In the figure we illustrate with n = 4. Then, as the figure
shows, when we close the top of the braid action to form PB, we cut the sum down
to the evaluation of just one term. In the general case, we will get

< PB >a= B(0, . . . , 0)�n/2
a .

The calculation simplifies to this degree because of the vanishing of loops in the
recoupling graphs. The vanishing result is stated in Fig. 56, and it is proved in the case
a = 2 in Fig. 48.

The colored Jones polynomials are normalized versions of the colored bracket
polynomials, differing just by a normalization factor.

In order to consider quantum computation of the colored bracket or colored Jones
polynomials, we therefore can consider quantum computation of the matrix entries
B(0, . . . , 0). These matrix entries in the case of the roots of unity A = eiπ/2r and
for the a = 2 Fibonacci model with A = e3iπ/5 are parts of the diagonal entries
of the unitary transformation that represents the braid group on the process space
V a,a,...,a
0 .We can obtain these matrix entries by using the Hadamard test as described

in Sect. 6. As a result, we get relatively efficient quantum algorithms for the colored
Jones polynomials at these roots of unity, in essentially the same framework as we
described in Sect. 6, but for braids of arbitrary size. The computational complexity of
these models is essentially the same as the models for the Jones polynomial discussed
in [4]. We reserve discussion of these issues to a subsequent publication.

It is worth remarking here that these algorithms give not only quantum algorithms
for computing the colored bracket and Jones polynomials, but also for computing the
Witten–Reshetikhin–Turaev (WRT ) invariants at the above roots of unity. The reason
for this is that the WRT invariant, in unnormalized form, is given as a finite sum of
colored bracket polynomials:

WRT (L) = �r−2
a=0�a < L >a,

and so the same computation as shown in Fig. 56 applies to the WRT . This means
that we have, in principle, a quantum algorithm for the computation of the Witten
functional integral [82] via this knot-theoretic combinatorial topology. It would be very
interesting to understand a more direct approach to such a computation via quantum
field theory and functional integration.

Finally, we note that in the case of the Fibonacci model, the (2)-colored bracket
polynomial is a special case of the Dubrovnik version of the Kauffman polynomial
[48]. See Fig. 57 for diagrammatics that resolve this fact. The skein relation for the
Dubrovnik polynomial is boxed in this figure. Above the box, we show how the
double strands with projectors reproduce this relation. This observation means that in
the Fibonacci model, the natural underlying knot polynomial is a special evaluation of
the Dubrovnik polynomial, and the Fibonacci model can be used to perform quantum
computation for the values of this invariant.
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δA4 -4= A + +

δA 4-4= A+ +

- = 4A A-4-( ) -( )

- = 4A A-4-( ) -( )

= A8

Fig. 57 Dubrovnik polynomial specialization at two strands

Fig. 58 Fibonacci particle
interaction

*

P P P P

P

13 A direct construction of the Fibonacci model

In Sect. 5 of this paper, we give elementary constructions for unitary representations
of the three strand braid group in U (2). In Sect. 6 we show how to use unitary rep-
resentations of the three strand brand group to devise a quantum computation for the
Jones polynomial. In this section, we return to these considerations, and show how
to construct the Fibonacci model by elementary means, without using the recoupling
theory that we have explained in the previous sections of the paper. This final approach
is significant in that it shows an even closer relationship of the Fibonacci model with
the Temperley–Lieb algebra representation associated with the Jones polynomial.

The constructions in this section are based on the combinatorics of the Fibonacci
model. While we do not assume the recoupling theory of the previous sections, we
essentially reconstruct its patterns for the particular purposes of the Fibonacci model.
Recall that in the Fibonacci model we have a (mathematical) particle P that interacts
with itself either to produce P or to produce a neutral particle ∗. If X is any particle,
then ∗ interacts with X to produce X . Thus ∗ acts as an identity transformation. These
rules of interaction are illustrated in Figs. 43, 44, 58 and 59.
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Fig. 59 Fibonacci particle P

*

P P

P

P P

*

P

P

P* *

*

**

Fig. 60 Local braiding

λ

=

*

P P

P

P

P
*

P

P

μ

=

P P

P

The braiding of two particles is measured in relation to their interaction. In Fig. 60
we illustrate braiding of P with itself in relation to the two possible interactions of P
with itself. If P interacts to produce ∗, then the braiding gives a phase factor of μ. If
P interacts to produce P , then the braiding gives a phase factor of λ. We assume at the
outset that μ and λ are unit complex numbers. One should visualize these particles as
moving in a plane and the diagrams of interaction are either creations of two particles
from one particle, or fusions of two particles to a single particle (depending on the
choice of temporal direction). Thus we have a braidingmatrix for these “local” particle
interactions:

R =
(

μ 0
0 λ

)

written with respect to the basis {|∗〉, |P〉} for this space of particle interactions.
We want to make this braiding matrix part of a larger representation of the braid

group. In particular, we want a representation of the three-strand braid group on the
process space V3 illustrated in Fig. 3. This space starts with three P particles and
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Fig. 61 Three strands at
dimension two

P P P

x
P

|x> : |*>   or   |P>

Fig. 62 Recoupling formula P P P

P

P P P

P

P P P P P P

P P

P P P P P P

P P

*
*

*

P

PP

F

F

a b

b -a

+

+

considers processes associated in the pattern (PP)P with the stipulation that the end
product is P . The possible pathways are illustrated in Fig. 61. They correspond to
(PP)P −→ (∗)P −→ P and (PP)P −→ (P)P −→ P . This process space has
dimension two and can support a second braiding generator for the second two strands
on the top of the tree. In order to articulate the second braiding, we change basis to
the process space corresponding to P(PP) as shown in Figs. 62 and 63. The change
of basis is shown in Fig. 63 and has matrix F as shown below. We want a unitary
representation ρ of three-strand braids so that ρ(σ1) = R and ρ(σ2) = S = F−1RF .
See Fig. 63. We take the form of the matrix F as follows:

F =
(
a b
b −a

)

where a2 + b2 = 1 with a and b real. This form of the matrix for the basis change is
determined by the requirement that F is symmetric with F2 = I . The symmetry of
the change of basis formula essentially demands that F2 = I . If F is real, symmetric
and F2 = I , then F is unitary. Since R is unitary we see that S = FRF is also unitary.
Thus, if F is constructed in this way, then we obtain a unitary representation of B3.

Now we try to simultaneously construct an F and construct a representation of the
Temperley–Lieb algebra. We begin by noting that

R =
(

μ 0
0 λ

)
=

(
λ 0
0 λ

)
+

(
μ − λ 0
0 0

)
=

(
λ 0
0 λ

)
+ λ−1

(
δ 0
0 0

)

where δ = λ(μ − λ). Thus R = λI + λ−1U where U =
(

δ 0
0 0

)
so that U 2 = δU .

For the Temperley–Lieb representation, we want δ = −λ2 − λ−2. Hence we need
−λ2 −λ−2 = λ(μ−λ),which implies that μ = −λ−3. With this restriction on μ,we
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Fig. 63 Change of basis

a4

F

x

x
λ

F
-1

P P P

P

P P P

P

P P P P P P

P

P

P P PP P P

P

RS = F   RF-1

(x)R

have the Temperley–Lieb representation and the corresponding unitary braid group
representation for two-strand braids and the two-strand Temperley–Lieb algebra.

Now we can go on to B3 and T L3 via S = FRF = λI + λ−1V with V = FUF .
We must examine V 2, UVU and VUV . We find that

V 2 = FUFFUF = FU 2F = δFUF = δV ,

as desired and

V = FUF =
(
a b
b −a

) (
δ 0
0 0

) (
a b
b −a

)
= δ

(
a2 ab
ab b2

)
.

Thus V 2 = V and since V = δ|v〉〈v| and U = δ|w〉〈w| with w = (1, 0)T and
v = Fw = (a, b)T (T denotes transpose), we see that

VUV = δ3|v〉〈v|w〉〈w|v〉〈v| = δ3a2|v〉〈v| = δ2a2V .

Similarly UVU = δ2a2U . Thus, we need δ2a2 = 1 and so we shall take a = δ−1.
With this choice, we have a representation of the Temperley–Lieb algebra T L3 so that
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Fig. 64 Algebra for a
two-dimensional process space

P

*
Use

Use

μ.

λ.

Braiding

Use F.

Use F.

*

P

Temperley-Lieb

Multiply by δ.

Multiply by 0.

Use V.

Use V.

x

P P P

P

Two Dimensional Process Space

|x>

σ1 = AI + A−1U and σ2 = AI + A−1V gives a unitary representation of the braid
group when A = λ = eiθ and b = √

1 − δ−2 is real. This last reality condition is
equivalent to the inequality

cos2(2θ) ≥ 1

4
,

which is satisfied for infinitely many values of θ in the ranges

[0, π/6] ∪ [π/3, 2π/3] ∪ [5π/6, 7π/6] ∪ [4π/3, 5π/3].

With these choices we have

F =
(
a b
b −a

)
=

(
1/δ

√
1 − δ−2√

1 − δ−2 −1/δ

)

real and unitary, and for the Temperley–Lieb algebra,

U =
(

δ 0
0 0

)
, V = δ

(
a2 ab
ab b2

)
=

(
a b
b δb2

)
.

Now examine Fig. 64. Here we illustrate the action of the braiding and the
Temperley–Lieb Algebra on the first Fibonacci process space with basis {|∗〉, |P〉}.
Here we have σ1 = R, σ2 = FRF and U1 = U ,U2 = V as described above. Thus
we have a representation of the braid group on three strands and a representation of
the Temperley–Lieb algebra on three strands with no further restrictions on δ.

So far, we have arrived at exactly the 3-strand braid representations that we used
in our papers [42,49] giving a quantum algorithm for the Jones polynomial for three-
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Fig. 65 A five-dimensional
process space
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Braiding Temperley-Lieb

Use V.

Use V.

Multiply by δ.

Multiply by 0.

Multiply by 0.

Five Dimensional Process Space

x y z
|xyz>

Fig. 66 Algebra for a five-dimensional process space

strand braids. In this paper, we are working in the context of the Fibonacci process
spaces and so we wish to see how to make a representation of the Temperley–Lieb
algebra to this model as a whole, not restricting ourselves to only three strands. The
generic case to consider is the action of the Temperley–Lieb algebra on process spaces
of higher dimension as shown in Figs. 65 and 66. In Fig. 66 we have illustrated the
triplets from the previous figure as part of a possibly larger tree and have drawn the
strings horizontally rather than diagonally. In this figure we have listed the effects of
braiding the vertical strands 3 and 4. We see from this figure that the action of the
Temperley–Lieb algebra must be as follows:

U3|P ∗ P〉 = a|P ∗ P〉 + b|PPP〉,
U3|PPP〉 = b|P ∗ P〉 + δb2|PPP〉,
U3| ∗ P∗〉 = δ| ∗ P∗〉,
U3| ∗ PP〉 = 0,

U3|PP∗〉 = 0.
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Here we have denoted this action asU3 because it connotes the action on the third and
fourth vertical strands in the sequences shown in Fig. 66. Note that in a larger sequence,
we can recognize Uj by examining the triplet surrounding the j − 1-th element in
the sequence, just as the pattern above is governed by the elements surrounding the
second element in the sequence. For simplicity, we have only indicated three elements
in the sequences above. Note that in a sequence for the Fibonacci process there are
never two consecutive appearances of the neutral element ∗.

We shall refer to a sequence of ∗ and P as a Fibonacci sequence if it contains no
consecutive appearances of ∗. Thus |PP ∗ P ∗ P ∗ P〉 is a Fibonacci sequence. In
working with this representation of the braid group and Temperley–Lieb algebra, it
is convenient to assume that the ends of the sequence are flanked by P as in Figs. 65
and 66 for sequences of length 3. It is convenient to leave out the flanking P’s when
notating the sequence.

Using these formulas we can determine conditions on δ such that this is a repre-
sentation of the Temperley–Lieb algebra for all Fibonacci sequences. Consider the
following calculation:

U4U3U4|PPPP〉 = U3U2(b|PP ∗ P〉 + δb2|PPPP〉)
= U4(bU3|PP ∗ P〉 + δb2U3|PPPP〉)
= U4(0 + δb2(b|P ∗ PP〉 + δb2|PPPP〉)
= δb2(bU4|P ∗ PP〉 + δb2U4|PPPP〉)
= δ2b4U4|PPPP〉.

Thus we see that in order for U4U3U4 = U4, we need that δ2b4 = 1.
It is easy to see that δ2b4 = 1 is the only remaining condition needed to make

sure that the action of the Temperley–Lieb algebra extends to all Fibonacci Model
sequences.

Note that δ2b4 = δ2(1 − δ−2)2 = (δ − 1/δ)2. Thus we require that

δ − 1/δ = ±1.

When δ − 1/δ = 1, we have the solutions δ = 1±√
5

2 . However, for the reality of F

we require that 1 − δ−2 ≥ 0, ruling out the choice δ = 1−√
5

2 . When δ − 1/δ = −1,

we have the solutions δ = −1±√
5

2 . This leaves only δ = ±φ where φ = 1+√
5

2 (the
Golden Ratio) as possible values for δ that satisfy the reality condition for F . Thus,
up to a sign, we have arrived at the well-known value of δ = φ (the Fibonacci model)
as essentially the only way to have an extension of this form of the representation of
the Temperley–Lieb algebra for n strands. Let’s state this positively as a theorem.

Fibonacci theorem Let Vn+2 be the complex vector space with basis {|x1x2 · · · xn〉}
where each xi equals either P or ∗ and there do not occur two consecutive appearances
of ∗ in the sequence {x1, . . . xn}. We refer to this basis for Vn as the set of Fibonacci
sequences of length n. Then the dimension of Vn is equal to fn+1 where fn is the
nth Fibonacci number: f0 = f1 = 1 and fn+1 = fn + fn−1. Let δ = ±φ where

123



Braiding, Majorana fermions, Fibonacci particles and… Page 77 of 81 201

φ = 1+√
5

2 . Let a = 1/δ and b = √
1 − a2. Then the Temperley–Lieb algebra on

n + 2 strands with loop value δ acts on Vn via the formulas given below. First we give
the left-end actions.

U1| ∗ x2x3 · · · xn〉 = δ| ∗ x2x3 · · · xn〉,
U1|Px2x3 · · · xn〉 = 0,

U2| ∗ Px3 · · · xn〉 = a| ∗ Px3 · · · xn〉 + b|PPx3 · · · xn〉,
U2|P ∗ x3 · · · xn〉 = 0,

U2|PPx3 · · · xn〉 = b| ∗ Px3 · · · xn〉 + δb2|PPx3 · · · xn〉.

Then we give the general action for the middle strands.

Ui |x1 · · · xi−3P ∗ Pxi+1 · · · xn〉 = a|x1 · · · xi−3P ∗ Pxi+1 · · · xn〉
+b|x1 · · · xi−3PPPxi+1 · · · xn〉,

Ui |x1 · · · xi−3PPPxi+1 · · · xn〉 = b|x1 · · · xi−3P ∗ Pxi+1 · · · xn〉
+δb2|x1 · · · xi−3PPPxi+1 · · · xn〉,

Ui |x1 · · · xi−3 ∗ P ∗ xi+1 · · · xn〉 = δ|x1 · · · xi−3 ∗ P ∗ xi+1 · · · xn〉,
Ui |x1 · · · xi−3 ∗ PPxi+1 · · · xn〉 = 0,

Ui |x1 · · · xi−3PP ∗ xi+1 · · · xn〉 = 0.

Finally, we give the right-end action.

Un+1|x1 · · · xn−2 ∗ P〉 = 0,

Un+1|x1 · · · xn−2P∗〉 = 0,

Un+1|x1 · · · xn−2PP〉 = b|x1 · · · xn−2P∗〉 + δb2|x1 · · · xn−2PP〉.

Remark Note that the left- and right-end Temperley–Lieb actions depend on the same
basic pattern as the middle action. The Fibonacci sequences |x1x2 · · · xn〉 should be
regarded as flanked left and right by P’s just as in the special cases discussed prior to
the proof of the Fibonacci theorem.

Corollary With the hypotheses of Theorem 2, we have a unitary representation of the
Artin Braid group Bn+2 to T Ln+2, ρ : Bn+2 −→ T Ln+2 given by the formulas

ρ(σi ) = AI + A−1Ui ,

ρ(σ−1
i ) = A−1 I + AUi ,

where A = e3π i/5 where the Ui connote the representation of the Temperley–Lieb
algebra on the space Vn+2 of Fibonacci sequences as described in the theorem above.

Remark The theorem and corollary give the original parameters of the Fibonacci
model and shows that this model admits a unitary representation of the braid group
via a Jones representation of the Temperley–Lieb algebra.
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In the original Fibonacci model [52], there is a basic non-trivial recoupling matrix
F .

F =
(

1/δ 1/
√

δ

1/
√

δ −1/δ

)
=

(
τ

√
τ√

τ −τ

)

where δ = 1+√
5

2 is the golden ratio and τ = 1/δ. The local braiding matrix is given
by the formula below with A = e3π i/5.

R =
(
A8 0
0 −A4

)
=

(
e4π i/5 0
0 −e2π i/5

)
.

This is exactly what we get from our method by using δ = 1+√
5

2 and A = e3π i/5.
Just as we have explained earlier in this paper, the simplest example of a braid group
representation arising from this theory is the representation of the three strand braid
group generated by σ1 = R and σ2 = FRF (Remember that F = FT = F−1).
The matrices σ1 and σ2 are both unitary, and they generate a dense subset of SU (2),
supplying the local unitary transformations needed for quantum computing. The full
braid group representation on the Fibonacci sequences is computationally universal
for quantum computation. In our earlier paper [52] and in the previous sections of the
present work, we gave a construction for the Fibonacci model based on Temperley–
Lieb recoupling theory. In this section, we have reconstructed the Fibonacci model
on the more elementary grounds of the representation of the Temperley–Lieb algebra
summarized in the statement of the Fibonacci theorem and its Corollary.
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