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Abstract Linearly independent quantum states can be unambiguously discriminated,
but linearly dependent ones cannot. For linearly dependent quantum states, however,
if C copies of the single states are available, then they may form linearly independent
states, and can be unambiguously discriminated. We consider unambiguous discrim-
ination among N �D+ 1 linearly dependent states given that C copies are available
and that the single copies span a D-dimensional space with equal inner products. The
maximum unambiguous discrimination probability is derived for all C with equal a
priori probabilities. For this classification of the linearly dependent equidistant states,
our result shows that if C is even then adding a further copy fails to increase the
maximum discrimination probability.

Keywords Minimum-error discrimination · Unambiguous discrimination · Maximum
discrimination probability

1 Introduction

Orthogonal quantum states can be perfectly distinguished in quantum mechanics.
However, if quantum states are nonorthogonal, they cannot be perfectly discrimi-
nated. Quantum state discrimination (QSD) [1–3] is a fundamental issue of quantum
information theory. Up to date, a vast of researches has been focused on this problem
and has developed rapidly recently.
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QSD can be described as follows: discrimination of a set of quantum states {|ρi 〉}Ni�1

with a prior probability ηi for
∑N

i�1 ηi � 1. In QSD, there are two fundamental
strategies: One strategy is minimum-error (ME) [4] discrimination and the other is
unambiguous discrimination (UD) [5–8]. In ME, the measurement of the initial states
produces the correct probability, along with the error probability. One criterion is
to minimize the error probability. A number of investigations have dedicated to the
problems of finding the ME measurements [9–13]. The UD strategy gives no error
in the identification of the initial states at the expense of producing an inconclu-
sive result with some nonzero probability. The simplest case is to distinguish two
nonorthogonal states for equal prior probability [5–7] and for arbitrary prior proba-
bility [8]. When N ≥ 3, some special cases were given the optimal solutions [14–16].
There are other state discrimination strategies [17–19]. Minimum-error discrimi-
nation and unambiguous discrimination have been realized in experiment recently
[20–22].

The UD strategy is possible if and only if quantum states to be discriminated
are linearly independent [23]. A set of linearly dependent quantum states can-
not be discriminated unambiguously. Suppose that we are given a set of linearly
dependent quantum states with C ≥ 2 copies of each single state. If using a
single-by-single measurement on the copies, it is obvious that these linearly depen-
dent initial states cannot be discriminated unambiguously. If, however, the quantum
states with C copies become linearly independent ones, then unambiguous discrim-
ination will be carried out by a collective (many-by-many) measurement on the C
copies.

In Ref. [24], the author considered three linearly dependent states in 2-dimensional
Hilbert space, i.e., the trine state, and derived the maximum discrimination probability.
In this paper, we investigate N � D + 1 linearly dependent states in D dimensions.
The inner products of linearly dependent states are equal, i.e., the linearly dependent
equidistant state {|ψi 〉} with their inner product

〈
ψi

∣
∣ ψ j

〉 � 1
D e

iπ for i �� j . If we are
given C ≥ 2 copies of these states, then they will form a set of linearly independent
states, i.e.,

{|Ψi 〉 � |ψi 〉⊗C
}

for i � 1, 2, . . . , D + 1, and the state {|Ψi 〉} can be
unambiguously discriminated. Note that even the states {|Ψi 〉} are linearly independent,
if using separate measurements on the single copies, unambiguous discrimination
is also impossible because the states {|ψi 〉} are linearly dependent. However, if we
perform a collective measurement on the ensemble, the states {|Ψi 〉} can then be
unambiguously discriminated. We first carry a unitary transformation onC ≥ 2 copies
of these states, and then measure the output. When C is even, if adding another
copy to an even number of copies, the maximum discrimination probability does not
increase. Our result covers the contributions in Ref. [24]. Furthermore, our method
of introducing a unitary transformation provides a physical realization of a collective
measurement.

The paper is organized as follows. In Sect. 2, we introduce the linearly depen-
dent equidistant states, and give the explicit forms of the trine and tetrad states. We
derive the maximum discrimination probability in Sect. 3. The paper ends with a
summary.
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2 Linearly dependent equidistant states

Suppose that quantum states |ψi 〉 for i � 1, 2, . . . , N span a D-dimensional Hilbert
space H it is obvious that if D < N , then the N states are linearly dependent. In
Ref. [24], the authors defined three states in 2-dimensional Hilbert space, i.e., the trine
state:

|ψ1〉 � |0〉 , |ψ2〉 � −1

2

(
|0〉 +

√
3 |1〉

)
, |ψ3〉 � −1

2

(
|0〉 − √

3 |1〉
)

, (1)

where the state {|0〉 , |1〉} is an orthonormal basis. Obviously, the trine states are linearly
dependent, and their inner products are equal, i.e.,

〈
ψi

∣
∣ ψ j

〉 � si j eiϕi j � 1
2e

iπ for
i �� j . For given C ≥ 2 copies of the trine states, the states

{|ψi 〉⊗C
}

are linearly
independent and then can be unambiguously discriminated.

The states defined by Eq. (1) may be defined as the three linearly dependent equidis-
tant states. We next define N linearly dependent equidistant states. For N � D+1 states
inD-dimensional Hilbert space, it is of course that they are linearly dependent. Suppose
that these states have a property that their inner products are equal, we then define them
as the equidistant states. We will determine the values of the inner products among
them. If the states are linearly dependent, then the determinant formed by the inner
products of the equidistant states must be zero, i.e., det[

∣
∣ai j � 〈

ψi
∣
∣ ψ j

〉∣
∣
N×N ] � 0.

The matrix has the following form

∣
∣ai j

∣
∣
N×N �

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 s s · · · s
s 1 s · · · s
s s 1 · · · s
...

...
...

. . .
...

s s s · · · 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (2)

It is straightforward to calculate the value of the determinant

det
[∣
∣ai j

∣
∣
N×N

]
� [1 + (N − 1) s] (1 − s)N−1 . (3)

Since s ∈ (− 1, 1), we therefore obtain the value of the inner products of linearly
dependent equidistant states as

s � − 1

N − 1
� 1

N − 1
eiπ � 1

D
eiπ (4)

If det[
∣
∣ai j

∣
∣] > 0, on the other hand, the states will be linearly independent. For

C ≥ 2 copies of each of N � D + 1 linearly dependent equidistant states, clearly, the

states
{|ψi 〉⊗C

}
are linearly independent, since det[

∣
∣
∣ai j � 〈

ψi
∣
∣ ψ j

〉⊗C
∣
∣
∣
N×N

] > 0.
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For this classification of the linearly dependent equidistant states discussed above,
the tetrad states in a 3-dimensional Hilbert space may be defined as follows

|ψ1〉 � |0〉 , |ψ2〉 � −1

3
|0〉 +

√
8

3
|1〉 ,

|ψ3〉 � −1

3
|0〉 −

√
2

3
|1〉 +

√
2

3
|2〉 ,

|ψ4〉 � −1

3
|0〉 −

√
2

3
|1〉 −

√
2

3
|2〉 . (5)

The inner product among the tetrad states is s � 1
3e

iπ .
In Ref. [24], the authors studied unambiguous discrimination of C ≥ 2 copies of

the trine states defined by Eq. (1), and presented the maximum success discrimination
probability:

Pmax
(
|ψi 〉⊗C

)
�

{
1 − 2−C even C
1 − 2−(C−1) odd C

(6)

In the next section, we generalize this situation to D-dimensional Hilbert space
and derive the maximum success discrimination probability. Our result covers the
contributions in Ref. [24].

3 Unambiguous discrimination among linearly dependent equidistant
states with multiple copies

Due to linear dependency of the states {|ψi 〉}, they cannot be unambiguously dis-
criminated at level of one copy. Even for the linearly independent equidistant states{|ψi 〉⊗C

}
, they cannot also be unambiguously discriminated by using separate mea-

surement on each single copy. Therefore, we need perform a collective measurement
on the set

{|ψi 〉⊗C
}
. We first act a unitary transformation on the initial set, and then

measure the output states for the derivation of the minimum failure probability.
The unitary transformation U acting on the input states |ψi 〉⊗C for discriminating

the states |ψi 〉 and producing the output states for measurement, is defined as

U |ψi 〉⊗C → √
pi |Πi 〉 |Ψi 〉 +

√
qi |Ξi 〉 |Ψ?〉 . (7)

It is obvious that pi + qi � 1. The measurement states,|Ψi 〉 and |Ψ?〉 for i �
1, 2, . . . , N , are orthonormal states as the measurement operators; the discrimination
state |Πi 〉 and the failure state |Ξi 〉 for i � 1, 2, . . . , N , are normalized, but are
unnecessary orthogonal. After the unitary transformation acting on the initial states,
we can measure the measurement states |Ψi 〉 and |Ψ?〉. If the state |Ψi 〉 is measured,
the probability of successfully detecting the state |ψi 〉 is ηi pi . Measurement of the
state |Ψ?〉 will give an inconclusive answer, so the failure probability is ηi qi . There-
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fore, the average success and average failure probabilities are conventionally defined,
respectively,

P �
N∑

i�1

ηi pi , Q �
N∑

i�1

ηi qi , (8)

From Eq. (8), it is obvious that P + Q � 1.
The unitary transformation defined by (7) yields an inner-product-preserving con-

dition

D−CeiCπ � √
qiq j

〈
Ξi

∣
∣ Ξ j

〉 � √
qiq j s̃i j e

iϕi j , (9)

where s̃i j eiϕi j � 〈
Ξi

∣
∣ Ξ j

〉
. For the UD scheme, the task is to maximize the success

probability, or to minimize the failure probability. Note that unambiguous discrimi-
nation is possible only for linearly independent states [23]. For the failure states |Ξk〉
for k � 1, 2, . . . , N , they must be linearly dependent. If not so, after the state |Ψ?〉 is
measured, the output state will be collapsed to the failure states |Ξk〉 with a probability
qk , and then the failure states |Ξk〉 can also be unambiguously discriminated succes-
sively. Until they become linearly dependent states, the failure states can no longer be
unambiguously discriminated. Generally speaking, for arbitrary a prior probability,
it is difficult to calculate the minimum failure probability under the condition given
by Eq. (9). For convenience, we consider the case of equal a prior probability, i.e.,
ηi � 1/N . Our task is to minimize the failure probability

Q � 1

N

N∑

i�1

qi . (10)

When C ≥ 2 is even, the inner product of the states
{|ψi 〉⊗C

}
becomes s � D−C .

Equation (9) is reduced to

D−C � √
qiq j s̃i j e

iϕi j . (11)

From Eq. (11), it is clear that the phase factor must be ϕi j � 0. We then determine the
real value of s̃i j . Using inequality of arithmetic and geometric means, Eq. (10) can be
rewritten

Q � 1

N

N∑

i�1

qi ≥
(

N∏

i�1

qi

)1/ N

, (12)

where the equality holds if and only if all the failure probabilities qi are equal, i.e.,
qi � q. This condition implies that Q � q. Therefore, we get the value of the failure
probability Q � q � D−C

/
s̃i j . Obviously, the larger the value of the inner products,
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〈
Ξi

∣
∣ Ξ j

〉
, of the failure states has, the smaller the value of the failure probability

reaches. Taking s̃i j � 1, the minimum failure probability is arrived at

Qmin � D−C for even C. (13)

In the case of C ≥ 2 being even, the inner products of the failure states are〈
Ξi

∣
∣ Ξ j

〉 � 1, which implies that |Ξi 〉 � ∣
∣Ξ j

〉
and that the failure states are lin-

early dependent.
When C ≥ 2 is odd, the inner products of the states

{|ψi 〉⊗C
}

become
〈
ψi

∣
∣ ψ j

〉⊗C � D−Ceiπ . Equation (9) is then reduced to

D−Ceiπ � √
qiq j s̃i j e

iϕi j . (14)

This equation gives two conditions, i.e., ϕi j � π and D−C � √
qiq j s̃i j . Since

the failure states are linearly dependent, from Eq. (4) we must take s̃i j � D−1 when
ϕi j � π . We then derive the minimum failure probability

Qmin � D−(C−1) for odd C (15)

We can also obtain Eq. (15) without the condition that the failure states must be
linearly dependent, which comes from the result given by Ref. [23]. For the equidistant
states with the inner product s̃i j eiπ , when s̃i j ∈ [

0, D−1
)

they are linearly independent,
and when s̃i j � D−1 they are linearly dependent. From the equation D−C � √

qiq j s̃i j ,
we have q � qi � D−C

/
s̃i j . Obviously, the larger the value of s̃i j has, the smaller

the value of q reaches. So we must take s̃i j � D−1, but do not take s̃i j ∈ [
0, D−1

)
.

The value s̃i j � D−1 implies that the failure states are linearly dependent.
We here derive the minimum failure probability, which covers the contributions in

Ref. [24]. Intuitively, if we have more copies of the state, we can discriminate it better.
This is indeed the case for linearly independent quantum states. From our results, it
can be seen that the probability is the same for the numbers of even C and odd C + 1
copies. In [24], the authors proposed one of collective measurements, i.e., a two-by-
two measurement. The success probability for all C copies by their method is optimal

Pmax � 1 − [
Qmin

(|ψi 〉⊗2)]C/ 2
. By exploiting their collective measurement, all

C copies must be measured. From our method of introducing unitary transformation
performed on the initial states, we merely need to measure the output states |Ψi 〉 and
|Ψ?〉, formed only by a small quality of particles defined by Eq. [7]. This measurement
for optimum discrimination is clearly convenient from a practical perspective.

4 Summary

In this paper, we have investigated unambiguous discrimination among linearly depen-
dent states with multiple copies. Unambiguous discrimination is impossible if using
separate measurements on the single copies of linearly dependent equidistant states.
If the C copy states are linearly independent, then unambiguous discrimination will
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be possible by carrying out a collective measurement on a small quality of particles.
Meanwhile, our method of introducing a unitary transformation provides a physical
realization of a collective measurement.

We have studied a classification of linearly dependent equidistant states. If C ≥ 2
copies of these states are available, then they construct a set of linearly independent
states, and can be unambiguously discriminated. We have derived the optimal maxi-
mum success probability, which increase as the number of the copies increase. For the
numbers of even C and odd C + 1 copies, however, the probability is the same, which
is deferent from unambiguous discrimination of linearly independent quantum states.
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