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Abstract We investigate in detail the dynamics of decoherence, free and bound entan-
glements, and the conversion from one to another (quantum state transitions), in a two
non-interacting qutrits system initially entangled and subject to independents or a
common classical noise. Both Markovian and non-Markovian environments are con-
sidered. Furthermore, isotropic and bound entangled states for qutrits systems are
considered as initial states. We show the efficiency of the formers over the latters
against decoherence, and in preserving quantum entanglement. The loss of coherence
increases monotonically with time up to a saturation value depending upon the initial
state parameter and is stronger in a collective Markov environment. For the non-
Markov regime the presence or absence of entanglement revival and entanglement
sudden death phenomena is deduced depending on both the peculiar characteristics of
the noise, the physical setup and the initial state of the system. We demonstrate distil-
lability sudden death for conveniently selected parameters in bound entangled states;
meanwhile, it is completely absent for isotropic states, where entanglement sudden
death is avoided for dynamic noise independently of the noise regime and the physical
setup. Our results indicate that distillability sudden death under the Markov/non-
Markov noise considered can be avoided depending upon the physical setup.
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1 Introduction

Quantum information theory has recently drawn much attention, and in the quantum
information theory, quantum entanglement plays an important role as it can be utilized
to perform various intriguing global tasks in quantum computing and information pro-
cessing in novel ways [1,2]. It is a valuable resource for a number of quantum features
such as quantum cryptography [3], teleportation [4], computation [5], sensitive mea-
surements [6], quantum telecloning [7] and entanglement swapping [8], as well as
quantum technologies and photonics [9–11] just to cite a few examples. In realistic
world, due to the unavoidable interaction between the system and the environment,
most states in nature are mixed and the set of all states is a convex set, which is a
convex hull of pure states, thus destroying initial quantum entanglement in the sys-
tem [12], the so-called decoherence phenomenon [13]. Decoherence is a complex
and challenging problem, and many works have been dealt with various models [13–
21]. Both theoretical and experimental studies have revealed that entanglement does
not always decay in an asymptotic way and can exhibit sudden death phenomena
[16,17,22]. On the other hand, environment can also revive quantum correlations or
preserve them [23–25]. Both phenomena have been observed in quantum systems
under environmental noise with different classical or quantum properties [26,27].
Thus, it is very important to study, characterize and optimize dynamical properties of
the various kind of environmental noise on entanglement dynamics in open quantum
systems, which are of particular importance in practical quantum information process-
ing. Environmental noises can be put into two categories according to their intrinsic
features, namely Markovian (with short, or rather instantaneous self-correlations) [16]
and non-Markovian (associated with environments with memory and may lead to the
non-monotonic time dependence of entanglement) [28].

Previous works are mostly concentrated on quantum correlations dynamics for
mixed states in two-dimensional systems [29–34]. But it has been shown that, com-
pared to qubits, maximally entangled qudits violate local realism more strongly and
are less affected by noise [35–37]. It is thus very important to study and characterize
correlations dynamical behavior in systems of higher dimensions, so as to construct a
useful parallel with the more extensively studied case of entanglement. In fact, systems
with higher dimensions can be used to improve the efficiency of quantum information
processing, [35,38–40] and the dynamics of the high-dimensional bipartite entangled
state have been investigated [41–43]. It has been revealed that higher-dimensional
systems may have advantages over the qubit ones, as they provide higher channel
capacities, more secure cryptography and superior quantum gates [44–46]. In view of
this fact, there have been some investigations regarding qutrit systems in the recent
years, namely quantum correlations dynamics under Dzyaloshinskii–Moriya inter-
action [47], quantum and classical noises [48–55], magnetic fields [56] and even
teleportation under intrinsic decoherence [57].

On the other hand, bipartite entangled states can be divided into free entangled states
(FES) and bound entangled states (BES) [58,59]. FES can be distilled under local oper-
ations and classical communication (LOCC), whereas BES cannot be distilled to pure
state entanglement. However, it is interesting that some bound entanglement can be
distilled by certain procedures [60] or interaction with auxiliary systems [42,61,62].
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These properties provide new quantum communication schemes, including remote
information concentration [63], secure quantum key distribution [64], superactivation
[62], convertibility of pure entangled states [65], activation of teleportation fidelity
[42]. They further manifest the irreversibility in asymptotic manipulation of entangle-
ment [66]. Bound entanglement constructed by purely mathematical arguments have
existence in physical processes [67,68]. It has been shown that certain free entan-
gled states of qutrit–qutrit systems become non-distillable in a finite time under the
influence of classical noise. Such behavior has been named distillability sudden death
(DSD) [69].

The aim of this paper is to investigate the dynamics of decoherence, free and bound
entanglements in a physical model consisting of two non-interacting spin-qutrit par-
ticles coupled to noise in different and common environments. In the spirit of Refs.
[32,70], we consider two different kinds of noise: first is the static noise recently
used in describing electron transport and photon propagation in disordered structures
[71,72]. Next is the random telegraph noise (RTN), a dynamic noise model playing an
important role in the building up of 1/ f α noises affecting solid state systems [73,74].
It represents one of the common environmental noises affecting charge carriers in
nanodevices. The static noise here simulates a non-Markovian environment, while the
dynamic disorder can model both a non-Markovian environment (in the limit of slow
RTN) and a Markovian noise (expressed by a fast RTN). Furthermore, two different
initial configurations are examined, namely the isotropic states and bound entangled
states. We use analytical techniques to detect entangled states. Specifically, FES are
detected by means of negativity measure [75] based on the Peres–Horodecki separabil-
ity criterion [76,77], while for BES we use the realignment criterion [78,79]. Hence,
we analyze the above-mentioned entanglement measures dynamics to investigate DSD
phenomena. Furthermore, we characterize the environmental decoherence due to the
system–environment interactions by means of the von Neumann entropy [13].

The paper is organized as follows: The physical model adopted is described in
Sect. 2. In Sect. 3 are presented the results for the various cases considered: static
and dynamic noise, different and common environments, Markov and non-Markov
regime. Conclusions are given in Sect. 4.

2 Physical model

Spin-1 particles often called qutrits are defined as quantum three-level systems, with
states in the three-dimensional Hilbert space H3. Its orthonormal basis is denoted here
as |0〉,|1〉 and |2〉. The model consists of two identical and non-interacting three-level
atoms (qutrits) a and b, assumed in the V type configuration where |0k〉,|2k〉 are the
nearest degenerated states and |1k〉 are ground states (k = a, b). They are initially
entangled and subject to noisy environments. We assume that the interaction with the
surroundings induces the process of spontaneous emission from the two excited levels
to the ground state, but a direct transition between excited levels is not possible.

A static and a RTN are accounted for in different conditions. Specifically indepen-
dent (local) and common (non-local) interactions between qutrits and environments
are considered. In both configurations, the dynamics of the two qutrits system is ruled

123



190 Page 4 of 24 A. T. Tsokeng et al.

by the Hamiltonian:
H(t) = Ha(t) ⊗ Ib + Ia ⊗ Hb(t), (1)

where Ia(b) is the identity matrix acting on the Hilbert space of qutrit a(b) and Ha(b)

is the single-qutrit Hamiltonian describing its dynamics in the presence of noise, and
written as:

Hk(t) = ω0Ik + gχk(t)S
k
x . (2)

In the above expression, ω0 represents the energy of an isolated qutrit. (Degeneracy is
assumed, and qutrits are identical in the sense that they are characterized by the same
energy.) g stands for the system–environment coupling strength of one qutrit with the
noisy environment. χk(t) (k = a, b) represents the stochastic parameter related to
the specific characteristics of the noise. Skx is the generalized Pauli matrix for spin-1
systems expressed in the subspace of qutrit k. It is given by:

Skx = 1√
2

(|0k〉 〈1k | + |1k〉 〈0k | + |1k〉 〈2k | + |2k〉 〈1k |)

The Hamiltonian (1) is stochastic due to the random nature of the noise parameter
χk(t), thus leading to a stochastic time evolution of the quantum states. Note that the
specific Hamiltonian in Eq. (2) extended to qudits has also been used to investigate the
entanglement dynamics in a continuous-time quantum walk of two indistinguishable
and non-interacting particles on a one-dimensional noisy lattice [80].

Physically, this type of interaction may possibly be viewed as noise (lattice disor-
der electric and/or magnetic fields for example), interacting with the spatial modes
(degrees of freedom) of entangled biphotonic quantum systems (used to experimen-
tally generate systems of entangled qutrits [81,82]. Specifically, in a real scenario, the
stochastic variable (noise parameter) χk(t), in the case of a transmitting antenna, can
be the noisy measurement of the angular position of a transmitting antenna with respect
to a receiving antenna [83]. Similarly, it can also represent the effective detuning of a
particular waveguide, in the case of a coupled array of waveguides [72].

Once a choice of the noise parameter is performed, the unitary time evolution
operator corresponding to the various realizations of the selected stochastic process
is given by U (χa, χb, t) = Ua (χa, t) ⊗ Ub (χb, t), since the subsystems are isolated
from each other and the noisy channels are uncorrelated. Uk (χk, t) is the single-qutrit
evolution operator which expression reads:

Uk (χk, t) = exp

[
−i

∫ t

0
Hk(s)ds

]
(hereafter h̄ = 1). (3)

Therefore, the specific system dynamics is obtained by applying U (χa, χb, t) to the
initial state of the system. Its time-evolving state (density matrix) under the influence
of the selected stochastic processes is evaluated by averaging the global state over
different realizations of the sequences of χ(t) and reads

ρ(t) = 〈ρ(χa, χb, t)〉 =
〈
U (χa, χb, t) ρ(0)U† (χa, χb, t)

〉
. (4)
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Here 〈. . .〉 stands for the average over all possible realization of the stochastic process
χk(t) and ρ(0) is the initial state of the system at t = 0. Specifically, we examine
the time evolution of two classes of initially entangled states: the two-qutrit isotropic
states (IS) and a second class which we later refer to as bound entangled states (BES).
The former reads

ρp(0) = p |ψ+〉 〈ψ+| + 1 − p

9
I9, (5)

where |ψ+〉 = 1√
3

(|00〉 + |11〉 + |22〉) is the two-qutrit maximally entangled state,

p ∈ [0; 1] is the purity of the state. I9 is the 9 × 9 identity matrix corresponding to
full separable states. The other initial configuration reads

ρα(0) = 2

7
|ψ+〉 〈ψ+| + α

7
σ+ + 5 − α

7
σ− (6)

where 2 ≤ α ≤ 5. The maximally entangled state |ψ+〉 is mixed with separable states
σ+ = 1

3 (|01〉 〈01| + |12〉 〈12| + |20〉 〈20|) and σ− = 1
3 (|10〉 〈10| + |21〉 〈21| + |02〉

〈02|). It is worth mentioning that, as shown in Ref. [42], ρα(0) is separable for 2 ≤
α ≤ 3, bound entangled for 3 ≤ α ≤ 4 and free entangled for 4 ≤ α ≤ 5.

Additionally, it was shown that BES have positive partial transpose (PPT) and there-
fore non-distillable under LOCC [59]. As such BES cannot be detected by measures
based on the Peres–Horodecki separability criterion, which is essentially a negative
partial transpose (NPT) criterion and a free entanglement measure. However, one can
use the realignment criterion [78,79] to detect certain bound entangled states. Hence,
in the present study we use the negativity first introduced by Vidal and Werner [75]
to detect FES, while BES are quantified using the realignment criterion. Considering
a bipartite quantum state ρ ≡ ρab(t), both quantities are, respectively, defined as:

N (ρ) =
∥∥ρTk

∥∥ − 1

2
, (7)

R(ρ) = max

[
0,

∥∥ρR
∥∥ − 1

2

]
. (8)

where ‖A‖ = Tr
√

AA† is the trace norm, ρTk is the partial transpose of state ρ with
respect to subsystem k = a, b and

(
ρR

)
i j,mn = ρim, jn is the realigned density matrix.

Either N (ρ) > 0 or R(ρ) > 0 indicates that the state is entangled, N (ρ) = 0 and
R(ρ) > 0 indicates that the state is bound entangled and N (ρ) > 0 means that the
state is free entangled. Note that there are various BES and a single criterion is not
capable to detect all of them [84]. Thus, the realignment criterion detects certain but
not all BES.

Moreover, environmental decoherence in quantum information processing can be
viewed as the loss of information in a system due to unavoidable interactions with its
environment. To some extent, it may be used to evaluate the degree of entanglement
between a system and its environment as well as to estimate the deviation from an
ideal state [85]. In this paper, we quantify the environmental decoherence by means
of the von Neumann entropy [86] of the time-evolved density matrix given by:
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S(t) = −Tr [ρ(t) ln ρ(t)] . (9)

It is worth noting that the von Neumann entropy is a valid measure of decoherence,
only when the interaction of the system with its environment is described classically
as in our case.

3 Results and discussion

In this section we present the results obtained for the two different ways of modeling
classical noise, namely through static and dynamic (RTN) disorder for a two-qutrit
system initially entangled in either states of Eqs. (5) and (6). In particular, the static
noise is simulated by assuming random and time-independent values for each χk , while
the RTN is modeled by selecting the time-dependent χk(t) according to a random
telegraph signal. In the following, a different (or independent) environments coupling
is labeled “de”, while common environment coupling is labeled “ce”. Note that in the
followings, analytical expressions for decoherence, negativity and the realignment are
quite involved and cumbersome to be reported explicitly. Hence, we present only the
corresponding results.

3.1 Static noise

In fact, the first noise we investigate is the static noise, bearing this name due to its
time-independent stochastic variable χk characterized by the flat probability distribu-
tion P(χk) = 1

ϑm
for |χk − ϑ0| ≤ ϑm/2 and vanishes for all other choices [72]. Here,

ϑ0 is the mean value of the distribution and ϑm quantifies the disorder of the environ-

ment. The autocorrelation function of χk reads 〈δχ(t)δχ(0)〉 = ϑ2
m

12 ; hence, its power
spectrum is given by a δ-function centered on zero frequency. As a consequence, this
kind of noise has a characteristic time which is always much longer than the charac-
teristic time of the system–environment coupling. Therefore, the static disorder can be
considered as representative of a non-Markovian noise. Note that physically, the static
noise stems from medium disorder (in disordered structures) like the propagation of
photons in a realistic waveguide array with controllable disorder.

As stated earlier, to describe the full dynamics of the system subjected to the disor-
dered environment, one needs to perform the average in Eq. (4) over all the possible
noise configurations. This corresponds to the integral of the time-evolved states, each
corresponding to a specific choice of the noise parameters. Specifically, for the static
disorder, in both cases of local coupling to different environments (χa 
= χb) and non-
local coupling to a common environment (χa = χb), the two-qutrit evolved states at
time t are, respectively, obtained from

ρde(t) =
∫ d+

d−

∫ d+

d−
P(χa)P(χa)ρ(χa, χb, t)dχadχb (10)
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Fig. 1 Negativity (left and center panels) and decoherence (right panel) as a function of both the dimen-
sionless time τ = gt and initial purity p of the isotropic state for two qutrits under a static noise (ϑm = 1)
in different and common environments coupling

and

ρce(t) =
∫ d+

d−
P(χa)ρ(χa, t)dχa . (11)

In the above equations d± = ϑ0 ± ϑm/2. Their explicit forms each corresponding
to the system initially prepared in either state of Eqs. (5) and (6) are presented in
“Appendix”.

3.1.1 Isotropic states

The composite system is initially prepared in the isotropic state given by Eq. (5) and
then subject to static noise. The evolution of negativity and decoherence as a function
of purity p and dimensionless time τ = gt are plotted in Fig. 1. The results show
that for the pure state (p = 1), entanglement is a non-monotonic and decreasing func-
tion of time exhibiting sudden death (ESD) and revival (ER) phenomena stemming
from the non-Markovian nature of the static noise affecting the two-qutrit system. The
oscillatory behavior is more prominent in non-local system–environment coupling
(center panel) than in a local one (left panel). This demonstrates the relevance of the
type of system–environment interaction over quantum entanglement preservation in
bipartite systems. As the purity p decreases, revival phenomena vanish and disen-
tanglement occurs abruptly. Precisely, optimization shows that the latter monotonic
decay occurs for p < 0.95 and p < 0.62, respectively, in different and common
system–environment(s) coupling. However, in both configurations and as expected,
negativity vanishes for p < 0.25, which corresponds for a (d = 3)-dimensional sys-
tem to p < 1/(d + 1). On the other hand, Fig. 1 shows that decoherence (right panel)
is a monotonic increasing function of time, reaching a corresponding saturation value
with respect to the purity p of the initial state. Unlike negativity, the decoherence
profile coincides for both physical system–environment configurations (either local or
non-local) and hence is independent of the latter.

3.1.2 Bound entangled states

On the other hand, when the two-qutrit system is initially prepared in the bound
entangled states of Eq. (6), the results for the evolution of free entanglement, bound
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Fig. 2 Decoherence as a function of dimensionless time τ = gt and entanglement parameter α for two
qutrits subject to a static noise (ϑm = 1) for different (left panel) and common (right panel) environments
coupling

Fig. 3 Negativity (left panel), realignment criterion (middle panel) and DSD occurence/avoided regions
(right panel: contour plot) as a function of dimensionless time τ = gt and initial state parameter α for
two qutrits subject to a static noise (ϑm = 1) for different (upper panels) and common (lower panels)
environments (Color figure online)

entanglement and decoherence are, respectively, plotted in Figs. 2 and 3 as a function
of time and entanglement parameter α.

Under the degrading effects of a static noise, both realignment criterion and neg-
ativity are monotonic decaying functions of time and go through sudden death in a
short time limit. Meanwhile, decoherence is also a monotonic but increasing function
of time before reaching the saturation values. It is worth noting that unlike isotropic
states, the long time saturation value of decoherence (Fig. 2) is independent of the
state parameter α, and decoherence, however, achieves its greatest level with time.
Despite the non-Markovian nature of the considered noise that is generally a mean of
entanglement revival, results highlight the absence of the latter when the system is ini-
tially prepared in the bound entangled states of Eq. (6) (unlike isotropic states shown
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in Fig. 1), thus demonstrating the relevance of the initial state of the system. Addi-
tionally, since negativity is essentially a NPT criterion, Fig. 3 clearly demonstrates
that it is unable to detect bound entanglement (in the range 3 ≤ α ≤ 4), shown to be
present via the realignment criterion. While decoherence in stronger in different envi-
ronments coupling than in common environment coupling with the static noise, the
opposite is found for negativity; meanwhile, the realignment criterion is independent
of the physical setup. On the other hand, analyzing the dynamics of both negativity
and realignment criterion demonstrate entanglement distillability sudden death (i.e.,
a zero negativity but a nonzero realignment criterion in the free entangled state region
α ∈ [4; 5]) in the qutrit–qutrit system under static noise. Moreover, in different envi-
ronments, all the initially free entangled states can undergo DSD, while for a common
environment, the latter phenomenon is avoided by some FES (red dashed dotted area
on the lower right panel of Fig. 3), thus suggesting the sensitivity of the realignment
criterion to both the physical setup and parameter α. A similar result has previously
been obtained in [43].

3.2 Dynamic noise: RTN

On the other hand, the second class of noise we investigate is the RTN [70,87]. Phys-
ically, a RTN noise can result either from: (i) charges hopping between two locations
in space (charge noise); (ii) electrons trapping in shallow subgap states formed at a
superconductor–insulator boundary (noise of critical current); or (iii) spin diffusion
on a superconductor surface generated by the exchange mediated by the conduction
electrons (flux noise).

Here χk(t) mimicks a classical random fluctuating field such as a bistable fluc-
tuator switching between two fixed values ±x at rate ω. We consider the latter to
be the same for both transitions. The autocorrelation function of the random vari-
able χk(t) is

〈
δχ(t)δχ(t ′)

〉 = exp
[−2ω

∣∣t − t ′
∣∣] with Lorentzian power spectrum

Srtn(ωr ) = 4ω2/
(
ω2
r + 4ω2

)
. Considering the ratio q = g/ω, two regimes for

the decay of quantum correlations are identified, namely the Markovian regime (for
q � 1) and the non-Markovian regime (for q  1). In the evolution of the composite
system during the time interval [0; t], each qutrit picks up a random noise phase factor
ϕk(t) = − ∫ t

0 χk(t ′)dt ′. The averages in Eq. (4) for different environments coupling
(ϕa(t) 
= ϕb(t)) and for a common environment coupling (ϕa(t) = ϕb(t)) read

ρde(t) = 〈〈ρ (ϕa, ϕb, t)〉ϕa
〉
ϕb

and ρce(t) = 〈ρ (ϕa, t)〉ϕa (12)

The latter averages contain in their full expressions, terms of the form 〈exp (inϕk(t))〉
(n ∈ N), for which an analytical expression was found [88] and reads:

〈exp (inϕk(t))〉 =

⎧⎪⎪⎨
⎪⎪⎩
e−ωt

[
cosh(γngt) + ω

γng
sinh(γngt)

]
for ω > ng

e−ωt
[
cos(γngt) + ω

γng
sin(γngt)

]
for ω < ng

(13)
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Fig. 4 Decoherence as a function of dimensionless time ωt and purity p of the initial state for two
qutrits subject to different (left panels) and common (right panels) environments, modeled by a RTN in the
Markovian (upper panels: q = 0.1) and non-Markovian (lower panels: q = 10) regime

where γng =
√∣∣ω2 − (ng)2

∣∣. Also in this case, the explicit forms of ρde(t) and ρce(t)

each corresponding to the system initially prepared in either state of Eqs. (5) and (6)
are given in “Appendix”.

3.2.1 Isotropic states

As we can see from Fig. 4, decoherence induced by the Markovian RTN noise increases
monotonically with time until reaching the corresponding saturation values depend-
ing upon p. In the non-Markovian dynamics, decoherence exhibits some oscillations
for lowest mixedness of quantum states (i.e., maximum purity) before achieving the
corresponding saturation value. Oscillations are more pronounced in a common envi-
ronment coupling than in independent ones, thus demonstrating the robustness of
decoherence in the latter than in the former configuration. Meanwhile, the opposite
behavior is found for Markovian environment(s) where for a given value of p, decoher-
ence is stronger in common environment coupling than in independent ones. Unlike
the case of the static noise, decoherence here is sensitive to the physical setup of the
isotropic two-qutrit system, thus suggesting a potential connexion between the noise
spectrum, the physical setup and the initial state of the system.
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Fig. 5 Negativity as a function of dimensionless time ωt and initial purity p of the isotropic state for
two qutrits subject to RTN noise in the Markovian regime (left panel: q = 0.1) and the non-Markovian
regime (middle and right panels: q = 10). Upper panels: different environments; lower panels: common
environment

In accordance with the Markovian or non-Markovian nature of the noise, Fig. 5
shows that free entanglement (here quantified by negativity), decreases either mono-
tonically (Markovian dynamics) or not (non-Markovian dynamics) with time before
vanishing. The complete disentanglement time increases with increasing values of p.
While negativity vanishes for values of p ≤ 0.25, initial entanglement of the system
is a linear increasing function of p above 0.25. In fact, the two-dimensional dynamics
for fixed values of purity p in Fig. 5 (right panels) clearly show that the oscillatory
dynamics in the non-Markovian regime does not exhibit ESD phenomena. This rep-
resents one of the discrepancies among bipartite three-level (qutrits) and two-level
(qubits) [32] systems under dynamical noise. However, like the two-qubit model [32],
Markovian environments are less fatal to quantum entanglement than non-Markovian
ones. In the latter, a common environment coupling is more effective in preserving free
entanglement of the system than independent environments. The opposite is found in
Markovian environments, where the relative weaker degradation of entanglement for
greater values of initial purity can ensure persistent entanglement at long time in the
system. The above-mentioned results in the case of disentanglement induced by the
dynamic noise model are similar with some earlier findings concerning the disentan-
glement of Bell and Dicke states of two three-level atoms in a V type configuration,
coupled to a common vacuum and separated by a distance comparable to the radia-
tion wavelength [89]. ESD phenomena are totally removed from the dynamic, and we
either observe an asymptotic or a non-monotonic decay of entanglement.

3.2.2 Bound entangled states

In this case, the dynamics of decoherence for bound entangled states shown in Fig. 6
is not too much different from that of Fig. 4, for isotropic states (free entangled states).
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Fig. 6 Decoherence as a function of dimensionless time ωt and entanglement parameter α of the initial
state for two qutrits subject to different (left panels) and common (right panels) environments, modeled by
a RTN in the Markovian (upper panels: q = 0.1) and non-Markovian (lower panels: q = 10) regime

Hence, the dynamics will not be discussed here in details due to dynamical similarities
and we present just the major discrepancies. In fact unlike isotropic states, a free
decoherence state (state with zero decoherence) cannot occur when the composite
system is initially prepared in the bound entangled states of Eq. (6). Decoherence,
however, achieves its greatest value in the long time limit independently of parameter
α.

Figure 7 shows the evolution of the negativity and realignment criterion for ini-
tially bound entangled states of Eq. (6), for the system interacting with a RTN noise
in the Markovian regime. As a result of the nature of the environmental noise, both
free entanglement (negativity) and bound entanglement (realignment criterion) decay
abruptly in a monotonic manner going through sudden death. Disentanglement time
increases with increasing values of the parameter α and free entanglement is more
robust in non-local interaction than local one. Moreover, negativity is unable to detect
bound entangled states (for 3 ≤ α ≤ 4) shown to be present via the realignment
criterion. BES are degraded by environmental decohering effects, showing that under
Markovian RTN noises, qutrit–qutrit bound entangled states cannot be converted into
free entangled states. Meanwhile, for 4 ≤ α ≤ 5, we observe free entanglement dis-
tillability sudden death [43,69], i.e., NPT states (free entangled) becoming PPT states
after a certain time. In fact, Fig. 7 (right panels) clearly shows that under independents
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Fig. 7 Negativity (left panel), realignment criterion (middle panel) and DSD occurence/avoided regions
(right panel: contour plot) as a function of dimensionless time ωt and entanglement parameter α, for two
qutrits subject to a Markovian RTN noise (q = 0.1) for different (upper panels) and common (lower panels)
environments coupling (Color figure online)

environments, all initially FES undergo DSD, whereas for a common environment,
DSD can be avoided by some states presenting the sole phenomenon of ESD. Such
a result simply highlights the sensitivity of DSD to both the entanglement parameter
and the physical setup considered.

The same behavior is obtained in the case of a non-Markovian dynamic environ-
ment as shown in Fig. 8, but few revival phenomena can be observed for a common
environment coupling and again, DSD phenomena are observed. Specifically, unlike
FES subject to a common Markovian dynamic noise (Fig. 7), and alike FES under
independent environments (no matter their nature), all initially FES considered in
the present case are affected by DSD phenomena after a finite time. However, the
realignment criterion fails to detect some entangled states in certain regions like the
interval 0.048 � ωt � 0.109 (red dashed dotted regions). This highlights once again
the sensitivity of the realignment criterion to the parameter α and the physical setup.
Hence, although the initial free entangled states can become PPT after a finite time
we cannot, however, conclude their separability/entanglement immediately. The PPT
states might be entangled suffering distillability sudden death followed by entangle-
ment sudden death. On the other hand, Fig. 8 shows that the memory effects of the
non-Markovian RTN can be completely canceled by the system physical setup (the
specific case of different environments coupling), leading to the absence of the oscil-
latory behavior that generally characterizes non-Markovian environments. However,
an effect of delayed sudden birth of entanglement, has been invented by Ficek and
Tanas [90] and observed by L. Derkacz, and L. Jakóbczyk [91]. In the same light, we
demonstrate a similar phenomenon in the present study, where is observed a sort of
delayed sudden rebirth of entanglement, occurring after an ESD phenomenon, for the
system initially prepared in bound entangled states, and experiencing the effects of
the collective/common non-Markovian dynamic noise. Hence, in view of the current
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Fig. 8 Negativity (left panel), realignment criterion (middle panel) and DSD occurence/avoided regions
(right panel: contour plot) as a function of dimensionless time ωt and entanglement parameter α, for two
qutrits subject to a non-Markovian RTN noise (q = 10) for different (upper panels) and common (lower
panels) environments coupling. Region (R1) corresponds to N (ρ) > 0 and R(ρ) > 0, while region (R2)
is for N (ρ) = 0 and R(ρ) = 0 (Color figure online)

finding and analyzing the earlier one, we suggest that the observed feature ((re)birth of
entanglement) may be induced by either/both the type of system–environment inter-
action (the common environment) or/and the nature of the noise channel (dynamic
and non-Markovian).

It is worth mentioning that for the static as for the dynamic noise models, we do not
report the results of the realignment criterion when the composite system is initially
prepared in the isotropic state Eq. (5). The reason is that after representation, both
negativity and realignment criterion are equal:

N (
ρde(ce)(p, t)

) = R (
ρde(ce)(p, t)

)
. (14)

Thus, free entanglement (quantified with negativity) and bound entanglement (quanti-
fied with the realignment criterion) coincide. This result suggests the complete absence
of DSD phenomena, for qutrit–qutrit isotropic states under the classical environmental
noise models here considered. However, they suffer ESD. A similar result has been
demonstrated in [43,51].

4 Conclusions

We have investigated the dynamics of decoherence, quantum free and bound entangle-
ments in a model consisting of two initially entangled qutrits, not interacting among
each other and coupled to independent sources or to a common source of classical
noise, namely the static noise (non-Markovian) and the dynamic noise (RTN, model-
ing either a Markovian or a non-Markovian noise). Two initial states are considered: the
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isotropic states and the BES. Free and bound entanglement are, respectively, quantified
with negativity and the realignment criterion, whereas environmental decoherence is
evaluated using the von Neumann entropy. We further investigated the occurence of
DSD.

We show that while decoherence is a monotonic increasing function of time with
saturation value depending upon initial purity of the isotropic state, its maximum level
is always achieved with time for bound entangled states, independently of the initial
state parameter, hence being stronger in BES than isotropic ones. In the latter, the
evolution profile under static noise is independent of the physical setup. For BES
under non-Markovian noise, decoherence is stronger in “de” coupling than in “ce”
coupling; meanwhile, the opposite is found under Markovian noise.

For isotropic states, both negativity and realignment criterion coincide, thus
suggesting the complete absence of DSD. Non-Markovian environments lead to non-
monotonic degradation of quantum entanglement with possible occurence of sudden
death (SD) and revival (SR) phenomena depending on the noise spectrum. Specifi-
cally, SD and SR are observed only for the static noise model; meanwhile, for the
non-Markovian dynamic environment, entanglement is a damped oscillating function
of time, completely avoiding SD before vanishing with time. This is a specific feature
of the two-qutrit system, since for the equivalent two-qubit model [32], SD are always
present no matter the noise spectrum, thus suggesting the efficiency of the bipartite
qutrit model over the qubit one.

Meanwhile, the Markovian RTN leads to a monotonic decaying profile of entan-
glement. Here, the relative weaker degradation of entanglement for greater values of
initial purity ensures avoiding a long time complete disentanglement.

On the other hand, when the system is initially prepared in the BES, both free
and bound entanglement decay abruptly going through ESD, no matter the noise
regime, specifically in different environments coupling. It is worth mentioning that
the physical setup and noise spectrum can serve as means of entanglement revival.
Specifically few are observed for both negativity and realignment criterion for the
system commonly coupled to a non-Markovian dynamic noise. However, negativity
fails to detect bound entanglement; meanwhile, DSD phenomena are observed no
matter the noise regime. But DSD can also be avoided depending on both the initial
state parameter and the physical setup. Moreover, it is worth mentioning that the
Hamiltonian here considered is of non-dissipative type, hence similar to the case
of dissipative dynamical process [43,51], we have found that certain free entangled
qutrit–qutrit states also become bound entangled as a consequence of the interaction
with the classical noises describes using a non-dissipative model. Finally, similar to
the two-qubits model [32], a common environment coupling is more effective than
different environments for free entanglement preservation under non-Markovian noise,
while the opposite is found for Markovian ones. Meanwhile, bound entanglement may
be insensitive to the physical setup.
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A Appendix: Explicit forms of the time-evolved states

We present the explicit forms of the various time-evolved states under the effects of
the classical noise models considered, initially entangled in either state of Eqs. (5)
and (6), and for both physical setups considered.

A.1 Static noise

A.1.1 Isotropic states

When the subsystems are initially entangled in isotropic states and subject to static
noise, their density matrices from Eqs. (10) and (11) take the following form:

ρde(ce)(p, t)

= 1

72

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
de(ce)
11 ρ

de(ce)
12 ρ

de(ce)
13 ρ

de(ce)
12 ρ

de(ce)
15 ρ

de(ce)
12 ρ

de(ce)
13 ρ

de(ce)
12 ρ

de(ce)
19

−ρ
de(ce)
12 ρ

de(ce)
22 ρ

de(ce)
23 ρ

de(ce)
24 ρ

de(ce)
25 ρ

de(ce)
24 ρ

de(ce)
23 ρ

de(ce)
24 −ρ

de(ce)
12

ρ
de(ce)
13 −ρ

de(ce)
23 ρ

de(ce)
33 −ρ

de(ce)
23 ρ

de(ce)
35 −ρ

de(ce)
23 ρ

de(ce)
37 −ρ

de(ce)
23 ρ

de(ce)
13

−ρ
de(ce)
12 ρ

de(ce)
24 ρ

de(ce)
23 ρ

de(ce)
22 ρ

de(ce)
25 ρ

de(ce)
24 ρ

de(ce)
23 ρ

de(ce)
24 −ρ

de(ce)
12

ρ
de(ce)
15 −ρ

de(ce)
25 ρ

de(ce)
35 −ρ

de(ce)
25 ρ

de(ce)
55 −ρ

de(ce)
25 ρ

de(ce)
35 −ρ

de(ce)
25 ρ

de(ce)
15

−ρ
de(ce)
12 ρ

de(ce)
24 ρ

de(ce)
23 ρ

de(ce)
24 ρ

de(ce)
25 ρ

de(ce)
22 ρ

de(ce)
23 ρ

de(ce)
24 −ρ

de(ce)
12

ρ
de(ce)
13 −ρ

de(ce)
23 ρ

de(ce)
37 −ρ

de(ce)
23 ρ

de(ce)
35 −ρ

de(ce)
23 ρ

de(ce)
33 −ρ

de(ce)
23 ρ

de(ce)
13

−ρ
de(ce)
12 ρ

de(ce)
24 ρ

de(ce)
23 ρ

de(ce)
24 ρ

de(ce)
25 ρ

de(ce)
24 ρ

de(ce)
23 ρ

de(ce)
22 −ρ

de(ce)
12

ρ
de(ce)
19 ρ

de(ce)
12 ρ

de(ce)
13 ρ

de(ce)
12 ρ

de(ce)
15 ρ

de(ce)
12 ρ

de(ce)
13 ρ

de(ce)
12 ρ

de(ce)
11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

where

ρ
de(ce)
11 = X+; ρ

de(ce)
33 = X− with X± = 8 + p

(
1 ± 12αde(ce) + 3ξde(ce)

)
ρ

de(ce)
12 = −Y+; ρ

de(ce)
23 = Y− with Y± = 6i p

√
2

(
�de(ce)C2(t) ± �de(ce)

)
S2(t)

ρ
de(ce)
13 = −ρ

de(ce)
24 = 3p

(−1 + ξde(ce)
) ; ρ

de(ce)
22 = 2

(
4 − p(1 + 3ξde(ce))

)
ρ

de(ce)
15 = B+; ρ

de(ce)
35 = B− with B± = 6p

(
1 ± 2αde(ce) + ξde(ce)

)
ρ

de(ce)
19 = Z+; ρ

de(ce)
37 = Z− with Z± = 3p

(
3 ± 4αde(ce) + ξde(ce)

)
ρ

de(ce)
25 = 6i p

√
2�de(ce)S4(t); ρ

de(ce)
55 = 4

(
2 + p(1 + 3ξde(ce))

)

where

αde(ce) = �de(ce)C2(t); ξde(ce) = �de(ce)C4(t); �de = K 2
(1); �ce = K(2);

�de = K 2
(2); �ce = K(4)

�de = K 2
(1); �ce = K(2); �de = K 2

(2); �ce = K(4)

Cn(t) = cos(ngtϑ0); Sn(t) = sin(ngtϑ0);
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K(n) = 2 sin(ngtϑm/2)

ngtϑm
, n ∈ {1, 2, 4}

A.1.2 Bound entangled states

When the subsystems are initially prepared in bound entangled states and then subject
to a static noise, Eqs. (10) and (11) give:

ρde(ce)(α, t)

= 1

2688

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sde(ce)
11 sde(ce)

12 sde(ce)
13 sde(ce)

14 sde(ce)
15 sde(ce)

16 sde(ce)
17 sde(ce)

18 sde(ce)
19

−sde(ce)
12 sde(ce)

22 sde(ce)
23 sde(ce)

24 sde(ce)
25 sde(ce)

26 sde(ce)
27 sde(ce)

28 −sde(ce)
16

sde(ce)
13 −sde(ce)

23 sde(ce)
33 sde(ce)

34 sde(ce)
35 −sde(ce)

23 sde(ce)
37 sde(ce)

34 sde(ce)
13

−sde(ce)
14 sde(ce)

24 −sde(ce)
34 sde(ce)

44 sde(ce)
45 sde(ce)

28 sde(ce)
47 sde(ce)

48 −sde(ce)
18

sde(ce)
15 −sde(ce)

25 sde(ce)
35 −sde(ce)

45 sde(ce)
55 −sde(ce)

25 sde(ce)
57 −sde(ce)

45 sde(ce)
15

−sde(ce)
16 sde(ce)

26 sde(ce)
23 sde(ce)

28 sde(ce)
25 sde(ce)

22 sde(ce)
27 sde(ce)

24 −sde(ce)
12

sde(ce)
17 −sde(ce)

27 sde(ce)
37 −sde(ce)

47 sde(ce)
57 −sde(ce)

27 sde(ce)
77 −sde(ce)

47 sde(ce)
17

−sde(ce)
18 sde(ce)

28 −sde(ce)
34 sde(ce)

48 sde(ce)
45 sde(ce)

24 sde(ce)
47 sde(ce)

44 −sde(ce)
14

sde(ce)
19 sde(ce)

16 sde(ce)
13 sde(ce)

18 sde(ce)
15 sde(ce)

12 sde(ce)
17 sde(ce)

14 sde(ce)
11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)

with

sde
11 = 306 − 80�de + C2(t) (−20�ce + 48�de) + (−15 + 17C4(t))�de

sde
15 = 64 + 8�de (5 + 11C2(t)) + 2�de (15 + 17C4(t))

sde
24 = 64 + 40�de (−1 + C2(t)) − 2�de (15 + 17C4(t))

sde
25 = −8i

√
2S1 (�ceC1(t) (5 − 17�ceC2(t)) − (1 + 3C2(t)�ce)y1(α))

sde
28 = 44 − 40�ceC2(t) + 2�de (15 − 17C4(t))

sde
45 = 4i

√
2S1(t) (−10�ceC1(t) + 17�de (C1(t) + C3(t)) − 2(1 + 3�ceC2(t))y1(α))

sde
55 = 328 − 80�ceC2(t) + 4�de (−15 + 17C4(t))

sde
12 = A+

de; sde
14 = A−

de; sde
16 = B+

de; sde
34 = B−

de; sde
18 = D+

de; sde
27 = −D−

de;
sde

35 = E−
de

sde
57 = E+

de; sde
19 = F+

de; sde
37 = F−

de; sde
33 = G+

de; sde
77 = G−

de; sde
26 = H+

de;
sde

48 = H−
de

sde
13 = I+de; sde

17 = I−de; sde
22 = J−

de; sde
44 = J+

de; sde
23 = L+

de; sde
47 = L−

de

with

A±
de = i

√
2 (−17S4(t)�de + 2S2(t) (5�ce − 12�de)

± 2 (−2S1(t) + 3 (3S1(t) + S3(t))�ce) y1(α))
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B±
de = −i

√
2 (17S4(t)�de + S2(t) (30�ce ± 64�de)

− 6 (−S3�ce + S1(2 + �ce)) y1(α))

D±
de = −2i

√
2S1(t) (C1(t) (�ce(30 + 17�ce) ± 64�de) + 17C3(t)�de

− 6 (−1 + C2�ce) y1(α))

E±
de = 64 − 8 (5 + 11C2)�de + (30 + 34C4)�de ± 24 (C1 − C3)�cey1(α)

F±
de = 66 + 4C2(t) (15�ce ± 32�de) + (−15 + 17C4(t))�de

G±
de = 306 + 80�de − 4C2 (5�ce + 12�de) + (−15 + 17C4)�de

± 8 (2C1 + 3(C1 + C3)�ce) y1(α)

H±
de = 64 − 40 (−1 + C2(t))�de − 2 (15 + 17C4(t))�de

± 24 (C1(t) − C3(t))�cey1(α)

I±de = −22 + 20�ceC2(t) − �de (15 − 17C4(t))

± 12 (−2C1(t) + (C1(t) + C3(t))�ce) y1(α)

J±
de = 2 (142 + 20�ceC2(t) − 17�deC4(t) + 15�de

± 4 (2C1(t) + 3�ce (C1(t) + C3(t))) y1(α))

L±
de = i

√
2 (17S4(t)�de − 2S2(t)(5�ce + 12�de)

± 2 (2S1(t) + 3 (S1(t) + 3S3(t))�ce) y1(α))

where

y1(α) = K(1)(5 − 2α)

y3(α) = K(3)(5 − 2α)

and

sce
11 = 211 + 28�ceC2(t) + 17�ceC4(t); sce

15 = 2 (67 + 44�ceC2(t) + 17�ceC4(t))

sce
19 = 51 + 188�ceC2(t) + 17�ceC4(t); sce

24 = −3 + 20�ceC2(t) − 17�ceC4(t)

sce
28 = 2 (37 − 20�ceC2(t) − 17�ceC4(t)) ; sce

37 = 17 (3 − 4�ceC2(t) + �ceC4(t))

sce
55 = 4 (67 − 20�ceC2(t) + 17�ceC4(t)) ; sce

12 = A+
ce; sce

14 = A−
ce

sce
16 = B−

ce; sce
18 = B+

ce; sce
13 = D−

ce; sce
17 = D+

ce; sce
27 = E−

ce; sce
34 = −E+

ce;
sce

22 = F−
ce; sce

44 = F+
ce; sce

33 = G+
ce; sce

77 = G−
ce; sce

23 = H−
ce; sce

47 = H+
ce;

sce
26 = I+ce; sce

48 = I−ce; sce
35 = J−

ce; sce
57 = J+

ce; sce
35 = L−

ce; sce
57 = L+

ce

with

A±
ce = −i

√
2 (14�ceS2(t) + 17�ceS4(t) ± 2 (7y1(α)S1(t) + 3S3(t)y3(α)))

B±
ce = −i

√
2 (94�ceS2(t) + 17�ceS4(t) ± (18y1(α)S1(t) − 6S3(t)y3(α)))

D±
ce = −37 + 20�ceC2(t) + 17�ceS4(t) ± 12 (C1(t)y1(α) − C3(t)y3(α))

E±
ce = −i

√
2 (34�ceS2(t) − 17�ceS4(t) ± 6 (3y1(α)S1(t) − S3(t)y3(α)))

F±
ce = 314 + 40�ceC2(t) − 34�ceC4(t) ± 8 (5C1(t)y1(α) + 3C3(t)y3(α))
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G±
ce = 371 − 68�ceC2(t) + 17�ceC4(t) ± 8 (5C1(t)y1(α) + 3C3(t)y3(α))

H±
ce = −i

√
2 (34�ceS2(t) − 17�ceS4(t) ± 2 (5y1(α)S1(t) + 9S3(t)y3(α)))

I±ce = 74 − 40�ceC2(t) − 34�ceC4(t) ± 24 (C1(t)y1(α) − C3(t)y3(α))

J±
ce = 54 − 88�ceC2(t) + 34�ceC4(t) ± 24 (C1(t)y1(α) − C3(t)y3(α))

L±
ce = 2i

√
2 (−10�ceS2(t) + 17�ceS4(t) ± 2 (y1(α)S1(t) − 3S3(t)y3(α)))

A.2 Dynamic noise

A.2.1 Isotropic states

For the dynamic noise model, when the system is initially prepared in state of Eq. (5),
density matrices from Eq. (12) take the following form:

ρde(ce)(t)

= 1

72

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A+
de(ce) 0 Bde(ce) 0 C+

de(ce) 0 Bde(ce) 0 D+
de(ce)

0 Ede(ce) 0 −2Bde(ce) 0 −2Bde(ce) 0 −2Bde(ce) 0
Bde(ce) 0 A−

de(ce) 0 C−
de(ce) 0 D−

de(ce) 0 Bde(ce)

0 −2Bde(ce) 0 Ede(ce) 0 −2Bde(ce) 0 −2Bde(ce) 0
C+

de(ce) 0 C−
de(ce) 0 Fde(ce) 0 C−

de(ce) 0 C+
de(ce)

0 −2Bde(ce) 0 −2Bde(ce) 0 Ede(ce) 0 −2Bde(ce) 0
Bde(ce) 0 D−

de(ce) 0 C−
de(ce) 0 A−

de(ce) 0 Bde(ce)

0 −2Bde(ce) 0 −2Bde(ce) 0 −2Bde(ce) 0 Ede(ce) 0
D+

de(ce) 0 Bde(ce) 0 C+
de(ce) 0 Bde(ce) 0 A+

de(ce)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(17)

where

A±
de(ce) = 8 + p

(
1 ± 12�de(ce) + 3�de(ce)

)
Bde(ce) = 3p

(
�de(ce) − 1

)
C±

de(ce) = 6p
(
1 ± 2�de(ce) + �de(ce)

)
D±

de(ce) = 3p
(
3 ± 4�de(ce) + �de(ce)

)
Ede(ce) = 2

(
4 − p(1 + 3�de(ce))

)
Fde(ce) = 4

(
2 + p

(
1 + 3�de(ce)

))
�de = �2

1(t); �de = �2
2(t); �ce = �2(t); �ce = �4(t).

A.2.2 Bound entangled states

Here Eq. (12) gives:
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ρ̃de(t) = 1

1344

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 0 B−
1 0 C1 0 B+

1 0 D+
1

0 E+
1 0 F1 0 F1 0 G1 0

B−
1 0 H−

1 0 J1 0 D−
1 0 B−

1
0 F1 0 E−

1 0 G1 0 F1 0
C1 0 J1 0 K1 0 J1 0 C1

0 F1 0 G1 0 E+
1 0 F1 0

B+
1 0 D−

1 0 J1 0 H+
1 0 B+

1
0 G1 0 F1 0 F1 0 E−

1 0
D+

1 0 B−
1 0 C1 0 B+

1 0 A1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)

ρ̃ce(t) = 1

2688

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A2 0 B+
2 0 C2 0 B−

2 0 D2

0 E+
2 0 F2 0 −B+

2 0 H2 0
B+

2 0 I−
2 0 J+

2 0 K2 0 B+
2

0 F2 0 E−
2 0 H2 0 −B−

2 0
C2 0 J+

2 0 L2 0 J−
2 0 C2

0 −B+
2 0 H2 0 E+

2 0 F2 0
B−

2 0 K2 0 J−
2 0 I+

2 0 B−
2

0 H2 0 −B−
2 0 F2 0 E−

2 0
D2 0 B+

2 0 C2 0 B−
2 0 A2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(19)

where

A1 = 153 − 16�de − (10 − �ce)�ce

B±
1 = (−1 + �ce) (11 + �ce ± 12 f (α)�1(t))

C1 = 32 (1 + 2�de + �de)

D±
1 = 33 ± 64�de + �ce (30 + �ce)

E±
1 = 2 (71 + (10 − �ce)�ce ± 4�1(t) (1 + 3�ce) f (α))

F1 = 64 (1 − �de)

G1 = 2 (1 − �ce) (11 + �ce)

H±
1 = 153 + 16�de − (10 − �ce)�ce ± 8�1(t) (1 + 3�ce) f (α)

J1 = 32 (1 − 2�de + �de)

K1 = 4 (41 − (10 − �ce)�ce)

and

A2 = 211 + 28�ce + 17�ce

B±
2 = −37 + 20�ce + 17�ce ± 12 (�1(t) − �3(t)) f (α)

C2 = 2 (67 + 44�ce + 17�ce)

D2 = 188�ce + 17 (3 + �ce)

E±
2 = 2 (157 + 20�ce − 17�ce ± 4 (3�3(t) + 5�1(t)) f (α))

F2 = 2 (−3 + 20�ce − 17�ce)

H2 = 2 (37 − 20�ce − 17�ce)
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I±
2 = 371 − 68�ce + 17�ce ± 8 (5�1(t) + 3�3(t)) f (α)

J±
2 = 2 (27 − 44�ce + 17�ce ± 12 (�1(t) − �3(t)) f (α))

K2 = 17 (3 − 4�ce + �ce)

L2 = 4 (67 − 20�ce + 17�ce)

with

f (α) = −5 + 2α.
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