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Abstract We propose a quantum control entity mutual authentication protocol that
can be executed in environments involving an untrusted third party. In general, the
third party, referred to as Charlie, can be an entity such as a telephone company,
server, financial company, or login webpage for a portal service. Most communication
protocols controlled by third parties are vulnerable to internal attacks. In this study, we
present two solutions that make use of an entanglement correlation checking method
and random numbers against an internal attack by an untrusted third party.

Keywords Quantum entity authentication · GHZ-like state · Untrusted third party ·
Internal attack

1 Introduction

Various quantum communication protocols, such as quantum key distribution(QKD)
[1–3], measurement-device-independent QKD [4–6], controlled quantum telepor-
tation [7–12], quantum secret sharing [13–22], controlled direct communication
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[23–30], remote state preparation [31–33], quantum private comparison [34], quantum
steganography [35], and quantum key management [36] can be implemented on quan-
tum networks [37–46]. All these protocols are based on an important assumption that
a trusted third party is operating the quantum network. However, from the perspective
of information security, a trusted third party does not exist, and there is a need for
a quantum communication protocol that takes this into consideration. Furthermore,
another topic of interest in the field of information security is the security of cloud
services; thus, cloud services security is also being studied considering safety from
third parties that provide such services. For example, in the case of a cloud service,
user information is stored on a central server operated by a third party; therefore, the
stored information can be leaked or altered by the third party. Blind quantum compu-
tation [47, 48] and homomorphic encryption [49, 50] are the methods used to prevent
such leaks and alterations in cloud service.

In a previous study, we proposed a controlled mutual quantum entity authentica-
tion protocol [51] by which two communicators, referred to here as Alice and Bob,
authenticate each other using entanglement swapping and under the control of a third
party, Charlie, in a quantum network system established using a sequence of Green-
berger–Horne–Zeilinger (GHZ)-like states. However, as mentioned previously, the
assumption that Charlie is a trustworthy third party is not practical [52–54]. In this
study, we present a method to ensure the security of our proposed protocol using an
entanglement correlation check and random numbers to address the possibility that
Charlie is an untrusted third party.

2 Brief review of controlled mutual quantum entity authentication

In this section, we outline our controlled mutual quantum entity authentication protocol
[51]. Let us suppose that two communicators, Alice and Bob, want to authenticate each
other in a quantum network created by the controller Charlie. This protocol consists of
preparation, security checking, and entity authentication phases, which are discussed
below.

2.1 Preparation phase

P1 Alice and Bob pre-share a secret key sequence KAB � (k1, k2, . . . kN ) .The
sequence KAB � (k1, k2, . . . kN ) is of 2N bits; the elements are defined as
ki ∈ {00, 01, 10, 11}, and secret key ki corresponds to the Pauli operator Uki ∈{
I, σx , iσy, σz

}
. The subscript AB represents that Alice and Bob shared the key

P2 A third party, Charlie, prepares the qubit sequence (|ξ 〉1, |ξ 〉2, . . . , |ξ 〉N ) consist-
ing of N GHZ-like states as follows:

|ξ 〉(2i−1)123 ⊗ |ξ 〉(2i)123 � 1√
2

(∣∣�+〉
(2i−1)12 |0〉(2i−1)3 +

∣∣�+〉
(2i−1)12 |1〉(2i−1)3

)

⊗ 1√
2

(∣∣�−〉
(2i)12 |0〉(2i)3 − ∣∣�+〉

(2i)12 |1〉(2i)3
)

(1)
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The subscripts (2i −1) and (2i) refer to the odd-numbered qubits and even-numbered
qubits, respectively, in the qubit sequence. In addition, the subscript 1, 2, or 3 indicates
the order in the GHZ-like state.

P3 Charlie sends the first qubit to Alice, the second qubit to Bob, and retains the third
qubit. He announces these facts to Alice and Bob. After Charlie’s actions, the qubits
are given as follows:

|ξ〉(2i−1)ABC ⊗ |ξ〉(2i)ABC � 1√
2

(∣∣�+〉
(2i−1)AB |0〉(2i−1)C +

∣∣�+〉
(2i−1)AB |1〉(2i−1)C

)

⊗ 1√
2

(∣∣�−〉
(2i)AB |0〉(2i)C − ∣∣�+〉

(2i)AB |1〉(2i)C
)

(2)

The subscript A, B, or C represents the owner of a particular qubit. While transmitting
N GHZ-like states to Alice and Bob, Charlie randomly inserts NC decoy qubits |x+〉,
|x−〉 to detect eavesdropping [22, 34–36].

2.2 Security checking phase

S1 After confirming that Alice and Bob have safely received the qubit sequence,
Charlie reveals the location of the decoy qubits [22, 34–36].

S2 Alice and Bob execute σ x-basis measurements only on the decoy qubits received
from Charlie and then report the results to Charlie. Charlie compares the initial states
of the decoy qubits and the results reported by Alice and Bob. In effect, Charlie checks
for eavesdropping [22, 34–36].

2.3 Entity authentication phase

E1 Charlie randomly selects one communication member, Alice or Bob, to apply the
Pauli operation, which corresponds to the pre-shared key ki, for the qubit A(2i–1) or
B(2i) in Eq. (2).

E2 Charlie executes theσ z-basis measurement on the qubits {C(2i–1),C(2i)} in Eq. (11)
in Ref. [51]. And his measurement outcomes are c2i–1c2i, where c2i–1c2i ε {00, 01,
10, 11}. After Charlie’s measurement, the GHZ-like states of Eq. (11) in Ref. [51]
collapse into |�−〉(2i–1)AB|�−〉(2i)AB, |�−〉(2i–1)AB|�+〉(2i)AB, |�−〉(2i–1)AB|�−〉(2i)AB,
or |�−〉(2i–1)AB|�+〉(2i)AB with a 25% probability, and Alice and Bob share one of the
pairs of the entangled states.

E3 Alice and Bob execute the Bell-basis measurements on the qubits,{
A(2i−1), A(2i)

}
and

{
B(2i−1), B(2i)

}
, respectively; this is called entanglement

swapping [36, 55, 56]. Then, they exchange their measurement outcomes,
a2i−1a2i and b2i−1b2i (a j & b j ∈ {0, 1} , j � 2i − 1 or 2i).

E4 Charlie reveals the measurement outcomes of the classical bit c2i–1c2i acquired
in phase E2. Then, both, Alice and Bob confirm whether their classical bits, a2i–1a2i
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and b2i–1b2i, correctly correspond to the revealed classical bit, c2i–1c2i, as shown in
Table 4 in [51].

3 Cryptanalysis of controlled mutual quantum entity authentication

Cryptographically, schemes without a third party are ideal; however, the use of trusted
third parties in various cryptographic schemes is unavoidable to ensure efficiency
and security. Nevertheless, as Ingemarsson and Simmons indicate [53, 54], anyone
involved in cryptographic communication in commercial or international applications
cannot be trusted. This deduction also applies to quantum communication protocols,
and there are a variety of related cases involving untrustworthy communication ele-
ments [22, 36]. In particular, Gao and Wang showed that a security loophole exists
in this protocol when the controller Charlie cannot be trusted [52]; in addition, they
described how an untrusted controller Charlie can obtain legitimate users’ authentica-
tion keys without introducing any errors in the protocol. Their procedure is described
as follows.

Step 1 In phase P2, the controller Charlie executes sequential σ z-basis measure-
ments on qubits {3(2i–1), 3(2i)} of Eq. (1) and Bell-state measurements on qubits
{1(2i–1), 1(2i)}and {2(2i–1), 2(2i)} of Eq. (1), instead of sharing the GHZ-like states
|ξ 〉(2i−1)123 ⊗ |ξ 〉(2i)123 of Eq. (1) with Alice and Bob. For example, when the σ z-
basis measurement outcomes are |0〉(2i–1)3 and |1〉(2i)3, the GHZ-like states of Eq. (1)
collapse into |�+〉(2i–1)12|�+〉(2i)12, as follows:

∣∣�+〉
(2i−1)12

∣∣�+〉
(2i)12 � 1

2

(∣∣�+〉
(2i−1)1(2i)1

∣∣�+〉
(2i−1)2(2i)2 +

∣∣�−〉
(2i−1)1(2i)1

∣∣�−〉
(2i−1)2(2i)2

+
∣∣�+〉

(2i−1)1(2i)1

∣∣�+〉
(2i−1)2(2i)2 +

∣∣�−〉
(2i−1)1(2i)1

∣∣�−〉
(2i−1)2(2i)2

)
.

(3)

In addition, if Charlie performs Bell-state measurements on qubits {1(2i–1), 1(2i)}and
{2(2i–1), 2(2i)} of Eq. (3), he can obtain measurement outcomes (12i–112i, 22i–122i)
as:

(00, 00) :
∣∣�+〉

(2i−1)1(2i)1

∣∣�+〉
(2i−1)2(2i)2 ,

(01, 01) :
∣∣�−〉

(2i−1)1(2i)1

∣∣�−〉
(2i−1)2(2i)2 ,

(10, 10) :
∣∣�+〉

(2i−1)1(2i)1

∣∣�+〉
(2i−1)2(2i)2 ,

or (11, 11) :
∣∣�−〉

(2i−1)1(2i)1

∣∣�−〉
(2i−1)2(2i)2 . (4)

Table 1 represents all the outcomes corresponding to these measurements by Charlie.

Step 2 Charlie transmits the Bell states that correspond to the outcomes of Bell-
state measurements to Alice and Bob. Here, Alice and Bob cannot detect Charlie’s
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Table 1 Measurement outcomes 3(2i–1)3(2i), 1(2i–1)1(2i), and 2(2i–1)2(2i) corresponding to the σ z-basis
and Bell-state measurements by Charlie

σ z-basis measurements outcomes Bell-state measurement outcomes

3(2i–1)3(2i) 1(2i–1)1(2i) 2(2i–1)2(2i)

00:|0〉(2i–1)3|0〉(2i)3 00:|�+〉(2i–1)1(2i)1 11:|�−〉(2i–1)2(2i)2

01:|�−〉(2i–1)1(2i)1 10:|�+〉(2i–1)2(2i)2

10:|�+〉(2i–1)1(2i)1 01:|�−〉(2i–1)2(2i)2

11:|�−〉(2i–1)1(2i)1 00:|�+〉(2i–1)2(2i)2

01:|0〉(2i–1)3|1〉(2i)3 00:|�+〉(2i–1)1(2i)1 00:|�+〉(2i–1)2(2i)2

01:|�−〉(2i–1)1(2i)1 01:|�−〉(2i–1)2(2i)2

10:|�+〉(2i–1)1(2i)1 10:|�+〉(2i–1)2(2i)2

11:|�−〉(2i–1)1(2i)1 11:|�−〉(2i–1)2(2i)2

10:|1〉(2i–1)3|0〉(2i)3 00:|�+〉(2i–1)1(2i)1 01:|�−〉(2i–1)2(2i)2

01:|�−〉(2i–1)1(2i)1 00:|�+〉(2i–1)2(2i)2

10:|�+〉(2i–1)1(2i)1 11:|�−〉(2i–1)2(2i)2

11:|�−〉(2i–1)1(2i)1 10:|�+〉(2i–1)2(2i)2

11:|1〉(2i–1)3|1〉(2i)3 00:|�+〉(2i–1)1(2i)1 10:|�+〉(2i–1)2(2i)2

01:|�−〉(2i–1)1(2i)1 11:|�−〉(2i–1)2(2i)2

10:|�+〉(2i–1)1(2i)1 00:|�+〉(2i–1)2(2i)2

11:|�−〉(2i–1)1(2i)1 01:|�−〉(2i–1)2(2i)2

deception of using decoy qubits. Continuing with the example of Step 1, the Bell
states that Alice and Bob receive from Charlie are given as follows:

∣∣�+〉
(2i−1)A(2i)A

∣∣�+〉
(2i−1)B(2i)B ,

∣∣�−〉
(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B ,

∣∣�+〉
(2i−1)A(2i)A

∣∣�+〉
(2i−1)B(2i)B ,

or
∣∣�−〉

(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B . (5)

Step 3 Charlie requires Alice or Bob to apply the Pauli operator corresponding to
the secret key ki. If the secret key ki is 01 and Charlie selects Alice, then Alice
applies the Pauli operator iσ y(=U10) to Bell states of Eq. (5), as follows:

∣∣�−〉
(2i−1)A(2i)A

∣∣�+〉
(2i−1)B(2i)B �

[
iσy

∣∣�+〉
(2i−1)A(2i)A

] ∣∣�+〉
(2i−1)B(2i)B ,

∣∣�+〉
(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B �

[
iσy

∣∣�−〉
(2i−1)A(2i)A

] ∣∣�−〉
(2i−1)B(2i)B ,

∣∣�−〉
(2i−1)A(2i)A

∣∣�+〉
(2i−1)B(2i)B �

[
iσy

∣∣�+〉
(2i−1)A(2i)A

] ∣∣�+〉
(2i−1)B(2i)B ,

or
∣∣�+〉

(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B �

[
iσy

∣∣�−〉
(2i−1)A(2i)A

] ∣∣�−〉
(2i−1)B(2i)B .

(6)
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Fig. 1 Schematic illustration of untrusted controller Charlie’s internal attack. a In phase P2, Charlie per-
forms joint measurements and Bell-state measurements and then sends fake states |�+〉A(2i–1)A(2i) and
|�+〉B(2i–1)B(2i) to Alice and Bob, respectively. b In phase E3, Charlie can estimate the secret key ki �10
using Bell measurement results from Alice and Bob

Step 4 Alice and Bob perform the Bell measurements on the Bell states of Eq. (6),
and then they announce their measurement outcomes to Charlie. At this time, Charlie
could identify the secret key ki by knowing only one measurement outcome from
Alice or Bob. Continuing with the example of Step 3, the measurement outcomes
(a2i–1a2i, b2i–1b2i) of Alice and Bob are

(11, 00) :
∣∣�−〉

(2i−1)A(2i)A

∣∣�+〉
(2i−1)B(2i)B ,

(10, 01) :
∣∣�+〉

(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B ,

(01, 10) :
∣∣�−〉

(2i−1)A(2i)A

∣∣�+〉
(2i−1)B(2i)B ,

or (00, 11) :
∣∣�+〉

(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B . (7)

Charlie can estimate that Alice’s operator is iσ y(=U10) by comparing its measure-
ment outcome 12i–112i with Alice’s measurement outcome a2i-1a2i. Based on this,
Charlie can determine that the secret key is 10.

As a result, the controller Charlie can obtain the secret key shared between Alice
and Bob using their measurement outcomes without disclosing his own measurement
outcomes and without causing any errors. Figure 1 schematically illustrates the internal
attack described above by the untrustworthy controller Charlie.
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4 Security improvement of controlled mutual quantum entity
authentication

4.1 Security improvement using entanglement correlation check

The security of various quantum communication protocols is ensured primarily by
using decoy qubits [22, 34–36, 57–59] and entanglement correlation checking [34,
36, 60]. The insertion of decoy qubits is effective in detecting the involvement of
malicious users in a quantum channel. Entanglement correlation checking is useful
in determining whether quantum channel-based entangled states are well formed. In
our controlled mutual quantum entity authentication protocol [51], we adopted decoy
qubit insertion and entanglement correlation checking to ensure security. However,
in this protocol, we did not consider the possibility of internal attack by a controller
Charlie because we assumed that Charlie was a trustworthy third party. Therefore,
we did not employ decoy qubit insertion or entanglement correlation checking to
prevent an internal attack by Charlie. Gao et al. [52] indicated that, in real-world
network communication, it is realistic to assume that the controller Charlie may be
an untrustworthy third party. Therefore, an internal attack by the controller Charlie is
possible because Alice and Bob do not check the correlation of the entangled state. To
prevent this type of attack, we added a checking phase to confirm the correlation of
the entangled state after phases S1 and S2. More specifically, Alice and Bob should
select random states from among the sequence of N GHZ-like states |ξ 〉(2i−1)ABC ⊗
|ξ 〉(2i)ABC in Eq. (2) and perform σ zor σ x-basis measurements. For example, suppose
Alice and Bob select the (2j − 1)th state:

|ξ 〉ABC(2 j−1) � 1√
2

(∣∣�+〉
(2 j−1)AB |0〉(2 j−1)C +

∣∣�+〉
(2 j−1)AB |1〉(2 j−1)C

)

� 1√
2

(|x+〉 |x+〉 |x+〉 − |x−〉 |x−〉 |x−〉)(2 j−1)ABC (8)

to perform σ x-basis measurements. Then, Alice and Bob inform Charlie of the
location of the (2j − 1)th state and the measurement basis σ x . Charlie then per-
forms the measurements in the same states as Alice and Bob and announces the
measurement outcomes to them. Alice and Bob then announce their measurement
outcomes to Charlie. In the case that Alice and Bob’s measurement outcomes
a2 j−1b2 j−1 are + + : |x+〉(2 j−1)A|x+〉(2 j−1)B, then Charlie’s measurement out-
come c2j−1 would be + : |x+〉(2 j−1)C . If Charlie normally transmits GHZ-like states
to Alice and Bob, the outcomes of Alice, Bob, and Charlie should be correlated.
Alice and Bob should recognize Charlie’s eavesdropping through the probability of
D � 1− (1−d)Nd , where d is the probability of detecting Charlie’s eavesdropping by
checking one GHZ-like state and Nd is the number of GHZ-like states used to detect
Charlie’s eavesdropping [61]. When Nd is sufficiently large, D approaches unity, and
Alice and Bob can detect Charlie’s eavesdropping. Table 2 lists all the measurement
outcomes that can be obtained during the entanglement correlation check of the (2j
− 1)th state in Eq. (8). In the following lines, we provide a detailed explanation of
how Alice and Bob can detect Charlie’s eavesdropping mentioned earlier using the
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Table 2 Measurement outcomes that can be caused by the entanglement correlation check of the (2j − 1)th
state in Eq. (8)

Measurement basis c2j–1 a2j–1 b2j–1

σ z 0:|0〉(2j–1)C 0:|0〉(2j–1)A 1:|1〉(2j–1)B

1:|1〉(2j–1)A 0:|0〉(2j–1)B

1:|1〉(2j–1)C 0:|0〉(2j–1)A 0:|0〉(2j–1)B

1:|1〉(2j–1)A 1:|1〉(2j–1)B

σ x +:|x+〉(2j–1)C +:|x+〉(2j–1)A +:|x+〉(2j–1)B

−:|x–〉(2j–1)C −:|x–〉(2j–1)A −:|x−〉(2j–1)B

entanglement correlation check. Suppose Alice and Bob received the Bell states of
Eq. (5) from Charlie as shown in Step 2 of Sect. 3, as follows.

∣∣�+〉
(2i−1)A(2i)A

∣∣�+〉
(2i−1)B(2i)B ,

∣∣�−〉
(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B ,

∣∣�+〉
(2i−1)A(2i)A

∣∣�+〉
(2i−1)B(2i)B ,

or
∣∣�−〉

(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B (9)

Then, if Alice and Bob perform σ x-basis measurements on the Bell state
{A(2i–1), B(2i–1)} of Eq. (9), they can obtain measurement outcomes (a2i–1b2i–1), as
follows.

(++) : |x+〉(2i−1)A |x+〉(2i−1)B

(+−) : |x+〉(2i−1)A |x−〉(2i−1)B

(−+) : |x−〉(2i−1)A |x+〉(2i−1)B

or (−−) : |x−〉(2i−1)A |x−〉(2i−1)B (10)

Alice and Bob then inform Charlie of the (2i − 1)th states and the measurement
basis σ x . At this time, Charlie should disclose the measurement outcome as if it
had normally shared the entanglement state to make its attack successful. Accord-
ing to Table 2, the measurement outcomes (+−) : |x+〉(2i−1)A|x−〉(2i−1)B and
(−+) : |x−〉(2i−1)A|x+〉(2i−1)B of Eq. (10) are only obtained by Charlie’s attack. Fur-
thermore, if the measurement outcome (a2i–1b2i–1) is (++) : |x+〉(2i−1)A|x+〉(2i−1)B,

then Charlie must announce his measurement outcome + :|x + 〉(2i-1)C . In contrast, if the
measurement outcome (a2i–1b2i–1) is (−−) : |x−〉(2i−1)A|x−〉(2i−1)B, then Charlie
must announce his measurement outcome − : |x−〉(2i−1)C . However, Charlie cannot
predict Alice and Bob’s measurement outcomes (a2i–1b2i–1), and therefore, Charlie
always reveals the measurement outcomes incorrectly with a 50% probability. As a
result, the probability that Charlie succeeds in its attack in such a case is 25%. More-
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over, if they perform σ z-basis measurements on the Bell state {A(2i–1), B(2i–1)} in
Eq. (9), they can obtain measurement outcomes (a2i–1b2i–1), as follows.

(00) : |0〉(2 j−1)A |0〉(2 j−1)B ,

(01) : |0〉(2 j−1)A |1〉(2 j−1)B ,

(10) : |1〉(2 j−1)A |0〉(2 j−1)B ,

or (11) : |1〉(2 j−1)A |1〉(2 j−1)B (11)

Alice and Bob then inform Charlie of the (2i − 1)th states and the measure-
ment basis σ z. At this time, Charlie should disclose the measurement outcome
as if it had normally shared the entanglement state to make his attack success-
ful. According to Table 2, if the measurement outcome (a2i–1b2i–1) is (01) :
|0〉(2 j−1)A|1〉(2 j−1)B or (10) : |1〉(2 j−1)A|0〉(2 j−1)B, Charlie must announce his
measurement outcome as 0:|0〉(2j–1)A. In addition, if the measurement outcome
(a2i–1b2i–1) is (00) : |0〉(2 j−1)A|0〉(2 j−1)Bor (11) : |1〉(2 j−1)A|1〉(2 j−1)B,Charlie must
announce his measurement outcome as 1:|1〉(2j–1)A. However, Charlie cannot predict
Alice and Bob’s measurement outcomes (a2i–1b2i–1); thus, Charlie fails the attack with
a 50% probability.

4.2 Security improvement using random numbers

As mentioned above, the controller Charlie can predict the secret key from the mea-
surement outcomes of Alice and Bob, without sharing his measurement outcomes with
them. Therefore, if there is a method that prevents the controller Charlie from guessing
the secret key, the security of our proposed protocol is ensured. The proposed method
involves using a random number; the protocol that modifies the entity authentication
phase is described as follows.

E1. (a) Alice and Bob prepare random numbers rA and rB, where rA, rB ∈
{00, 01, 10, 11} .

E1. (b) Charlie randomly selects only one communication member, Alice or Bob. If
Charlie selects Alice, Alice applies the Pauli operator corresponding to the classical
information k′

i ⊕ rA � k(i)A to the qubit A(2i–1). If Charlie selects Bob, Bob applies
the Pauli operator corresponding to the classical bit k′

i ⊕ rB � k(i)B to the qubit B(2i).
Here, k′

i

(� k(i)A ⊕ rA or k(i)B ⊕ rB
)

is a pre-shared secret key between Alice and
Bob in the preparation phase, ki ∈ {00, 01, 10, 11} . For example, when k′

i � 11 and

rA �01, Alice applies the Pauli operator iσy

(
� Uk′

i⊕rA

)
to the qubit A(2i–1); this is

performed as follows:
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(
iσy ⊗ I ⊗ I

) |ξ 〉(2i−1)ABC ⊗ |ξ 〉(2i)ABC
� 1√

2

(
iσy ⊗ I ⊗ I

) (∣∣�+〉
(2i−1)AB |0〉(2i−1)C +

∣∣�+〉
(2i−1)AB |1〉(2i−1)C

)

⊗ 1√
2

(∣∣�−〉
(2i)AB |0〉(2i)C − ∣∣�+〉

(2i)AB |1〉(2i)C
)

� 1√
2

(∣∣�−〉
(2i−1)AB |0〉(2i−1)C +

∣∣�−〉
(2i−1)AB |1〉(2i−1)C

)

⊗ 1√
2

(∣∣�−〉
(2i)AB |0〉(2i)C − ∣∣�+〉

(2i)AB |1〉(2i)C
)

(12)

As another example, when k′
i � 11and rB �10, Bob applies the Pauli operator

σx

(
� Uk′

i⊕rB

)
to the qubit B(2i); this is performed as follows:

|ξ 〉(2i−1)ABC ⊗ (I ⊗ σx ⊗ I ) |ξ 〉(2i)ABC
� 1√

2

(∣∣�+〉
(2i−1)AB |0〉(2i−1)C +

∣∣�+〉
(2i−1)AB |1〉(2i−1)C

)

⊗ 1√
2

(I ⊗ σx ⊗ I )
(∣∣�−〉

(2i)AB |0〉(2i)C − ∣∣�+〉
(2i)AB |1〉(2i)C

)

� 1√
2

(∣∣�+〉
(2i−1)AB |0〉(2i−1)C +

∣∣�+〉
(2i−1)AB |1〉(2i−1)C

)

⊗ 1√
2

(∣∣�−〉
(2i)AB |0〉(2i)C − ∣∣�+〉

(2i)AB |1〉(2i)C
)

(13)

E2 Charlie executes the σ z-basis measurement on the qubits {C(2i–1), C(2i)} in
Eq. (12). And his measurement outcome is c2i–1c2i, where c2i–1c2i ε {00, 01, 10,
11}. After Charlie’s measurement, the GHZ-like states of Eq. (12) collapse into
∣∣∣�−〉

(2i−1)AB

∣∣∣�−〉

(2i)AB
,

∣∣∣�−〉

(2i−1)AB

∣∣�+〉
(2i)AB ,

∣∣∣�−〉

(2i−1)AB

∣∣∣�−〉

(2i)AB
, or

∣∣∣�−〉

(2i−1)AB

∣∣�+〉
(2i)AB

(14)

with a 25% probability, and Alice and Bob share one of the pairs of the entangled
states. Continuing with the first example of E1. (b), when c2i–1c2i �01, the GHZ-like
states of Eq. (12) collapse into |�−〉(2i–1)AB|Ψ +〉(2i)AB:

∣∣�−〉
(2i−1)AB

∣∣�+〉
(2i)AB � 1

2

(∣∣�+〉
(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B +

∣∣�−〉
(2i−1)A(2i)A

∣∣�+〉
(2i−1)B(2i)B

+
∣∣�+〉

(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B +

∣∣�−〉
(2i−1)A(2i)A

∣∣�+〉
(2i−1)B(2i)B

)
(15)

And, continuing with the second example of E1. (b), when c2i–1c2i �01, the GHZ-like
states of Eq. (13 collapse into |Ψ +〉(2i–1)AB|�+〉(2i)AB:
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∣∣�+〉
(2i−1)AB

∣∣�+〉
(2i)AB � 1

2

(∣∣�+〉
(2i−1)A(2i)A

∣∣�+〉
(2i−1)B(2i)B +

∣∣�−〉
(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B

+
∣
∣�+〉

(2i−1)A(2i)A

∣
∣�+〉

(2i−1)B(2i)B +
∣
∣�−〉

(2i−1)A(2i)A

∣
∣�−〉

(2i−1)B(2i)B

)
(16)

E3 Alice and Bob execute the Bell-basis measurements on the qubits
{A(2i–1), A(2i)}and {B(2i–1), B(2i)} of Eq. (13), respectively. Then, they exchange their
measurement outcomes, a2i–1a2i and b2i–1b2i (aj & bj ε {0, 1}, j �2i − 1 or 2i).
Continuing with the first example of E2, if Alice and Bob perform Bell-state measure-
ment on {A(2i–1), A(2i)} and {B(2i–1), B(2i)} of Eq. (15), they can obtain measurement
outcomes (a2i–1a2i, b2i–1b2i) as:

(00, 11) :
∣∣�+〉

(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B ,

(01, 10) :
∣∣�−〉

(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B ,

(01, 10) :
∣∣�−〉

(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B ,

or (11, 00) :
∣∣�−〉

(2i−1)A(2i)A

∣∣�+〉
(2i−1)B(2i)B . (17)

Then, they exchange their measurement outcomes (a2i–1a2i, b2i–1b2i) in Eq. (17).
And continuing with the second example of E2, if Alice and Bob perform Bell-state
measurement on {A(2i–1), A(2i)} and {B(2i–1), B(2i)} of Eq. (16), they can obtain mea-
surement outcomes (a2i–1a2i, b2i–1b2i) as:

(00, 10) :
∣∣�+〉

(2i−1)A(2i)A

∣∣�+〉
(2i−1)B(2i)B ,

(01, 11) :
∣∣�−〉

(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B ,

(10, 00) :
∣∣�+〉

(2i−1)A(2i)A

∣∣�+〉
(2i−1)B(2i)B ,

or (11, 01) :
∣∣�−〉

(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B . (18)

Then, they exchange their measurement outcomes (a2i–1a2i, b2i–1b2i) in Eq. (18).

E4. (a) Charlie reveals the measurement outcomes c2i–1c2i acquired in Phase E2; then,
Alice or Bob announces rA or rB to Charlie, respectively. Continuing with the first
example of E3, Charlie and Alice announce c2i–1c2i �01 and rA �01 to each other
in turn. And, continuing with the second example of E3, Charlie and Bob announce
c2i-1c2i �01 and rB �01 to each other in turn.

E4. (b) Alice and Bob confirm whether their classical bits, a2i–1a2i, b2i–1b2i, and
c2i-1c2i, correspond correctly to the classical bit k(i)A � k′

i ⊕ rA or k(i)B � k′
i ⊕ rB,

as presented in Table 4 in [51]. Continuing with the first example of E4. (a), if k′
i � 11,

a2i–1a2i �11, b2i–1b2i �00, and c2i-1c2i �01. k(i)A � k′
i ⊕ rA must then be 10. And

Continuing with the first example of E4. (1) k′
i � 11, a2i–1a2i �11, b2i–1b2i �01, and

c2i–1c2i �01. k(i)B � k′
i ⊕ rB must then be 01.

Consequently, even if Charlie attempts an internal attack, he cannot estimate the
pre-shared secret key ki without knowing the random numbers rA or rB. Suppose Alice
and Bob received the Bell states in Eq. (5) from Charlie as shown in Step 2 of Sect. 3.

123



159 Page 12 of 15 M.-S. Kang et al.

When k’i �11 and rA �01, Alice applies the Pauli operator iσy

(
� Uk′

i⊕rA

)
to the

qubit A(2i–1) of in Eq. (5):

∣∣�−〉
(2i−1)A(2i)A

∣∣�+〉
(2i−1)B(2i)B �

[
iσy

∣∣�+〉
(2i−1)A(2i)A

] ∣∣�+〉
(2i−1)B(2i)B ,

∣∣�+〉
(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B �

[
iσy

∣∣�−〉
(2i−1)A(2i)A

] ∣∣�−〉
(2i−1)B(2i)B ,

∣∣�−〉
(2i−1)A(2i)A

∣∣�+〉
(2i−1)B(2i)B �

[
iσy

∣∣�+〉
(2i−1)A(2i)A

] ∣∣�+〉
(2i−1)B(2i)B ,

or
∣∣�+〉

(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B �

[
iσy

∣∣�−〉
(2i−1)A(2i)A

] ∣∣�−〉
(2i−1)B(2i)B .

(19)

If Alice and Bob perform Bell-state measurement on {A(2i–1),A(2i)} and {B(2i–1),B(2i)}
of Eq. (19), they can obtain measurement outcomes (a2i–1a2i, b2i–1b2i) as:

(11, 00) :
∣∣�−〉

(2i−1)A(2i)A

∣∣�+〉
(2i−1)B(2i)B ,

(10, 01) :
∣∣�+〉

(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B ,

(01, 10) :
∣∣�−〉

(2i−1)A(2i)A

∣∣�+〉
(2i−1)B(2i)B ,

or (00, 11) :
∣∣�+〉

(2i−1)A(2i)A

∣∣�−〉
(2i−1)B(2i)B . (20)

Later, if Alice and Bob release the Bell measurements a2i-1a2i �11 and b2i-1b2i �00,
Charlie gets to know the k(i)A � k′

i ⊕ rA � 10. But Charlie cannot guess the secret
key k(i)A � k′

i ⊕ rA � 11, because he does not know the random numbers rA �01.

5 Conclusions

We proposed a secure controlled mutual quantum object authentication protocol that is
viable even in an environment in which users cannot trust third party. Two schemes for
ensuring the safety of the protocol are used: one is entanglement correlation checking,
and the other is the use of random numbers. Entanglement correlation checking can
be used to determine whether there is an abnormality in the quantum channel, while
random numbers are used in the protocol to make it impossible for the untrusted
controller to deduce the key directly. By applying these security protocols to a quantum
network, we expect to prevent any malfeasance by an untrusted controller as well as
an eavesdropper.
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