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Abstract In device-independent (DI) paradigm, the trustful assumptions over the
devices are removed and CHSH test is performed to check the functionality of the
devices toward certifying the security of the protocol. The existing DI protocols con-
sider infinite number of samples from theoretical point of view, though this is not
practically implementable. For finite sample analysis of the existing DI protocols, we
may also consider strategies for checking device independence other than the CHSH
test. In this direction, here we present a comparative analysis between CHSH and three-
party Pseudo-telepathy game for the quantum private query protocol in DI paradigm
that appeared in Maitra et al. (Phys Rev A 95:042344, 2017) very recently.

Keywords CHSH · Pseudo-telepathy · QKD · QPQ

1 Introduction

In recent times, most of the quantum protocols involve sharing of entangled states. In
case these are generated by a third party, it is almost mandatory to measure the quantum
states used for the protocol to check whether those are actually in the intended form or
not. If an entangled state is not what is expected, the adversary may obtain certain extra
information, thereby violating the security of the cryptographic scheme. This leads to
the development of the idea toward testing the states generated by third-party devices
before proceeding for the actual protocol. Mayers and Yao first proposed the idea of
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self-testing of quantum device [1]. For quantum cryptographic protocols, such self-
testing is defined in DI paradigm that guarantees security under certain assumptions.

Generally, the quantum protocols involve sharing of the Bell states or some other
two-qubit entangled states. For this reason, violation of CHSH inequality [2] or CHSH
test [3] is exploited in most of the device-independent quantum cryptographic protocols
(e.g., [4–6]). The security analysis generally considers infinite number of samples and
asymptotic treatment. However, for all practical purposes, we have finite number of
samples, and thus, we would always like to minimize the amount of samples required.
In this direction, we study the very recently proposed DI-QPQ [4] (a modification of [7]
to obtain device independence) as a framework in comparing the number of samples
using different games. Thus, here we consider how to use quantum multiparty pseudo-
telepathy game [8] in such scenario and compare its performance with CHSH game
in terms of number of samples.

While investigating the performance of CHSH as well as three-party pseudo-
telepathy game for DI-QPQ, it is noted that for a significant range of parameters, the
success probability of the pseudo- telepathy game is higher than CHSH. The relation
between the required sample size and corresponding success probability for testing DI
is well known where one can see that the sample size is inversely proportional with the
success probability of DI testing. Thus, for a considerable range of parameters, where
the success probability of three-party pseudo-telepathy game is higher compared to
CHSH, one can use the first one instead of the second to obtain better efficiency. With
this understanding, we propose a certain strategies for testing device independence to
minimize the overall sample size.

As we have initially noted, entanglement is the key resource in the domain of quan-
tum communication. Thus, before proceeding further, let us outline certain important
(non-exhaustive though) references toward the application of quantum entanglement.
Such applications include the broad field of quantum information processing, such
as quantum key distribution, quantum secure direct communication, quantum dense
coding, quantum computation, besides quantum teleportation. One may refer to the
initial works about quantum information processing related to entanglement as in
[9,10]. There are also applications in quantum dense coding [11], quantum secure
direct communication [12,13], hyper-entanglement [14], quantum computation [15–
17], quantum-controlled teleportation [18,19], joint remote control [20] and joint
remote state preparation [21] to refer a few. Next, we get into the specific background
that is required for understanding this work.

2 Background

In this section, we present several related backgrounds.

2.1 CHSH and parity game

The CHSH game [3] is played by two players: Alice and Bob (in the same team) are
not allowed to communicate in any manner after the initial setup where they may share
an entangled state. The referee provides one random bit x to Alice and one random bit
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y to Bob. Alice has to provide the referee a bit a, and Bob has to send b. The referee
declares Alice and Bob the winner if a ⊕ b = x ∧ y; otherwise, they are considered
defeated.

When Alice and Bob participate in classical setup, the maximum success probability
they can achieve is 0.75. However, when they share each particle of a maximally
entangled state and follow some specific kind of measurement strategy, they can win
the game with the probability cos2(π

8 ). Instead of exploiting the maximally entangled
state 1√

2
(|00〉 + |11〉), if Alice and Bob share any (non-maximally entangled) state,

then the success probability reduces. Such states have been exploited in [4].
In the parity (multiparty pseudo-telepathy) game [22], each player Ai receives a

single input bit xi and is requested to produce a single output bit yi . The players are
promised that there is an even number of 1’s among their inputs. Without being allowed
to communicate after receiving their inputs, the players are challenged to produce a
collective output that contains an even number of 1’s if and only if the number of 1’s in
the input is divisible by 4. More formally, it requires that

∑n
i yi ≡ 1

2

∑n
i xi (mod 2),

provided
∑n

i xi ≡ 0(mod 2). If we consider the game for three parties, then the
maximum success probability achieved in classical case equals to 0.75. However,
if the three parties share three-qubit maximally entangled state and perform some
particular measurements, they can achieve success with certainty (probability 1) in the
quantum case. To match it with the ideas in [4], instead of the GHZ state 1√

2
(|000〉 +

|111〉), if three parties share a (non-maximally entangled) state, the maximum success
probability decreases. However, still this will be significantly better for certain range
of parameters than that of [4]. This is explained in Sect. 4.

2.2 Estimation of sample size for finite sample scenario

Generally, if we like to distinguish one event having probability p and another having
probability p(1 + ε), where ε is small, then the approximate number of samples
required is O( 1

pε2 ). Informally speaking, one may have a confidence of more than 99%

in distinguishing two events with 64
pε2 samples. A more involved expression related to

sample size in finite sample scenario can be obtained using Chernoff–Hoeffding [23]
bound.

Proposition 1 Let X = 1
m

∑
1≤i≤m Xi be the average of m independent random

variables X1, X2, . . . , Xm with values [0, 1], and let E[X ] = 1
m

∑
1≤i≤m E[Xi ]

be the expected value of X. Then for any δ > 0, we have Pr [|X − E[X ]| ≥ δ] ≤
exp(−2δ2m).

In our case, if the test succeeds, we set Xi = 1; otherwise, Xi = 0. Let us consider
E[X ] = E[Xi ] = p and let the variable X denotes the actual success probability p′.
Now the question is how large should “the number of samples” be so that we get a good
“accuracy” with high “confidence”? More precisely, suppose we want to estimate the
success probability p within an error margin of εp and confidence 1 − γ , that is,

Pr[|p′ − p| ≤ εp] ≥ 1 − γ, (1)
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where p′ and p are the estimated and the expected values, respectively. Comparing
Eq. (1) with Proposition 1, and given ε, p and γ , we obtain exp(−2ε2 p2m) ≤ γ , i.e.,
m ≥ 1

2ε2 p2 ln 1
γ

. This implies that as the value of the success probability increases,
the required sample size decreases. Denoting the maximum success probability for a
specific θ by pmax, one can write,

mopt = 1

2ε2 p2
max

ln
1

γ
(2)

This mopt gives the optimal value of the sample size required to certify a given state
where the value of θ corresponding to this state is already known.

2.3 Device independence in QPQ

Here we are interested in investigating how the number of samples toward testing an
entangled state can be reduced. Thus, instead of getting into tedious security proofs
based on several complicated assumptions, we like to present our assumptions related
to device independence. We consider that the required qubits, the quantum gates (uni-
tary operations) and the measurement devices will be provided by the third party. That
is, in the DI setting, the security of the protocol can be guaranteed even after removing
this trustful assumption over the source, circuits and measurement devices. In the DI-
QPQ protocol, the server asks for non-optimally entangled states from a third party
and also the measurement devices are purchased from outside. The claimed idea of
[4] is as follows.

The two-qubit entangled state involved in quantum private query (QPQ) protocol
is of the form

|ψQPQ〉 = 1√
2
(|0〉B |φ0〉A + |1〉B |φ1〉A) (3)

where |φ0〉A = cos ( θ
2 )|0〉 + sin ( θ

2 )|1〉 and |φ1〉A = cos ( θ
2 )|0〉 − sin ( θ

2 )|1〉. The
success probability of this version of CHSH game (this is not exactly the CHSH game
with maximally entangled state) for this state |ψQPQ〉 will be 1

8 (sin θ(sin ψ1+sin ψ2)+
cos ψ1 − cos ψ2) + 1

2 where |ψ1〉 and |ψ2〉 are the chosen measurement basis and this
success probability value can be maximized by choosing appropriate measurement
basis |ψ1〉 and |ψ2〉 for a particular θ .

From the expression derived in Sect. 2.2, it is clear that the expected sample size
is inversely proportional with the success probability. So, when we consider the finite
sample device- independent QPQ protocol, we have to maximize the success proba-
bility corresponding to a particular state (i.e., for a particular value of θ ) to optimize
the overall sample size. This is done by properly choosing the values of ψ1, ψ2. Note
that this optimal choice of ψ1 and ψ2 is only valid for the purpose of DI testing as this
ψ1 and ψ2 is not involved in the actual execution of QPQ protocol [4]. However for
testing purpose, it is better to use the optimized basis for lesser number of samples.

In the DI-QPQ protocol [4], Bob and Alice share entangled states of the form
1√
2
(|0〉B |φ0〉A + |1〉B |φ1〉A), where |φ0〉A = cos ( θ

2 )|0〉 + sin ( θ
2 )|1〉 and |φ1〉A =
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cos ( θ
2 )|0〉− sin ( θ

2 )|1〉. The value of θ is known to all. Bob chooses two measurement
bases namely {|ψ1〉, |ψ⊥

1 〉} and {|ψ2〉, |ψ⊥
2 〉}, to play the local CHSH game. Here,

|ψ1〉 = cos ψ1
2 |0〉 + sin ψ1

2 |1〉 and |ψ2〉 = cos ψ2
2 |0〉 + sin ψ2

2 |1〉.
Thus, Bob gets the success probability in terms of θ , ψ1 and ψ2 which is equal to

1
8 (sin θ(sin ψ1 +sin ψ2)+cos ψ1 −cos ψ2)+ 1

2 . To maximize the quantity, we have to
maximize sin θ(sin ψ1 +sin ψ2)+cos ψ1 −cos ψ2. Calculation shows that the optimal
value of ψ1, ψ2 corresponding to a particular θ will be ψ1 = (π

2 − tan−1(cosec θ))

and ψ2 = (π
2 + tan−1(cosec θ)). So, the optimal sample size required to test the

source device in two-party scenario can be found by expression 2 where the value
of ψ1, ψ2 corresponding to the value pmax will be ψ1 = (π

2 − tan−1(cosec θ)) and
ψ2 = (π

2 +tan−1(cosec θ)). While evaluating with our new proposal, we will compare
with this optimized data and show when we can obtain better result.

2.3.1 A caveat on device independence and security proofs

Now it is important to describe what provides the device independence in [4]. The
proof of device independence is varied and not streamlined. In [4], the claim of device
independence comes from the following:

– The server (Bob) asks for entangled states of the form 1√
2
(|0〉B |φ0〉A+|1〉B |φ1〉A)

from third party (TP) as described before. This is basically dependent on θ , i.e.,
the server provides the value of θ to the TP and the TP provides the required
(non-maximal) entangled states.

– The server obtains the measurement devices (MDs) from the third party too that
will be able to measure in certain measurement basis. These MDs are memoryless,
and thus, each measurement will be independent. Further during the run time, it is
assumed that the MDs cannot communicate to any body other than Bob, i.e., no
information is leaked from the devices.

Based on these assumptions, it is claimed that by performing the CHSH test Bob
should obtain certain result related to success probability which he already knows. In
case the experimental data closely match with what he expects, then he will believe
on the entangled states obtained as well as the MDs which were provided by TP.

We like to add the following point here. When the server (Bob) receives an entangled
state as above, he may keep one particle with him and communicate the other one to the
client (Alice). This is because the idea of device independence exploits non-locality.
With one MD at Bob’s side and another at Alice’s, the security notions should work
if they play the game and then publicly announces the classical outcome. Then, Bob
and Alice will get to know each other’s input as well as outcome after completion of
the game and consequently together can estimate whether the correct state is supplied.
On the other hand, there could be an argument that Alice may be colluded with the
TP and possibly that is the reason the complete game was played in the server side
for checking the states in [4]. However, the exact security issues here are not clear.
On the other hand, this does not affect the work in this initiative as we are primarily
interested about studying the number of samples and not the security issues.

We conclude this discussion with some issues related to security proofs. In the
domain of cryptology, there are two directions.
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– One may provide certain schemes with design details as well as certain justifi-
cations toward security and then wait for the cryptanalytic results. This mostly
happens in the actual implementations that are in the application domain. The
cryptanalytic efforts continue, and once a system is attacked, necessary counter-
measures are taken. However, no specific formal security proof is provided. For
example, design of commercial stream or block ciphers still follow this line. This
was the scenario when BB84 protocol [24] was first proposed as, at that time, the
security claims were justified from certain laws of Physics.

– Providing schemes with complete security proofs. In this case, certain basic
assumptions are considered, and based on that there are formal-looking security
proofs. These are mostly popular in theoretical world. However, certain systems
are arriving in market where security proofs are advertised. The main problem in
this domain is that in certain cases flaws are identified in many security proofs. In
fact, larger the proof, lesser the confidence as many of the long proofs require more
serious attention. However, in the positive direction we must appreciate that after
the publication of the BB84 protocol, in last three decades researchers have noted
many important theoretical proofs justifying several security aspects of BB84 and
its variants.

This is an age-old philosophical debate. In this paper, the DI idea that we mention
(toward reducing the number of samples) using pseudo-telepathy is not supported by
rigorous proof. However, one may refer to [25] and the references therein to get a view
of how pseudo-telepathy games may yield device-independent certification given an
entangled state.

2.4 Our contribution

– In Sect. 3, we note that the test for device independence should be applied on a
slightly modified state than the state being used as in [4]. This provides a much
better probability compared to that has been achieved in [4], with the expense of one
additional CNOT gate only. In fact, this shows that how even without considering
the maximally entangled state, one can simulate the CHSH game like behavior by
changing the measurement basis in one MD.

– In Sect. 4, we exploit the three-party pseudo- telepathy game for a transformed
three-qubit non-maximally entangled state and show how it provides even better
probability.

3 Analysis of CHSH game with modified two-qubit entangled states

In this section, we analyze case-by-case situation of the CHSH test for a modified
two-qubit entangled state of the form

1√
2

(

cos
θ

2
|00〉 + sin

θ

2
|01〉 + cos

θ

2
|11〉 − sin

θ

2
|10〉

)

(4)
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The motivation here is as follows. In the QPQ protocol [7], generally the client learns
only a few bits of the shared secret key, while the server learns it all. This is done by
certain modification of a quantum key distribution protocol. The entangled state of
Eq. (3), used in [7], could provide expected 1

2 sin2 θ proportion of shared secret key
bits to the client. Generally, the client will try to learn only a few bits, and thus, the
value of θ will be very small. The method presented in [4] requires lower probability
(more samples) for small θ . We show that with proper choice of the entangled state
this can be improved a lot. In fact, one may keep the DI-QPQ protocol [4] exactly the
same, but use our strategy only for testing DI.

3.1 Success probability calculation

In this case, Bob performs CNOT operation over the original two- qubit state shared
in DI-QPQ protocol [4] by considering the first qubit of the state as a control bit and
second qubit as a target bit. The resulting state after performing this operation will be
of the form as mentioned in Eq. 4. We have already mentioned the details of the game
in Sect. 2.1.

1. For input xy = 00: Bob’s first quantum device measures the first qubit of the
modified state in {|0〉, |1〉} basis, and the second quantum device measures the
second qubit of the modified state in {|ψ1〉, |ψ⊥

1 〉} basis. In this case, the proba-
bility of obtaining each of 00 and 11 from the two quantum devices (as output) is
1
2 cos2(

θ−ψ1
2 ) and 1

2 cos2(
θ−ψ1

2 ), respectively. So, the total winning probability in

this case is cos2(
θ−ψ1

2 ).
2. For input xy = 01: Bob’s first quantum device measures the first qubit of the

modified state in {|0〉, |1〉} basis, and the second quantum device measures the
second qubit of the modified state in {|ψ2〉, |ψ⊥

2 〉} basis. In this case, the proba-
bility of obtaining each of 00 and 11 from the two quantum devices (as output) is
1
2 cos2(

θ−ψ2
2 ) and 1

2 cos2(
θ−ψ2

2 ), respectively. So, the total winning probability in

this case is cos2(
θ−ψ2

2 ).
3. For input xy = 10: Bob’s first quantum device measures the first qubit of the

modified state in {|+〉, |−〉} basis, and the second quantum device measures the
second qubit of the modified state in {|ψ1〉, |ψ⊥

1 〉} basis. In this case, the proba-
bility of obtaining each of 00 and 11 from the two quantum devices (as output) is
1
4 [cos( θ−ψ1

2 )− sin(
θ−ψ1

2 )]2 and 1
4 [cos( θ−ψ1

2 )− sin(
θ−ψ1

2 )]2, respectively. So, the

total winning probability in this case is 1
2 [cos( θ−ψ1

2 ) − sin(
θ−ψ1

2 )]2.
4. For input xy = 11: Bob’s first quantum device measures the first qubit of the

modified state in {|+〉, |−〉} basis, and the second quantum device measures the
second qubit of the modified state in {|ψ2〉, |ψ⊥

2 〉} basis. In this case, the proba-
bility of obtaining each of 01 and 10 from the two quantum devices (as output) is
1
4 [cos( θ−ψ2

2 )+ sin(
θ−ψ2

2 )]2 and 1
4 [cos( θ−ψ2

2 )+ sin(
θ−ψ2

2 )]2, respectively. So, the

total winning probability in this case is 1
2 [cos( θ−ψ2

2 ) + sin(
θ−ψ2

2 )]2.
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As all the cases can happen with equal probability (for random choice of inputs), the
overall probability of winning the CHSH game with this modified two-qubit entangled
state is

1

2
+ 1

8
[cos(θ − ψ1) + cos(θ − ψ2) − sin(θ − ψ1) + sin(θ − ψ2)].

3.2 Appropriate choice of measurement basis

From the discussion of the previous subsection, we can see that for the modified two-
qubit entangled state, Bob gets the success probability in terms of θ , ψ1 and ψ2 which is
equal to 1

2 + 1
8 [cos(θ−ψ1)+cos(θ−ψ2)−sin(θ−ψ1)+sin(θ−ψ2)]. To maximize the

quantity, we have to maximize cos(θ −ψ1)+cos(θ −ψ2)−sin(θ −ψ1)+sin(θ −ψ2).
Now, we can write,

[cos(θ − ψ1) − sin(θ − ψ1)] + [cos(θ − ψ2) + sin(θ − ψ2)]

Setting θ − ψ1 = A, θ − ψ2 = B, 1 = r1 sin φ1 = r1 cos φ1 (for the first half of
the expression) and 1 = r2 sin φ2 = r2 cos φ2 (for the second half of the expression),
we get

(r1 sin φ1 cos A − r1 cos φ1 sin A)

+(r2 sin φ2 cos B + r2 cos φ2 sin B)

= r1 sin(φ1 − A) + r2 sin(φ2 + B),

where r2
1 = r2

2 = 2 and tan φ1 = tan φ2 = 1, i.e, φ1 = φ2 = tan−1(1) = π
4 .

Again, the value r1 sin(φ1 − A) + r2 sin(φ2 + B) will be maximum when both
sin(φ1 − A) = 1 and sin(φ2 + B) = 1, i.e., when (φ1 − A) = π

2 and (φ2 + B) = π
2 .

From that, after putting the value of A and B we get, ψ1 = (π
4 +θ) and ψ2 = (θ − π

4 ).
From the discussion, it is clear that the optimal value of |ψ1〉 and |ψ2〉 corresponding

to a particular θ will be ψ1 = (π
4 + θ) and ψ2 = (θ − π

4 ). So, the success probability
corresponding to each theta will be maximum for this particular choice of measurement
basis. By putting this value into the success probability expression of the modified
state (as derived in previous subsection), we can see that for this particular choice of
measurement basis, the success probability value of CHSH game with this modified
state for different values of θ is constant and this success probability value is the
maximum success probability that we can get for two-qubit entangled states in CHSH
game. This is indeed natural as we are making local transformation at one side and
then accordingly modifying the measurement basis.

We like to refer that this success probability is significantly greater than what could
be obtained in [4] for θ � π

2 that is presented in Fig. 2.
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4 Analysis of three-party quantum pseudo-telepathy with transformed
three-qubit entangled states

In this section, we analyze case-by-case situation of the proposed multiparty pseudo-
telepathy (parity) test for a three-qubit entangled states of the form

1√
2

(

cos
θ

2
|000〉 + sin

θ

2
|010〉 + cos

θ

2
|111〉 − sin

θ

2
|100〉

)

.

We have already mentioned the details of the game in Sect. 2.1.

1. For input x1x2x3 = 000: The quantum devices perform Hadamard operation over
individual qubits and measure each qubit in {|0〉, |1〉} basis. In this case, probability
of obtaining each of 000, 110, 011, 101 from the three quantum devices (as output)
is 1

4 cos2( θ
2 ), 1

4 cos2( θ
2 ), 1

4 (cos θ
2 −sin θ

2 )2 and 1
4 (cos θ

2 +sin θ
2 )2, respectively. So,

the total winning probability in this case is 1
4 (3 + cos θ).

2. For input x1x2x3 = 110: Each of the first two quantum devices perform the
unitary operator S (as described in [22]) over the first two particles. Then, all the
devices perform Hadamard operation over the individual qubits and measure each
qubit in {|0〉, |1〉} basis. In this case, probability of getting each of 100, 010, 001,
111 from the three quantum devices (as output) is 1

4 , 1
4 , 1

4 cos2( θ
2 ) and 1

4 cos2( θ
2 ),

respectively. Thus, the total winning probability in this case becomes 1
4 (3+cos θ).

3. For input x1x2x3 = 011: The devices first perform S over the last two qubits, and
then, all the devices apply Hadamard operation over the individual qubits and then
measure each qubit in {|0〉, |1〉} basis. In this case, probability of getting each of
100, 010, 001, 111 from the three quantum devices (as output) is 1

16 [3 + cos θ +
2 sin θ ], 1

16 [3+cos θ −2 sin θ ], 1
16 [3+cos θ −2 sin θ ] and 1

16 [3+cos θ +2 sin θ ],
respectively. Hence, here we obtain the total winning probability as 1

4 (3 + cos θ).
4. For input x1x2x3 = 101: The devices first perform S over the first and third qubits,

and then, all the devices perform Hadamard operation over individual qubits and
measure each qubit in {|0〉, |1〉} basis. In this case, probability of getting each of
100, 010, 001, 111 from the three quantum devices (as output) is 1

16 [3 + cos θ +
2 sin θ ], 1

16 [3+cos θ −2 sin θ ], 1
16 [3+cos θ +2 sin θ ] and 1

16 [3+cos θ −2 sin θ ],
respectively. Thus, the winning probability becomes 1

4 (3 + cos θ).

As all the cases can happen with equal probability (for random choice of inputs from
the set {000, 110, 011, 101}), the overall probability of winning the multiparty pseudo-
telepathy game with this specified form of three-qubit entangled state is

4 × 1

4
× 1

4
(3 + cos θ) = 1

4
(3 + cos θ)

which is equal to 1 (i.e., maximum) when θ = 0, i.e., the success probability will be
maximum for three-qubit maximally entangled (GHZ) states. We like to refer that this
success probability is greater than what could be obtained in [4] for certain ranges of
θ that is presented in Fig. 2.
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Fig. 1 Circuit diagram for transformed state

4.1 Transformation of two-qubit state into three qubit

In the DI-QPQ [4] setup, Bob holds the initial two-qubit entangled state and say that it
can perform either local CHSH test or local parity test before proceeding for the actual
QPQ protocol. When Bob performs the local parity test, he has to first transform the
initial two-qubit entangled state |ψQPQ〉 into three-qubit entangled state |ψ3QPQ〉 as
follows:

– Bob first performs the CNOT operation over the initial two-qubit entangled state
by considering first qubit as a control bit and second qubit as a target bit.

– After performing the CNOT operation, Bob will add an ancilla qubit |0〉 in his
end and perform Toffoli operation by considering the two qubits of the modified
entangled state as control bit and the ancilla qubit as a target bit.

– After performing these operations, the resulting state will be of the form

1√
2

(

cos
θ

2
|000〉 + sin

θ

2
|010〉 + cos

θ

2
|111〉 − sin

θ

2
|100〉

)

The circuit diagram corresponding to this transformation is shown in Fig. 1.
– Bob will perform multiparty pseudo-telepathy (parity) game [22] with this trans-

formed state.

Now the success probability of the parity game with this transformed three-qubit
state will be 1

4 (3 + cos θ) which equals 1 for θ = 0.

4.2 Comparative study

Let us consider the actual two-qubit entangled state shared in QPQ protocol which
is of the form 1√

2
(cos θ

2 |00〉 + sin θ
2 |01〉 + cos θ

2 |10〉 − sin θ
2 |11〉), then the success

probability of CHSH game (maximum success probability corresponding to each θ )
for this state equals to 1

8 (sin θ(sin ψ1 + sin ψ2) + cos ψ1 − cos ψ2) + 1
2 where ψ1 =

(π
2 − tan−1(cosec θ)) and ψ2 = (π

2 + tan−1(cosec θ)).
Instead of the actual state, if we consider the modified two-qubit entangled state

of the form 1√
2
(cos θ

2 |00〉 + sin θ
2 |01〉 + cos θ

2 |11〉 − sin θ
2 |10〉), then according to

the discussion in Sect. 3, the success probability of CHSH game (maximum success
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probability corresponding to each θ ) for this state equals to 1
2 + 1

8 [cos(θ−ψ1)+cos(θ−
ψ2) − sin(θ − ψ1) + sin(θ − ψ2)] where ψ1 = (θ + π

4 ) and ψ2 = (θ − π
4 ). With

this particular choice of basis, the actual success probability is further improved and
it provides the same result as obtained in the CHSH game with maximally entangled
state.

Further, if we consider the transformed three-qubit entangled state of the form
1√
2
(cos θ

2 |000〉+ sin θ
2 |010〉+ cos θ

2 |111〉− sin θ
2 |100〉), then according to the discus-

sion in Sect. 4, the success probability of parity game for this state equals to 1
4 (3+cos θ)

The comparative study between the success probability values of two games (for
different form of states) corresponding to different values of θ from 0 to π

2 is shown
in Fig. 2.

From the graph, it is clear that for CHSH game, the value of success probability
varies between 0.75 and cos2 π

8 for the actual state shared in QPQ protocol and the
success probability of the two-qubit modified entangled state (as discussed in Sect. 4)
remains constant, i.e., cos2 π

8 irrespective of the value of θ . For the parity game,
the value of the success probability for the transformed three-qubit entangled state
(as discussed in Sect. 4) varies between 1 to 0.75. From the graph (as well as from
calculation), it is clear that at θ ≈ 1.14, the success probability of parity game and
the success probability of CHSH game for the modified two-qubit state becomes
equal. Thus, for all the values of θ < 1.14, the success probability of parity game for
transformed three-qubit state is higher compared to the success probability of CHSH
game for the modified two-qubit state. On the other hand, for θ ≥ 1.14, the success
probability of CHSH game for modified two-qubit state is higher compared to the
success probability of parity game for transformed three-qubit state.

Similarly, for the value of θ ≈ 1.2, the success probability of parity game and the
success probability of CHSH game for the actual two-qubit state becomes equal, and
beyond that point, the success probability of CHSH game for actual two-qubit state

Fig. 2 Comparative study of success probabilities between CHSH and parity game for DI-QPQ protocol
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is higher compared to the success probability of parity game for transformed three-
qubit state. However, the success probability value of CHSH game for the modified
two-qubit state is always higher as compared to the success probability value for the
actual two- qubit state and the two becomes equal for θ = 1.57.

In case we are interested for small values of θ , the parity game as in Sect. 4 will be
the best suited for testing DI. Thus, [4, Algorithm 1] should be parameterized based
on the value of θ . Further parity game does not require modifying the measurement
bases as it is required for the CHSH test as described in Sect. 3.

4.3 Toward security analysis for finite samples

As we consider finite number of samples in our modified testing mechanism, in testing
phase, we need to check whether the success probability value lies within the inter-
val

[
pQPQ − εpQPQ, pQPQ + εpQPQ

]
, where pQPQ is the intended success probability

corresponding to a particular form of state (i.e., for a particular value of θ ) and ε is
the accuracy parameter chosen by the server (Bob). When the states successfully pass
this test, Bob proceeds further for the actual QPQ protocol; otherwise, he aborts.

In [4], the authors outlined an attack strategy over the QPQ protocol where they
have shown that if there is εA amount of bias in the choice of measurement basis by the
client (i.e., Alice), then she can extract ( 1

2 + 2ε2
A) sin2 θ fraction of entire key stream,

where the amount of extra information leaked is 2ε2
A sin2 θ . Toward resisting such

leakage (which arises due to the finite sample size), Bob must bound the value of εA
so that the additional information which is leaked to Alice should be infinitesimally
small. In this direction, one may quantify the security of a protocol in the following
manner.

The additional information leaked to the adversary (client) for our optimal sample
protocol due to the biased choice of the client’s measurement basis will be proportional
to the value of ε, where ε is the accuracy parameter chosen by the server. This can be
justified as follows. Let, instead of the correct states, Bob is provided with the states
of the form (α|0〉B |φ0〉A +β|1〉B |φ1〉A) where |α|2 = ( 1

2 + εA) and |β|2 = ( 1
2 − εA).

When Bob performs the CHSH test, the success probability for the modi-

fied states becomes p′ = 1
2 + 1

8 sin θ(sin ψ1 + sin ψ2) + 1
4

√
1
4 − ε2

A(cos ψ1 −
cos ψ2) + 1

4εA cos θ(cos ψ1 + cos ψ2). Now p′ must lie within the interval [pQPQ −
εpQPQ, pQPQ+εpQPQ], where pQPQ is the intended success probability of the modified
state and ε is the accuracy parameter chosen by Bob.

Thus from the lower and upper bounds, we get ε2
A ≥ − 2εpQPQ

cos ψ1
and ε2

A ≤ 2εpQPQ
cos ψ1

,
respectively. Since negative εA is not meaningful, we have the solution as

εA ≤
√

2εpQPQ

cos ψ1
. (5)

Thus, to deceive Bob, the states should be prepared in such a way that the value of εA

must satisfy the condition εA ≤
√

2εpQPQ
cos ψ1

. Otherwise, the value of p′ will not lie within
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the specified interval and Bob has to abort the protocol. As for a given θ , the values
of pQPQ, ψ1 and ψ2 are constant, we can write εA ≤ k

√
ε, where k is a constant.

Similarly, for the given erroneous state (α|0〉B |φ0〉A + β|1〉B |φ1〉A), when Bob
performs the parity test, the success probability of parity test for the transformed

states becomes p′′ = 1
4 [1 + cos θ + 2

√
1
4 − ε2

A(1 + cos θ)]. This value of p′′ must
lie within the interval [pQPQ − εpQPQ, pQPQ + εpQPQ], where pQPQ is the intended
success probability of the transformed state.

Now from the left and right inequalities, we get ε2
A ≥ −ε and ε2

A ≤ ε, respectively.
Since negative εA is not meaningful, we have the solution as

εA ≤ √
ε. (6)

Analyzing both the relation between εA and ε for CHSH test and parity test in
Eqs. (5) and (6), respectively, one may conclude that the maximum value of εA is
related to the square root of the value of chosen accuracy parameter (i.e., ε). From the
discussion in [4], the additional information leaked to Alice equals to 2ε2

A sin2 θ . As
the value of εA is proportional with the square root of the chosen accuracy parameter
ε, the maximum information leaked to Alice will be proportional with the value of the
chosen accuracy parameter ε.

5 Discussion and conclusion

In this work, we propose several strategies to improve the test of device independence
in the device-independent quantum private query Protocol. Our motivation comes from
the analysis in finite sample scenario, which is mandatory for actual implementation
of the protocol. We derive the relation between the required sample size and corre-
sponding success probability and propose optimal testing mechanisms for DI-QPQ
protocol. CHSH tests on different versions of the entangled states are studied. Further,
we also consider the three-party pseudo-telepathy as a tool for testing DI and show
that it provides significantly better results for practical purposes.
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