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Abstract
In this paper, a quantum color image encryption scheme based on coupled hyper-
chaotic Lorenz system with three impulse injections is proposed. Firstly, in order to
enhance the complexity of trajectory, three impulse signals values are injected into
coupled hyper-chaotic Lorenz system during iterations. Then, six sequences generated
from this system are used to encrypt red, green and blue components of the quantum
color original image by XOR operations and right cyclic shift operations. Six initial
values and three impulse signals values are used as keys, which could reduce the bur-
den of keys transmission and make the cryptosystem own a key space large enough
to resist exhaustive attack, even the attack from a quantum computer. Numerical sim-
ulations demonstrate that the proposed encryption scheme has a good feasibility and
effectiveness for protecting quantum color images and is more secure in comparison
with other encryption algorithms.

Keywords Quantum color image encryption · Quantum computation · Coupled
hyper-chaotic Lorenz system · Impulse injection · Quantum color image
representation

1 Introduction

With the development of multimedia information technology, information security
issues are gradually put on the agenda. Image is one of the important tools of carrying
information, and its security has been widely studied [1–3]. Especially because of
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the unique characteristics of the chaotic system, such as high sensitivity, topological
transitivity, and pseudorandomness, a series of image encryption schemes based on
chaotic system have been proposed [4–7].

However, short-period behavior of chaotic system after too many times iteration
can lead to degeneration of dynamics [8]. Fortunately, this problem can be solved by
impulse injection during the iteration process [9], because chaotic system is extremely
sensitive to the initial conditions and a tiny deviation in iterating can result in sig-
nificantly different trajectory. The injection times can be determined by the size
of original image, and the injection moments and injection values can be random
numbers.

With the rapid development of network technology, multimedia communication
based on Internet is of increasing importance. According to random classical compu-
tations, N data need N steps of loading operations for a single processor [10], which
reduces the computational efficiency and results in the bottleneck of classical com-
puters. Nowadays, quantum computation is becoming a potentially effective tool to
meet the high real-time computational requirements [11,12]. In 1982, Feynman first
presented a computation model named quantum computers based on the principles of
quantumphysics, which seemsmore powerful than classical ones [13]. Until the arrival
of practical quantum computers, the first task in quantum image processing is the con-
struction of a pattern for capturing and storing the images on quantum computers. A
great number of research results concerning quantum image representation exist in the
literature, i.e., qubit lattice [14], entangled image [15], RealKet [16], a flexible repre-
sentation for quantum images (FRQI) [17], a multi-channel representation of quantum
image (MCRQI) [18], a normal arbitrary quantum superposition state (NASS) [19], a
quantum representation for log-polar images [20], a novel enhanced quantum represen-
tation (NEQR) [21] and a novel quantum representation of color digital images (NCQI)
[22].

Consequently, some quantum image encryption algorithms were developed to
secure quantum images [23–34]. In detail, in 2013, based on quantum image geomet-
ric transformations, Zhou et al. [23] proposed an encryption algorithm for quantum
image. The same year, in order to solve the drawbacks of the optical encryption sys-
tems and combine the merits of quantum cryptography, Yang et al. [24] proposed a
novel image encryption scheme based on QFT and DRPE. Immediately afterward, in
2014, Yang et al. put forward a quantum cryptographic algorithm for color images
using quantum Fourier transform and double random-phase encoding, which can be
realized by performing two secret random-phase encoding operations, respectively, in
the input and the QFT planes [25]. By using image correlation decomposition, Hua
et al. introduced a quantum image encryption algorithm in [26]. Besides, based on
generalized affine transform, quantum image encryption schemes in [27,29,32] were
presented. In the years of 2015 and2016, basedonquantumwalks andone-dimensional
quantum cellular automata, Yang et al. [28,30] proposed two kinds of encryption algo-
rithms, respectively. Based on hyper-chaotic system and QFT, Tan et al. [33] proposed
a quantum color image encryption algorithm. In 2017, Li and Zhao [34] proposed
a simple encryption algorithm for quantum color image by using controlled rotation
gates.
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However, most of these schemes are proposed for quantum gray images. Out of
the ordinary, schemes in [25,33,34] are proposed to encrypt quantum color images.
Through our analysis, they are found to have some drawbacks. In [25,33], the color
information of each pixel is encoded by three qubits |r〉, |g〉, |b〉 that represent the three
primary colors of red, green and blue, respectively. However, the color values of the
pixels are encoded with probability amplitude of qubits. By the influence of quantum
states collapse, during themeasurement, thismethod is difficult to obtain accurate pixel
values. In [34], 24 qubits are employed to represent the pixel color values of each pixel,
which makes the scheme free from the influence of quantum states collapse. However,
for a 2n×2n quantum color original image, the secret key is a vector of length 2n×2n×
24, which is more likely to make the keys too large to distribute, store and memorize.
In view of the above, we propose a novel quantum color image encryption scheme. In
our scheme, we use the NCQI model, the same as the one used in [34], to represent the
quantum color original image, in which 24 qubits are employed to represent the pixel
color scale values of each pixel. Firstly, three impulse signals are injected into coupled
hyper-chaotic Lorenz system during iterations to enhance the complexity of trajectory.
Then, six sequences generated are used to encrypt the red, green and blue components
byXORoperations and right cyclic shift operations. Six initial values and three impulse
signals values are used as keys, which could reduce the burden of keys transmission
and make the cryptosystem own a key space large enough to resist exhaustive attack,
even the attack from a quantum computer. Numerical simulations demonstrate that the
proposed encryption scheme has a good feasibility and effectiveness for protecting
quantum color images and has better security in comparison with other encryption
algorithms.

This paper is organized as follows: Sect. 2 introduces quantum color image rep-
resentation and coupled hyper-chaotic Lorenz system and three impulse injections.
Quantum color image right cycle shift operation is given in Sect. 3. In Sect. 4, the
proposed quantum color image encryption and decryption scheme is described. Sec-
tion 5 is devoted to the theoretical analyses and numerical simulations. Finally, a brief
conclusion is drawn in Sect. 6.

2 Quantum color image representation and coupled hyper-chaotic
Lorenz system

2.1 Quantum representation for color digital images

The novel quantum representation for color digital images (NCQI) has been proposed
in [22]. The representative expression of a quantum color image sized 2n × 2n is
described as follows:

|I 〉 = 1

2n

2n−1∑

y=0

2n−1∑

x=0

|C (y, x)〉 ⊗ |yx〉, (1)

where |C (y, x)〉 denotes the color value of the corresponding pixel and it can be
encoded by the binary sequence Rq−1 · · · R0Gq−1 · · ·G0Bq−1 · · · B0.
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Fig. 1 A 4 × 4 color image
(color figure online)

|C (y, x)〉 =

∣∣∣∣∣∣∣
Rq−1
yx · · · R0

yx︸ ︷︷ ︸
Red

Gq−1
yx · · ·G0

yx︸ ︷︷ ︸
Green

Bq−1
yx · · · B0

yx︸ ︷︷ ︸
Blue

〉
. (2)

The values of every channel (R,G, B) range from 0 to 2q − 1. Equation (1) indicates
the whole NCQI model is stored into a normalized quantum superposition state. There
are three parts, i.e., the color information |C (y, x)〉, the vertical position |y〉 and the
horizontal position |x〉 to represent one pixel. The tensor product of these three qubit
sequences constitutes the basis state of NCQI. For a 2n × 2n color image with every
channel R,G, B in the range

[
0, 2q − 1

]
, 2n+3q qubits are employed to store image

information into a NCQI state.
An example of a 4 × 4 color image with three channels R,G, B in the range[

0, 28 − 1
]
, i.e., n = 2, q = 8, is shown in Fig. 1. The representation as shown in

Eq. (3) depicts the whole NCQI is stored into a normalized quantum superposition
state, in which each basis represents one pixel.

|I 〉 = 1√
24

⎡

⎣

∣∣∣∣∣∣
11111111︸ ︷︷ ︸

R

00000000︸ ︷︷ ︸
G

00000000︸ ︷︷ ︸
B

〉
⊗ (|0000〉 + |0001〉 + |0100〉 + |0101〉)

+
∣∣∣∣∣∣
00000000︸ ︷︷ ︸

R

11111111︸ ︷︷ ︸
G

00000000︸ ︷︷ ︸
B

〉
⊗ (|0010〉 + |0011〉 + |0110〉 + |0111〉)

+
∣∣∣∣∣∣
00000000︸ ︷︷ ︸

R

00000000︸ ︷︷ ︸
G

11111111︸ ︷︷ ︸
B

〉
⊗ (|1000〉 + |1001〉 + |1100〉 + |1101〉)

+
∣∣∣∣∣∣
11111111︸ ︷︷ ︸

R

11111111︸ ︷︷ ︸
G

11111111︸ ︷︷ ︸
B

〉
⊗ (|1010〉 + |1011〉 + |1110〉 + |1111〉)

⎤

⎦ .

(3)

Notably, for a quantum color image sized M × N with every channel R,G, B in
the range

[
0, 2q − 1

]
, we can improve NCQI to store it. The improved model is called

INCQI. An INCQI image representation can be written as follows:
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|I 〉 = 1√
2
m+n

N−1∑

y=0

M−1∑

x=0

|C (y, x)〉 ⊗ |yx〉

= 1√
2
m+n

N−1∑

y=0

M−1∑

x=0

∣∣∣Rq−1
yx · · · R0

yxG
q−1
yx · · ·G0

yx B
q−1
yx · · · B0

yx

〉
⊗ |yx〉, (4)

where

m =
{ ⌈

log2M
⌉

,

1,
M > 1
M = 1

(5)

n =
{ ⌈

log2N
⌉

,

1,
N > 1
N = 1.

(6)

Of course, the encryption schemeput forward in Sect. 4 is also available for quantum
color images of arbitrary size M × N .

2.2 The coupled hyper-chaotic Lorenz system and three impulse injections

By coupling two identical Lorenz systems, the coupled hyper-chaotic Lorenz system
was obtained by Grassi et al. [35], and the corresponding differential equation can be
described as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = a (y1 − x1)

ẏ1 = bx1 − y1 − x1z1 + k1 (x2 − y2)

ż1 = x1y1 − cz1
ẋ2 = a (y2 − x2)

ẏ2 = bx2 − y2 − x2z2 + k2 (x1 − y1)

ż2 = x2y2 − cz2,

(7)

where X = [x1, y1, z1, x2, y2, z2]T is the state variable vector, a, b and c are control
parameters, and k1, k2 > 0 are coupling parameters. The systemexhibits hyper-chaotic
behavior when a = 10, b = 28, c = 8/3, k1 = k2 = 0.05. Here, we set the initial
values of x1 (0) �= x2 (0), y1 (0) �= y2 (0) and z1 (0) �= z2 (0), Fig. 2 shows the
four-wing attractors.

When a = 10, c = 8/3 and b ∈ [24, 51], the Lyapunov exponents are shown in
Fig. 3. From Fig. 3, it is found that when b ∈ [24, 51], the dynamics of system (7) is
hyper-chaotic.

The problems of short period and degradation of dynamics seriously affect the
practical applications of chaotic system. In order to solve these problems, one can try
to randomly inject several impulse signal values into one of the variables during the
iterating process to implement chaotic orbital transfer and remove the degradation of
chaos dynamics. What is more, multiple injections can greatly enlarge the key space.
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Fig. 2 Chaotic attractors of coupled hyper-chaotic Lorenz system

Fig. 3 Lyapunov exponent in the interval of parameter b ∈ [24, 51]

Because a tiny change in the initial value of chaotic system can result in com-
pletely different trajectory, assume that the total iterating time of system (7) is N
and the injection time I can be designed to depend on the original image size. Here
is the simplest example that we set I = 2 and then inject modified impulse sig-
nals of Δx1(1), Δx1(2) ∈ [0.1min (x1) , 0.1max (x1)] into x1, when t = �N/3 �,
t = �2N/3 �. The hyper-chaotic attractor after injection in three intervals of
[1, �N/3 � − 1], [�N/3 � , �2N/3 � − 1] and [�2N/3 � , N ] is marked in different
colors of red, green and blue, as shown in Fig. 4.

In the encryption scheme put forward in Sect. 4, we set I = 3, i.e., inject impulse
signal values of Δx1(1), Δx1(2), Δx1(3) ∈ [0.1min (x1) , 0.1max (x1)] into x1, when
t = �N/4 �, t = �2N/4 � and t = �3N/4 � in the process of iteration.

3 Quantum color image right cycle shift operations

The study [32] has proposed the cycle shift operations for quantum gray images.
According to the study, the quantum color image right cycle shift operations are
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Fig. 4 Chaotic attractor of the coupled hyper-chaotic Lorenz system after impulse injection

defined in this section. The operations are executed on the pixel color values specially,
and it will not be emphasized later.

For a quantum color image sized 2n × 2n with values of every channel
(R,G, B) in the range

[
0, 2q − 1

]
, the quantum color image right cycle shift

operations could be decomposed into 22n sub-operations and realized by quan-
tum swap gates. The controlled swap gates UY X controlled by a sequence |H〉 ={∣∣h0,0

〉
,
∣∣h0,1

〉
, . . . ,

∣∣h0,2n−1
〉
,
∣∣h1,0

〉
, . . . ,

∣∣h2n−1,2n−1
〉}

are used to accomplish the
sub-operations, where |hY X 〉 = {|rY X 〉 , |sY X 〉 , |tY X 〉}, Y = 0, 1, . . . , 2n − 1, X =
0, 1, . . . , 2n − 1 are orderly. The color image right cycle shift operation is shown in
Fig. 5. Correspondingly, Fig. 6 shows the three channels (R,G, B) of the color image
right cycle shift operations for r , s, t times, respectively, where r , s, t are nonnegative
integers and 0 ≤ r , s, t ≤ q − 1.

If the times of three channels (R,G, B) right cycle shift operations are r , s, t ,
respectively, the controlled swap gate can be defined as:

UY X |C (Y , X)〉 = UY X

∣∣∣Rq−1
Y X · · · R0

Y XG
q−1
Y X · · ·G0

Y X B
q−1
Y X · · · B0

Y X

〉

=

∣∣∣∣∣∣∣
Rr−1
Y X · · · R0

Y X R
q−1
Y X · · · Rr

Y X︸ ︷︷ ︸
Red

Gs−1
Y X · · ·G0

Y XG
q−1
Y X · · ·Gs

Y X︸ ︷︷ ︸
Green

Bt−1
Y X · · · B0

Y X B
q−1
Y X · · · Bt

Y X︸ ︷︷ ︸
Blue

〉
.

(8)

Then, the sub-operation SY X constructed by the controlled swap gate UY X can be
defined as follows:

SY X =

⎛

⎜⎜⎝I ⊗
2n−1∑

y=0

2n−1∑

x=0
yx �=Y X

|yx〉 〈yx |

⎞

⎟⎟⎠ +UY X ⊗ |Y X〉 〈Y X | . (9)

The sub-operation SY X is a unitary matrix, i.e., SY X S
†
Y X = I⊗2n+1, where S†Y X is

the Hermitian conjugation of matrix SY X . The quantum color image right cycle shift
operations could be implemented by the quantum sub-operation SY X :
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SY X |I 〉 = SY X

⎛

⎝ 1

2n

2n−1∑

y=0

2n−1∑

x=0

∣∣∣Rq−1
yx · · · R0

yxG
q−1
yx · · ·G0

yx B
q−1
yx · · · B0

yx

〉
|yx〉

⎞

⎠

= 1

2n
SY X

⎛

⎜⎜⎝
2n−1∑

y=0

2n−1∑

x=0
yx �=Y X

∣∣∣Rq−1
yx · · · R0

yxG
q−1
yx · · ·G0

yx B
q−1
yx · · · B0

yx

〉
|yx〉

+
∣∣∣Rq−1

Y X · · · R0
Y XG

q−1
Y X · · ·G0

Y X B
q−1
Y X · · · B0

Y X

〉
|Y X〉

)

= 1

2n

⎛

⎜⎜⎝
2n−1∑

y=0

2n−1∑

x=0
yx �=Y X

∣∣∣Rq−1
yx · · · R0

yxG
q−1
yx · · ·G0

yx B
q−1
yx · · · B0

yx

〉
|yx〉

Fig. 5 Color image right cycle
shift operation
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Fig. 6 Three channels of color image right cycle shift operations for r , s, t times, respectively

+UY X

∣∣∣Rq−1
Y X · · · R0

Y XG
q−1
Y X · · ·G0

Y X B
q−1
Y X · · · B0

Y X

〉
|Y X〉

)

= 1

2n

⎛

⎜⎜⎝
2n−1∑

y=0

2n−1∑

x=0
yx �=Y X

∣∣∣Rq−1
yx · · · R0

yxG
q−1
yx · · ·G0

yx B
q−1
yx · · · B0

yx

〉
|yx〉

+
∣∣∣Rr−1

Y X · · · R0
Y X R

q−1
Y X · · · Rr

Y XG
s−1
Y X · · ·G0

Y XG
q−1
Y X · · ·Gs

Y X B
t−1
Y X

· · · B0
Y X B

q−1
Y X · · · Bt

Y X

〉
|Y X〉

)
(10)

SY ′X ′ SY X |I 〉

= SY ′X ′

⎛

⎝SY X
1

2n

2n−1∑

y=0

2n−1∑

x=0

∣∣∣Rq−1
yx · · · R0

yxG
q−1
yx · · ·G0

yx B
q−1
yx · · · B0

yx

〉
|yx〉

⎞

⎠
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= SY ′X ′
1

2n

⎛

⎜⎜⎝
2n−1∑

y=0

2n−1∑

x=0
yx �=Y X

∣∣∣Rq−1
yx · · · R0

yxG
q−1
yx · · ·G0

yx B
q−1
yx · · · B0

yx

〉
|yx〉

+
∣∣∣Rr−1

Y X · · · R0
Y X R

q−1
Y X · · · Rr

Y XG
s−1
Y X · · ·G0

Y XG
q−1
Y X · · ·Gs

Y X B
t−1
Y X

· · · B0
Y X B

q−1
Y X · · · Bt

Y X

〉
|Y X〉

)

= 1

2n

⎛

⎜⎜⎝
2n−1∑

y=0

2n−1∑

x=0
yx �=Y X ,Y ′X ′

∣∣∣Rq−1
yx · · · R0

yxG
q−1
yx · · ·G0

yx B
q−1
yx · · · B0

yx

〉
|yx〉

+
∣∣∣Rr−1

Y X · · · R0
Y X R

q−1
Y X · · · Rr

Y XG
s−1
Y X · · ·G0

Y XG
q−1
Y X

· · ·Gs
Y X B

t−1
Y X · · · B0

Y X B
q−1
Y X · · · Bt

Y X

〉
|Y X〉

+
∣∣∣Rr ′−1

Y ′X ′ · · · R0
Y ′X ′ R

q−1
Y ′X ′ · · · Rr ′

Y ′X ′Gs′−1
Y ′X ′ · · ·G0

Y ′X ′G
q−1
Y ′X ′

· · ·Gs′
Y ′X ′ Bt ′−1

Y ′X ′ · · · B0
Y ′X ′ B

q−1
Y ′X ′ · · · Bt ′

Y ′X ′
〉 ∣∣Y ′X ′〉) , (11)

where r ′, s′, t ′ are nonnegative integers and 0 ≤ r ′, s′, t ′ ≤ q −1. The sub-operations
SY X and SY ′X ′ are controlled by {|r〉 , |s〉 , |t〉} and {∣∣r ′〉 ,

∣∣s′〉 ,
∣∣t ′
〉}
, respectively.

Therefore, the quantum color image right cycle shift operations on its homologous
pixels can be realized by 22n sub-operations SY X as follows:

S=
2n−1∏

Y=0

2n−1∏

X=0

SY X . (12)

Corresponding to the quantum color image right cycle shift operations, the inverse
sub-operation S−1

Y X could be built up by the three channels (R,G, B) of color image
right cycle shift operations for q − r , q − s, q − t times, respectively. So the details
about S−1

Y X and S−1 are not needed to be addressed here.

4 Quantum color image encryption and decryption scheme

4.1 Quantum color image encryption scheme based on coupled hyper-chaotic
Lorenz systemwith three impulse injections

Firstly, it is necessary to emphasize that the quantum color image encryption scheme
proposed in this section is also available for quantum color images of arbitrary size
M × N . For simplicity, assume that the original quantum color image sized 2n × 2n

with values of every channel (R,G, B) in the range
[
0, 28 − 1

]
to be encrypted is |I 〉

and its NCQI representation can be written as:
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Fig. 7 Proposed quantum color image encryption scheme procedure

|I 〉 = 1

2n

2n−1∑

y=0

2n−1∑

x=0

|C (y, x)〉 ⊗ |yx〉

= 1

2n

2n−1∑

y=0

2n−1∑

x=0

∣∣∣∣∣∣∣
R7
yx · · · R0

yx︸ ︷︷ ︸
Red

G7
yx · · ·G0

yx︸ ︷︷ ︸
Green

B7
yx · · · B0

yx︸ ︷︷ ︸
Blue

〉
⊗ |yx〉

= 1

2n

22n−1∑

i=0

|C (i)〉 ⊗ |i〉

= 1

2n

22n−1∑

i=0

∣∣∣R7
i · · · R0

i G
7
i · · ·G0

i B
7
i · · · B0

i

〉
⊗ |i〉, (13)

where
∣∣Rk

i

〉
,
∣∣Gk

i

〉
,
∣∣Bk

i

〉 ∈ {|0〉 , |1〉}, i = 0, 1, . . . , 22n − 1, k = 0, 1, . . . , 7. The
proposed quantum color image encryption scheme consists of the following steps.
The encryption procedure is shown in Fig. 7.

Input Original quantum color image |I 〉.
Keys x1 (0) , y1 (0) , z1 (0) , x2 (0) , y2 (0) , z2 (0) and Δx1(1), Δx1(2), Δx1(3) rep-

resent keys which can be selected randomly.
Output The encrypted quantum color image |E〉 with the same size.
Step 1 Iterating system (7) with six initial values of x1 (0) , y1 (0) , z1 (0) , x2 (0) ,

y2 (0) , z2 (0) for N = 2n × 2n times. When the iterating times t1 = �N/4 �, t2 =
�2N/4 � and t3 = �3N/4 �, inject Δx1(1), Δx1(2) and Δx1(3) into x1 (t1), x1 (t2) and
x1 (t3), respectively, to produce six sequences of X1,Y1, Z1, X2,Y2, Z2.

X1 = {x1 (0) , x1 (1) , . . . , x1 (N − 1)}
Y1 = {y1 (0) , y1 (1) , . . . , y1 (N − 1)}
Z1 = {z1 (0) , z1 (1) , . . . , z1 (N − 1)}
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X2 = {x2 (0) , x2 (1) , . . . , x2 (N − 1)}
Y2 = {y2 (0) , y2 (1) , . . . , y2 (N − 1)}
Z2 = {z2 (0) , z2 (1) , . . . , z2 (N − 1)} . (14)

Step 2 Compute

Ti = floor
(
mod

(
x1 (i) × 1014, 256

))

Vi = floor
(
mod

(
y1 (i) × 1014, 256

))

Wi = floor
(
mod

(
z1 (i) × 1014, 256

))

Ji = floor
(
mod

(
x2 (i) × 1014, 8

))

Ki = floor
(
mod

(
y2 (i) × 1014, 8

))

Li = floor
(
mod

(
z2 (i) × 1014, 8

))
, (15)

where i = 0, 1, . . . , N − 1, and floor stands for the rounding operation.
Then transform {Ti }, {Vi } and {Wi } into binary qubit sequences:

|Ti 〉 = 7⊗
k=0

∣∣∣T k
i

〉
=
∣∣∣T 7

i

〉 ∣∣∣T 6
i

〉
· · ·

∣∣∣T 0
i

〉

|Vi 〉 = 7⊗
k=0

∣∣∣V k
i

〉
=
∣∣∣V 7

i

〉 ∣∣∣V 6
i

〉
· · ·

∣∣∣V 0
i

〉

|Wi 〉 = 7⊗
k=0

∣∣∣Wk
i

〉
=
∣∣∣W 7

i

〉 ∣∣∣W 6
i

〉
· · ·

∣∣∣W 0
i

〉
, (16)

where
∣∣T k

i

〉
,
∣∣V k

i

〉
,
∣∣Wk

i

〉 ∈ {|0〉 , |1〉}, i = 0, 1, . . . , N − 1, k = 0, 1, . . . , 7.
Step 3 Define the sub-operation Pt :

Pt =
⎛

⎝I ⊗
N−1∑

i=0,i �=t

|i〉 〈i | + Dt ⊗ |t〉 〈t |
⎞

⎠ , (17)

where

Dt |C (t)〉 = Dt

∣∣∣R7
t · · · R0

t G
7
t · · ·G0

t B
7
t · · · B0

t

〉

= Dt

(
7⊗

k=0

∣∣∣Rk
t

〉 7⊗
k=0

∣∣∣Gk
t

〉 7⊗
k=0

∣∣∣Bk
t

〉)

= 7⊗
k=0

∣∣∣Rk
t ⊕ T k

t

〉 7⊗
k=0

∣∣∣Gk
t ⊕ V k

t

〉 7⊗
k=0

∣∣∣Bk
t ⊕ Wk

t

〉
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=
∣∣∣
(
R7
t ⊕ T 7

t

)
· · ·

(
R0
t ⊕ T 0

t

) (
G7

t ⊕ V 7
t

)
· · ·

(
G0

t ⊕ V 0
t

)

(
B7
t ⊕ W 7

t

)
· · ·

(
B0
t ⊕ W 0

t

)〉
. (18)

The color image color-information XOR operations could be implemented by the
quantum sub-operation Pt :

Pt (|I 〉) = Pt

(
1√
N

N−1∑

i=0

∣∣∣R7
i · · · R0

i G
7
i · · ·G0

i B
7
i · · · B0

i

〉
⊗ |i〉

)

= 1√
N
Pt

⎛

⎝
N−1∑

i=0,i �=t

∣∣∣R7
i · · · R0

i G
7
i · · ·G0

i B
7
i · · · B0

i

〉
⊗ |i〉

+
∣∣∣R7

t · · · R0
t G

7
t · · ·G0

t B
7
t · · · B0

t

〉
⊗ |t〉

)

= 1√
N

⎛

⎝
N−1∑

i=0,i �=t

∣∣∣R7
i · · · R0

i G
7
i · · ·G0

i B
7
i · · · B0

i

〉
⊗ |i〉

+Dt

∣∣∣R7
t · · · R0

t G
7
t · · ·G0

t B
7
t · · · B0

t

〉
⊗ |t〉

)

= 1√
N

⎛

⎝
N−1∑

i=0,i �=t

∣∣∣R7
i · · · R0

i G
7
i · · ·G0

i B
7
i · · · B0

i

〉
⊗ |i〉

+
∣∣∣
(
R7
t ⊕ T 7

t

)
· · ·

(
R0
t ⊕ T 0

t

) (
G7

t ⊕ V 7
t

)
· · ·

(
G0

t ⊕ V 0
t

) (
B7
t ⊕ W 7

t

)

· · ·
(
B0
t ⊕ W 0

t

)〉
⊗ |t〉

)
(19)

Ps Pt (|I 〉) = Ps

(
Pt

(
1√
N

N−1∑

i=0

∣∣∣R7
i · · · R0

i G
7
i · · ·G0

i B
7
i · · · B0

i

〉
⊗ |i〉

))

= Ps
1√
N

⎛

⎝
N−1∑

i=0,i �=t

∣∣∣R7
i · · · R0

i G
7
i · · ·G0

i B
7
i · · · B0

i

〉
⊗ |i〉

+
∣∣∣
(
R7
t ⊕ T 7

t

)
· · ·

(
R0
t ⊕ T 0

t

) (
G7

t ⊕ V 7
t

)
· · ·

(
G0

t ⊕ V 0
t

) (
B7
t ⊕ W 7

t

)

· · ·
(
B0
t ⊕ W 0

t

)〉
⊗ |t〉

)

= 1√
N

⎛

⎝
N−1∑

i=0,i �=t,s

∣∣∣R7
i · · · R0

i G
7
i · · ·G0

i B
7
i · · · B0

i

〉
⊗ |i〉

+
∣∣∣
(
R7
t ⊕ T 7

t

)
· · ·

(
R0
t ⊕ T 0

t

) (
G7

t ⊕ V 7
t

)
· · ·

(
G0

t ⊕ V 0
t

) (
B7
t ⊕ W 7

t

)

· · ·
(
B0
t ⊕ W 0

t

)〉
⊗ |t〉

+
∣∣∣
(
R7
s ⊕ T 7

s

)
· · ·

(
R0
s ⊕ T 0

s

) (
G7

s ⊕ V 7
s

)
· · ·

(
G0

s ⊕ V 0
s

) (
B7
s ⊕ W 7

s

)

· · ·
(
B0
s ⊕ W 0

s

)〉
⊗ |s〉

)
. (20)
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From (19) and (20), it is distinct that the color image color-information XOR oper-
ations on its homologous pixels can be realized by quantum transform P:

P =
N−1∏

i=0

Pi . (21)

By performing operation P on |I 〉, one can obtain the image
∣∣I ′〉:

P (|I 〉) =
N−1∏

i=0

Pi (|I 〉)

= 1√
N

N−1∑

i=0

Di

∣∣∣R7
i · · · R0

i G
7
i · · ·G0

i B
7
i · · · B0

i

〉
⊗ |i〉

= 1√
N

N−1∑

i=0

∣∣∣
(
R7
i ⊕ T 7

i

)
· · ·

(
R0
i ⊕ T 0

i

) (
G7

i ⊕ V 7
i

)

· · ·
(
G0

i ⊕ V 0
i

) (
B7
i ⊕ W 7

i

)
· · ·

(
B0
i ⊕ W 0

i

)〉
⊗ |i〉

= 1√
N

N−1∑

i=0

∣∣∣R7
i
′ · · · R0

i
′
G7

i
′ · · ·G0

i
′
B7
i
′ · · · B0

i
′〉 ⊗ |i〉

= ∣∣I ′〉 . (22)

Step 4 The sequence

|H〉 = {|h0〉 , |h1〉 , . . . , |hN−1〉} (23)

should be generated before performing the quantum color image right cycle shift
operations, where |hi 〉 = {|Ji 〉 , |Ki 〉 , |Li 〉}, i = 0, 1, . . . , N − 1, are orderly. The
controlled swap gateUi is constructed by |hi 〉. Quantum color image right cycle shift
operation is executed on

∣∣I ′〉 by quantum transform S to acquire the quantum image
|E〉, where |E〉 stands for the final encrypted image:

S
∣∣I ′〉 =

N−1∏

i=0

Si
∣∣I ′〉

= 1√
N

N−1∑

i=0

Ui

∣∣∣R7
i
′ · · · R0

i
′
G7

i
′ · · ·G0

i
′
B7
i
′ · · · B0

i
′〉 ⊗ |i〉

= 1√
N

N−1∑

i=0

∣∣∣R(Ji−1)′
i · · · R0

i
′
R7
i
′
RJi
i

′
G(Ki−1)′

i · · ·G0
i
′
G7

i
′
GKi

i
′
B(Li−1)′
i

· · · B0
i
′
B7
i
′
BLi
i

′〉 ⊗ |i〉
= |E〉 . (24)
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4.2 Quantum color image decryption scheme

The image decryption scheme is as follows.
Step 1 The six sequences {Ti }, {Vi }, {Wi }, {Ji }, {Ki } and {Li } should be gener-

ated with the six initial values x1 (0) , y1 (0) , z1 (0) , x2 (0) , y2 (0) , z2 (0) and three
impulse injectionsΔx1(1), Δx1(2), Δx1(3) according to Step 1 and Step 2 in the encryp-
tion scheme.

Step 2 The inverse color image right cycle shift operation S−1 controlled by
sequence |H〉 = {|h0〉 , |h1〉 , . . . , |hN−1〉} is performed on |E〉 to obtain the quantum
image

∣∣I ′〉, where |hi 〉 = {|Ji 〉 , |Ki 〉 , |Li 〉}, i = 0, 1, . . . , N − 1.
Step 3 The XOR operations controlled by sequences {|Ti 〉}, {|Vi 〉} and {|Wi 〉},

i = 0, 1, . . . , N − 1, are performed on quantum image
∣∣I ′〉 to obtain the decrypted

quantum color image |I 〉.

5 Theoretical analyses and numerical simulations

Quantum communication and computation is based on the preparation and manipula-
tion of qubit states. Qubit states are very fragile and easily destroyed by decoherence
due to unwanted coupling with the environment. However, not all states are equally
fragile when interacting with the environment. Indeed, if the qubit–environment inter-
action exhibits some symmetry, there are states which are immune to this interaction
and can therefore be used to protect quantum information. These states are called
decoherence-free (DF) states [36]. The amount of quantum information that a given
DF subspace is able to protect depends on the number N of qubits [37]. For N even, the
DF subspace spanned by states which are eigenstates of the whole Hamiltonian of the
qubit-bath system and also eigenstates of the interaction Hamiltonian with eigenvalue
zero has dimension:

d (N ) = N !
(N/2 )! (N/2 + 1 )! . (25)

The number of qubits encoded in DF states is log2d (N ). For a large N ,

log2d (N ) 
 N − 3

2
log2N . (26)

Therefore, the encoding efficiency is asymptotically unity.
For N qubits to be processed by quantum computation (N is even and large),

suppose the N -dimensional space is S, due to the fact that the existence of DF subspace

whose dimension is 2N

N3/2 , and we have

S = S1 ⊕ S2, (27)

where S2 is the 2N

N3/2 -dimensional DF subspace. Because 2N

N3/2 > N
2 , there exists a

subspace S
∗
1 ⊂ S2, satisfying that the projection of S1 on the S2 is S∗

1, i.e., we can
construct a unitary transformation σ , which makes σ (S1) = S

∗
1 ⊂ S2.
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As suggested above, for N qubits in quantum communication and computation, in
order to suppress the effect of decoherence, the N qubits are separated into two parts
to process. On the one hand, for the part projecting on the DF subspace S2, because
the DF states are immune to the interaction with the environment, we can process it
directly according to our requirement; on the other hand, for the part projecting on the
subspace S1, we can first use a unitary transformation to project it on S2 and obtain
S

∗
1, where S

∗
1 ⊂ S2, and then the process is done as we need on the subspace S

∗
1.

Finally, integrate the two parts of the processed qubits together and we can get the
processed N qubits with lower cost of decoherence. Because unitary transformation
is invertible, the processed N qubits are easily recovered to the original N qubits by
the corresponding inverse processing and inverse unitary transformation.

Here, inspired byDF subspace, we only give amethod for suppressing decoherence.
In the future, if possible, we will study this method systematically and theoretically
including the construction of orthogonal basis of DF subspace, the construction of uni-
tary transformation and the concrete realization of thismethod on a quantum computer.

Furthermore, quantum Zeno effect, dynamical decoupling and quantum error cor-
rection are three important protection methods of quantum information, which also
can suppress the decoherence effect and error. According to quantum Zeno effect, the
decoherence effect of quantum computation process will be suppressed by making
very frequent measurements of the system [38,39]; different from the measurement
used in quantum Zeno effect, dynamical decoupling is used to suppress the decoher-
ence process by imposing a time-dependent hamiltonian Hc (t) on the target system
[40,41]; last, for errors that occur at a certain probability in channel transmission, one
can use quantum error correction to correct there random errors [42–44].

Due to the lack of quantum hardware, the simulations are executed with software
MATLAB on a classical computer. The whole simulation is based on linear algebraic
constructions. The quantum states are simulated by complex vectors, while the quan-
tum operations are simulated by unitary matrices. So what needs to be emphasized is
that, in the numerical simulations, we do not consider the effect of decoherence and
errors.

In order to verify the performance of the proposed encryption scheme, three encryp-
tion schemes for color image in [25,33,34] are chosen as the comparison schemes.
We select three groups of keys randomly for experimental simulations. The six initial
values and three impulse injections are set as follows, respectively.

Keys 1: x1 (0) = 4.175, y1 (0) = 8.203, z1 (0) = 1.376, x2 (0) = 14.362,

y2 (0) = 0.800, z2 (0) = 2.364,Δx1(1) = 0.523,Δx1(2) = 1.290,Δx1(3) = 0.875

Keys 2: x1 (0) = 5.564, y1 (0) = 3.408, z1 (0) = 10.875, x2 (0) = 2.966,

y2 (0) = 8.862, z2 (0) = 1.640,Δx1(1) = 0.624,Δx1(2) = 2.875,Δx1(3) = 4.558

Keys 3: x1 (0) = 15.778, y1 (0) = 6.521, z1 (0) = 0.643, x2 (0) = 2.390,

y2 (0) = 4.864, z2 (0) = 5.779,Δx1(1) = 1.482,Δx1(2) = 0.855,Δx1(3) = 1.645.

Six color images sized 512× 512 are chosen as original images, shown in Fig. 8, and
the corresponding encrypted images are shown in Fig. 9, where the six child figures

123



A quantum color image encryption scheme based on coupled… Page 17 of 30 188

Fig. 8 Original images: a Splash, b Baboon, c Lena, d Sailboat, e Peppers and f House

Fig. 9 Encrypted images: a using keys 1, b using keys 2 and 3 using keys 3

in Fig. 9a belong to encrypted images with keys 1, the six child figures in Fig. 9b
belong to the encrypted images with keys 2, and the six child figures in Fig. 9c belong
to encrypted images with keys 3. It is shown that one cannot obtain any information
of the original images from the encrypted images. Therefore, the encryption scheme
proposed in this paper is effective.

5.1 Mean square error

An ideal encrypted image should be significantly different from the original one. The
difference between encrypted images and original ones can be characterized by mean
square error (MSE) defined as follows:

MSER = 1

m × n

m∑

i=1

n∑

j=1

(IR (i, j) − ER (i, j))2 (28)

MSEG = 1

m × n

m∑

i=1

n∑

j=1

(IG (i, j) − EG (i, j))2 (29)
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Table 1 MSE values of the
encrypted images with three
keys

Images Keys MSER MSEG MSEB

Splash Keys 1 1.138E4 1.235E4 9.923E3

Keys 2 1.142E4 1.232E4 9.924E3

Keys 3 1.144E4 1.234E4 9.878E3

Baboon Keys 1 8.633E3 7.754E3 9.452E3

Keys 2 8.635E3 7.753E3 9.471E3

Keys 3 8.629E3 7.750E3 9.476E3

Lena Keys 1 9.115E3 9.772E3 1.066E4

Keys 2 9.097E3 9.779E3 1.069E4

Keys 3 9.114E3 9.784E3 1.066E4

Sailboat Keys 1 7.282E3 1.148E4 1.155E4

Keys 2 7.318E3 1.150E4 1.151E4

Keys 3 7.317E3 1.150E4 1.148E4

Peppers Keys 1 7.992E3 1.123E4 1.111E4

Keys 2 8.012E3 1.126E4 1.117E4

Keys 3 7.985E3 1.127E4 1.115E4

House Keys 1 8.808E3 9.471E3 9.446E3

Keys 2 8.786E3 9.489E3 9.483E3

Keys 3 8.774E3 9.528E3 9.404E3

MSEB = 1

m × n

m∑

i=1

n∑

j=1

(IB (i, j) − EB (i, j))2, (30)

where m × n is the size of image. The parameters IR (i, j) and ER (i, j) are R values
of pixel (i, j) in original and encrypted images, IG (i, j) and EG (i, j) are G values
of pixel (i, j) in original and encrypted images, IB (i, j) and EB (i, j) are B values of
pixel (i, j) in original and encrypted images, respectively. The larger the MSE value,
the better the encryption security.

For the six original color images shown in Fig. 8, the MSE values with three groups
of keys are calculated as shown in Table 1. The numerical values indicate the different
keys chosen randomly have analogous effect to the encryption results.

For the six images encrypted by using our proposed scheme with keys 3, the MSE
values are calculated as shown in Table 2. The MSE of the proposed encrypted image
is more than the MSE of the scheme in [34], which shows that our scheme is more
effective.

5.2 Statistical analysis

5.2.1 Correlation analysis of two adjacent pixels

Correlation reflects the degree of similarity of two variables. An efficient image cryp-
tosystem should produce the encrypted image with sufficiently low correlation in
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Table 2 Comparison of MSE of the encrypted images between the proposed scheme and the scheme in
[34]

Our scheme Scheme in [34]

Images MSER MSEG MSEB MSER MSEG MSEB

Splash 1.144E4 1.234E4 9.878E3 1.141E4 1.236E4 9.857E3

Baboon 8.629E3 7.750E3 9.476E3 8.618E3 7.749E3 9.531E3

Lena 9.114E3 9.784E3 1.066E4 1.062E4 9.046E3 7.111E3

Sailboat 7.317E3 1.150E4 1.148E4 7.289E3 1.147E4 1.151E4

Peppers 7.985E3 1.127E4 1.115E4 7.962E3 1.123E4 1.115E4

House 8.774E3 9.528E3 9.404E3 8.762E3 9.512E3 9.415E3
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Fig. 10 Correlation distributions between two horizontal adjacent pixels in R channel: a image “Lena” and
b encrypted image

horizontal, vertical and diagonal directions. In this subsection, we choose keys 1
as an example. In order to test the correlations of adjacent pixels in color images
“Baboon,” “Lena,” “Peppers” and the corresponding encrypted images, for three chan-
nels (R,G, B), we randomly choose 8000 pairs of two adjacent pixels from horizontal,
vertical and diagonal directions, respectively. Correlation coefficients can be calcu-
lated as:

CXY =
∑N

i=1

(
xi − 1

N

∑N
i=1 xi

) (
yi − 1

N

∑N
i=1 yi

)

√
∑N

i=1

(
xi − 1

N

∑N
i=1 xi

)2∑N
i=1

(
yi − 1

N

∑N
i=1 yi

)2
, (31)

where xi , yi are gray-level values of two adjacent pixels in each primary color channel.
Take R channel of “Lena” as an example; Figs. 10, 11 and 12 show the correlation dis-
tributions between two adjacent pixels in horizontal, vertical and diagonal directions.
The correlation coefficients of color original images “Baboon,” “Lena,” “Peppers” and
the corresponding encrypted images in horizontal, vertical and diagonal directions are
listed in Tables 3, 4 and 5, respectively. It is clear fromTable 3, 4 and 5 that the correla-
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Fig. 11 Correlation distributions between two vertical adjacent pixels in R channel: a image “Lena” and b
encrypted image
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Fig. 12 Correlation distributions between two diagonal adjacent pixels in R channel: a image “Lena” and
b encrypted image

tion between the adjacent pixels in the original image is very strong and adjacent pixels
in the encrypted image is almost irrelevant, and in all three directions of horizontal,
vertical and diagonal, the correlation of our scheme is weaker than that of [25,34]. This
indicates that our scheme is more secure than the schemes in [25,34]. The proposed
encryption scheme generally provides a satisfactory correlation performance to resist
the attack based on statistical analysis.

5.2.2 Histogram analysis

Histogram reflects the pixel color value distribution of an image. If the histogram of an
encrypted image is uniform, the encryption scheme is more robust against statistical
attack and differential attack. The histograms of the pixel R,G, B values before and
after encryption are shown in Fig. 13, where the three child figures in the first line
belong to the original image “Lena,” the three child figures in the second line belong
to the encrypted image with keys 1, the three child figures in the third line belong to

123



A quantum color image encryption scheme based on coupled… Page 21 of 30 188

Table 3 Results of correlation coefficients in horizontal direction

Correlation coefficient Original image Our scheme Scheme in [25] Scheme in [34]

Baboon (R channel) 0.8724 0.0033 − 0.0090 0.0085

Baboon (G channel) 0.7777 0.0026 − 0.0041 −0.0068

Baboon (B channel) 0.8896 − 0.0058 −0.0021 0.0126

Lena (R channel) 0.9897 − 0.0066 −0.0099 − 0.0166

Lena (G channel) 0.9871 0.0041 − 0.0082 −0.0104

Lena (B channel) 0.9842 − 0.0020 −0.108 − 0.0010

Peppers (R channel) 0.9647 − 0.0112 0.0043 0.0018

Peppers (G channel) 0.9805 − 0.0060 0.0092 − 0.0096

Peppers (B channel) 0.9696 0.0037 0.0128 0.0171

Table 4 Results of correlation coefficients in vertical direction

Correlation coefficient Original image Our scheme Scheme in [25] Scheme in [34]

Baboon (R channel) 0.9259 − 0.0013 0.0045 − 0.0116

Baboon (G channel) 0.8643 0.0038 0.0074 0.0087

Baboon (B channel) 0.9083 0.0014 0.0029 − 0.0086

Lena (R channel) 0.9865 0.0025 0.0088 − 0.0012

Lena (G channel) 0.9858 − 0.0017 0.0066 0.0048

Lena (B channel) 0.9831 − 0.0043 0.0067 0.0134

Peppers (R channel) 0.9626 − 0.0076 0.0298 0.0029

Peppers (G channel) 0.9802 − 0.0021 0.0290 0.0075

Peppers (B channel) 0.9697 0.0055 0.0050 0.0158

Table 5 Results of correlation coefficients in diagonal direction

Correlation coefficient Original image Our scheme Scheme in [25] Scheme in [34]

Baboon (R channel) 0.8599 − 0.0029 0.0133 0.0072

Baboon (G channel) 0.7371 − 0.0090 0.0066 − 0.0005

Baboon (B channel) 0.8462 − 0.0027 0.0017 − 0.0070

Lena (R channel) 0.9897 − 0.0066 0.0047 0.0070

Lena (G channel) 0.9765 0.0020 0.0023 − 0.0028

Lena (B channel) 0.9684 0.0032 0.0079 0.0112

Peppers (R channel) 0.9520 − 0.0028 0.0113 − 0.0078

Peppers (G channel) 0.9675 0.0018 0.0155 0.0081

Peppers (B channel) 0.9476 − 0.0027 −0.0058 − 0.0111

the encrypted image with keys 2, and the three child figures in the last line belong to
the encrypted image with keys 3.

It can be seen that the encrypting operation can exhibit a uniform distribution of
the histogram and does not provide any clue for eavesdroppers who perform statistical
attack and differential attack on the encrypted image.
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Fig. 13 Histogram distributions of the original and encrypted images

5.2.3 Information entropy

Information entropy is a statistical measure of uncertainty feature of the image. And
the entropy H (s) of a message source can be calculated as:

H (s) = −
2N−1∑

i=0

p (si ) log2 p (si ), (32)

where p (si ) represents the probability of the occurrence of symbol si and the ideal
entropy value for an encrypted image should be 8 bits. A cryptosystem is reliable if
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Table 6 Information entropy of the original and encrypted images (bit)

Channels Original image Our scheme Scheme in [33]

Keys 1 Keys 2 Keys 3

Splash (R) 6.9481 7.9993 7.9992 7.9994 7.9959

Splash (G) 6.8845 7.9993 7.9993 7.9992 7.9951

Splash (B) 6.1265 7.9993 7.9993 7.9991 7.9957

Lena (R) 7.6503 7.9993 7.9993 7.9994 7.9950

Lena (G) 7.3053 7.9992 7.9994 7.9994 7.9953

Lena (B) 7.0746 7.9993 7.9993 7.9992 7.9955

and only if the entropy value of encrypted image is close to the ideal value to resist
the entropy attacks. With the proposed image encryption scheme and the scheme in
[33], counting times of each pixel in three primary colors (R,G, B) and calculating
the corresponding probability, three color channels corresponding to the information
entropy are listed in Table 6. From the results of statistics, the loss in the processing of
information encryption is completely weak; thus, the proposed scheme is stable and
secure against entropy attack. Compared with the scheme in [33], the entropy values
of the encrypted images using our scheme are more close to the ideal value. Hence,
our scheme is more secure against the entropy attack.

5.3 Key security analysis

5.3.1 Key space analysis

Adesirable image encryption scheme should have a sufficiently large key space to resist
brute-force attacks. It is recommended that the ideal key space should be larger than
2100 considering the current computer computation speed [45]. In our proposed encryp-
tion scheme, the total number of injection times is 3 and the key space is composed of:
(1) six initial values selected randomly x1 (0) , y1 (0) , z1 (0) , x2 (0) , y2 (0) , z2 (0)
and (2) three injected impulse signal values Δx1(1), Δx1(2), Δx1(3). Generally, the
valid precision of state variables of nonlinear differential chaotic system is 10−14

[46], so the total key space reaches S = 1014×(6+3) � 2100. Thus, the encryption
scheme proposed in this paper has high security. It can resist brute-force attacks, even
the attack from a quantum computer.

5.3.2 Key sensitivity analysis

Key sensitivity is an essential property for any good cryptosystem, which ensures
that one cannot obtain any useful information from the decrypted image when a
tiny change occurs to the keys. Here, for the original color image “Lena,” keys 1
is taken as an example to simulate the key sensitivity of our proposed encryption
scheme. Figure 14a shows the decrypted image “Lena” with correct keys. Fig-
ure 14b–j shows the decrypted images “Lena” with incorrect keys deviated 10−14
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Fig. 14 Decrypted images with: a correct keys, b incorrect x1 (0) + 10−14, c incorrect y1 (0) + 10−14,
d incorrect z1 (0) + 10−14, e x2 (0) + 10−14, f y2 (0) + 10−14, g z2 (0) + 10−14, h Δx1 (1) + 10−14, i
Δy1 (1) + 10−14, j Δz1 (1) + 10−14

from x1 (0) , y1 (0) , z1 (0) , x2 (0) , y2 (0) , z2 (0) ,Δx1(1), Δx1(2) and Δx1(3), respec-
tively, while the other keys are all right.
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In order to evaluate the quality of the color images restored from the encrypted
images with the modified secret key, the RGB peak signal-to-noise ratio (RGB-PSNR)
is used as defined below:

PSNR = 20log10

⎛

⎝ 255√
1

3×m×n

∑m
i=1

∑n
j=1

∑3
k=1 [I

′ (i, j, k) − I (i, j, k)]2

⎞

⎠ ,

(33)

where m × n is the size of image, and I ′ (i, j) and I (i, j) denote the restored image
and the original image, respectively. After the comparison our restored images I ′ to
the original images I , the RGB-PSNR values of six restored images are obtained as
shown in Table 7.

From Fig. 14, when the decryption key deviated 10−14 from the correct key includ-
ing x1 (0) , y1 (0) , z1 (0) , x2 (0) , y2 (0) , z2 (0), the decryption image has become
an uniform white noise without any visual information. From Table 7, when
the decryption key deviated 10−14 from the correct key including x1 (0) , y1 (0) ,

z1 (0) , x2 (0) , y2 (0) , z2 (0), there is almost no difference in the PSNR of the
decrypted image and the corresponding encrypted image, and when the decryption
key deviated 10−14 from the correct key including Δx1(1), Δx1(2), Δx1(3), a part of
the visual information of the original image is decrypted and the PSNRof the decrypted
image is only about 9, 11 or 14. It is proved that the correct image can be reconstructed
onlywhen the decryption key and the encryption keymatch accurately.Because the key
space of the proposed encryption scheme is very big, unless someone has obtained in
advance the correct secret key, it is almost impossible to accurately restore the original
image.

5.4 The influence of noises in transmission

In the transmission process, the encrypted image is always interfered by noises.
In order to test the impact of the noise interference on the proposed image
encryption scheme, the noise is added into the encrypted image in the following
method:

E ′ = E + k · D, (34)

where E and E ′ are encrypted image and noisy encrypted image, respectively, k is
a coefficient indicating the noise strength, and D represents Gaussian random data
with zero mean and standard deviation. In this subsection, for our proposed encrypted
scheme, keys 1 is taken as an example to simulate the influence of noises in transmis-
sion. The decrypted images when k equals 0, 1, 3, 5, 7, 10 are shown in Fig. 15. It is
found that the major information of the original color images can still be recognized
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Table 7 RGB-PSNR values of six encrypted images and the restored images by the secret keys with a slight
change

Decryption keys Splash Baboon Lena Sailboat Peppers House

Incorrect x1 (0) + 10−14 7.6333 8.7789 8.1932 8.0854 8.0803 8.4726

Incorrect y1 (0) + 10−14 7.6298 8.7670 8.1947 8.0851 8.0723 8.4682

Incorrect z1 (0) + 10−14 7.6334 8.7768 8.1964 8.0838 8.0860 8.4735

Incorrect x2 (0) + 10−14 7.6270 8.7790 8.1918 8.0812 8.0896 8.4629

Incorrect y2 (0) + 10−14 7.6410 8.7790 8.1930 8.0866 8.0840 8.4694

Incorrect z2 (0) + 10−14 7.6271 8.7776 8.1906 8.0881 8.0779 8.4664

Incorrect Δx1 (1) + 10−14 8.8792 9.9623 9.5401 9.3621 9.3725 9.6749

Incorrect Δy1 (1) + 10−14 10.5230 11.9781 11.3262 11.2553 11.1703 11.4412

Incorrect Δz1 (1) + 10−14 13.2617 15.6914 14.1102 14.3447 14.0233 14.4674

Encrypted image 7.6324 8.7792 8.1975 8.0862 8.0837 8.4735

from the decrypted images, although the decrypted images turn blurrier with the noise
intensity increasing. Thus, the encryption scheme proposed in this paper can resist
noise interference to some degree.

5.5 Computational complexity

Assume the original color image to be encrypted is divided into three gray components
and each component is represented by a channel. The channel can be viewed as a
2n × 2n gray image. In our scheme, the computational complexity depends on XOR
operations and right cycle shift operations. According to the parallel characteristics
of quantum computation, the grayscale information for each pixel of the quantum
image is performed by the quantum XOR operation, which is realized by using a 2n-
CNOT gate. It is understood that each n-CNOT gate can be decomposed into 4n − 8
Toffoli gates, and the Toffoli gate can be realized by six controlled NOT gates [26].
Thus, the quantum image XOR operation needs 128− 256 basic gates. Consequently,
the computational complexity of the quantum image XOR operation is O (n). The
complexity of the quantum color image right cycle shift operations could be evaluated
via the complexity of the quantumsub-operation SY X . The quantumsub-operation SY X

is implemented by operation UY X . A color image right cycle shift operation involves
8× (r + s + t) swap gates, and each swap gate can be broken down into three CNOT
gates. The number of unit gates included in the operationsUY X is 24×(r+s+t), where
r , s, t represent the times of three channels of each pixel right cycle shift operations,
respectively. Because 0 ≤ r , s, t ≤ 7, the color image right cycle shift operation
consists of 24×21 basic gates at most. Therefore, the total computational complexity
of the proposed quantum color image encryption scheme is O (n), while the total
computational complexity in the corresponding classical case is O

(
3 × 22n

)
. It is

easily seen that the proposed quantum color image encryption scheme has a better
performance than the classical counterparts in terms of the computational complexity.
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Fig. 15 Results of noise attack with different noise intensities: a k = 0, b k = 1, c k = 3, d k = 5, e k = 7
and f k = 10

6 Conclusion

In this paper, we have proposed a quantum color image encryption scheme based
on coupled hyper-chaotic Lorenz system with three impulse injections. Firstly, since
the short-period behavior of chaotic system after too many iterations can lead to
degeneration of dynamics, three impulse signal values are injected into coupled hyper-
chaotic Lorenz system during iterations to enhance the complexity of trajectory and
make the encryption scheme whose key streams are generated from this system safer.
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Then, in the encryption process, we use the NCQI model to represent the quantum
color original image, in which 24 qubits are employed to represent the pixel color scale
values of each pixel and six sequences generated from coupled hyper-chaotic Lorenz
system are used to encrypt the red, green and blue components by XOR operations
and right cyclic shift operations. Therefore, our scheme has three merits: (1) It is free
from the influence of quantum states collapse and can obtain accurate pixel values
in quantum measurement; (2) three impulse signal values are injected into coupled
hyper-chaotic Lorenz system during iterations which can enhance the complexity of
trajectory; (3) six initial values and three impulse signals values are used as keys,
which could reduce the burden of keys transmission and make the cryptosystem own
a key space large enough to resist exhaustive attack, even the attack from a quantum
computer. Numerical simulations demonstrate that the proposed encryption scheme
has a good feasibility and effectiveness for protecting quantum color images and is
more secure in comparison with other encryption algorithms.
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