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Abstract The entanglement-assisted formalism generalizes the standard stabilizer
formalism, which can transform arbitrary classical linear codes into entanglement-
assisted quantum error-correcting codes (EAQECCs) by using pre-shared entangle-
ment between the sender and the receiver. In this work, we construct six classes
of q-ary entanglement-assisted quantum MDS (EAQMDS) codes based on classical
negacyclic MDS codes by exploiting two or more pre-shared maximally entangled
states. We show that two of these six classes q-ary EAQMDS have minimum distance
more larger than q + 1. Most of these q-ary EAQMDS codes are new in the sense that
their parameters are not covered by the codes available in the literature.

Keywords Entanglement-assisted quantum error-correcting codes (EAQECCs) ·
MDS codes · Negacyclic codes · Cyclotomic

1 Introduction

Quantum error-correcting codes (QECCs) were introduced to protect quantum infor-
mation from decoherence during quantum computations [1]. The stabilizer formalism
allows standard quantum codes to be constructed from dual-containing (or self-
orthogonal) classical codes [2]. However, the dual-containing condition forms a
barrier in the development of quantum coding theory. Recently, a breakthrough is the
entanglement-assisted (EA) stabilizer formalism proposed by Brun et al. in Ref. [3].
They prove that if shared entanglement is available between the sender and receiver,
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non-dual-containing classical quaternary codes can be used to construct EAQECCs,
this leads to a more general framework for construction of quantum codes [4–6].
Currently, many works have focused on the construction of binary EAQECCs based
on classical binary or quaternary linear codes, see [7–14]. Just as in the classical
error-correcting codes and QECCs, EAQECCs over higher alphabets have many wide
applications, such as constructing easily decodable binary EAQECCs. However, little
attention has been paid to non-binary EAQECCs, let alone EA-quantum MDS codes
which can achieve entanglement-assisted quantum singleton bound3.

Let q be a prime power. A q-ary [[n, k, d; c]] EAQECC that encodes k information
qubits into n channel qubits with the help of c pairs of maximally entangled Bell states
(ebits) can correct up to � d−1

2 � errors, where d is the minimum distance of the code. If
c = 0, then it is called a q-ary standard [[n, k, d]] quantum code Q. We denote a q-ary
[[n, k, d; c]] EAQECC by [[n, k, d; c]]q , and q-ary [[n, k, d]] QECC by [[n, k, d]]q .

As in classical coding theory, one of the central tasks in quantum coding theory is
to construct good quantum codes and EA-quantum codes.

Theory 1.1 [3](EA-Quantum Singleton Bound) An [[n, k, d; c]]q EAQECC satisfies

n + c − k ≥ 2(d − 1),

where 0 ≤ c ≤ n − 1.

A EAQECC achieving this bound is called a EA-quantum maximum-distance-
separable (EAQMDS) code. If c = 0, then this bound is quantum singleton bound, and
a code achieving the bound is called quantum maximum-distance-separable (QMDS)
code. Just as in the classical linear codes, QMDS codes and EAQMDS codes form an
important family of quantum codes. Constructing QMDS codes and EAQMDS codes
had become a central topic for quantum error correction codes in rent years. Many
classes of QMDS codes have been constructed by different methods, in particular
the constructions obtained from constacyclic codes or negacyclic codes containing
their Hermitian dual over Fq2 [15–23]. According to the MDS conjecture in [24], the
maximum-distance-separable (MDS) code cannot exceed q2 +1. Many QMDS codes
with lengths between q + 1 and q2 + 1 have been constructed [16–23,25]. However,
the problem of constructing QMDS codes with length n larger than q + 1 is much
more difficult.

It seems that there is a barrier for constructing more QMDS codes with distance
larger than q + 1. For larger distance than q + 1 of code length n ≤ q2 + 1, one need
to construct a EAQMSD code.

The following Proposition is one of the most frequently used construction methods.

Proposition 1.2 [3,5] If C = [n, k, d]q2 is a classical code over Fq2 and H is its
parity check matrix , then C⊥h EA stabilizes an [[n, 2k − n + c, d; c]]q EAQECC,
where c =rank(HH†) is the number of maximally entangled states required and H†

is the conjugate matrix of H over Fq2 .
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Until now, little attention has been paid to q-ary EA-quantum MDS codes. In [26],
Fan et al. proposed several constructions of q-ary EAQMDS codes with minimum
distance greater than q + 1 based on classical MDS codes.

In this paper, we propose a concept of decomposition of the defining set of nega-
cyclic codes. Recently, Chen et al. [30] proposed a same concept at the very same
moment. Based on the concept, they construct some EA-quantum MDS codes which
are all different with the codes in this paper. More precisely, based on concept of
decomposition of the defining set of negacyclic codes, we construct several classes of
EA-quantum MDS codes as follows:

(1) Let q be an odd prime power of the form q = atm + 1, a be even, or a be

odd and t be even, then there exists a q-ary [[ q2−1
at ,

q2−1
at − 2d + 2, d; 0]] EA-

quantum MDS codes, where 2 ≤ d ≤ ( at2 + 1)m + 1; there exists a q-ary

[[ q2−1
at ,

q2−1
at − 2d + 4, d; 2]]- EA-quantum MDS codes, where ( at2 + 1)m + 2 ≤

d ≤ ( at2 + 2)m + 1; and there exists a q-ary [[ q2−1
at ,

q2−1
at − 2d + 6, d; 4]]-

EA-quantum MDS codes, where ( at2 + 2)m + 2 ≤ d ≤ ( at2 + 3)m + 1.
(2) Let q be an odd prime power of the form q = 30m + 11, then there exists a q-ary

[[ q2−1
30 ,

q2−1
30 − 2d + 4, d; 2]]- EA-quantum MDS codes, where 8m + 4 ≤ d ≤

11m + 5; and there exists a q-ary [[ q2−1
30 ,

q2−1
30 − 2d + 6, d; 4]]- EA-quantum

MDS codes, where 11m + 6 ≤ d ≤ 14m + 7.
(3) Let q be an odd prime power of the form q = 30m + 19, then there exists a q-ary

[[ q2−1
30 ,

q2−1
30 − 2d + 4, d; 2]]- EA-quantum MDS codes, where 8m + 6 ≤ d ≤

11m + 7; there exists a q-ary [[ q2−1
30 ,

q2−1
30 − 2d + 6, d; 4]]- EA-quantum MDS

codes, where 11m + 8 ≤ d ≤ 13m + 8; and there exists a q-ary [[ q2−1
30 ,

q2−1
30 −

2d + 8, d; 6]]- EA-quantum MDS codes, where 13m + 9 ≤ d ≤ 16m + 10.
(4) Let q be an odd prime power of the form q = 12m + 5, then there exists a q-ary

[[ q2−1
12 ,

q2−1
12 − 2d + 4, d; 2]]- EA-quantum MDS codes, where 5m + 3 ≤ d ≤

7m+3; and there exists a q-ary [[ q2−1
12 ,

q2−1
12 −2d+6, d; 4]]- EA-quantum MDS

codes, where 7m + 4 ≤ d ≤ 8m + 3.
(5) Let q be an odd prime power of the form q = 10m + 3. (a) If m = 2t + 1 is odd,

then there exists a q-[[ q2+1
5 ,

q2+1
5 − 2d + 6, d; 4]]- EA-quantum MDS codes,

where 4m + 3 ≤ d ≤ 6m + 1 is odd and 6m + 4 ≤ d ≤ 10m + 4 is even.
(b) If m = 2t is even, then there exists a q-ary [[ q2+1

5 ,
q2+1

5 − 2d + 3, d; 1]]-
EA-quantum MDS codes, where 2 ≤ d ≤ 8m + 1 is even; there exists a q-ary

[[ q2+1
5 ,

q2+1
5 − 2d + 6, d; 4]]-EA-quantum MDS codes, where 4m + 3 ≤ d ≤

6m+1 is odd; and there exists a q-ary [[ q2+1
5 ,

q2+1
5 −2d+7, d; 5]]-EA-quantum

MDS codes, where 8m + 4 ≤ d ≤ 12m + 4 is even.
(6) Let q be an odd prime power of the form q = 10m + 7. (a)If m = 2t + 1

is odd, then there exists a q-[[ q2+1
5 ,

q2+1
5 − 2d + 6, d; 4]]- EA-quantum MDS

codes, where 8m + 7 ≤ d ≤ 14m + 11 is odd; and 6m + 6 ≤ d ≤ 10m + 8 is
even.(b) If m = 2t is even, then there exists a q-[[ q2+1

5 ,
q2+1

5 − 2d + 3, d; 1]]-
EA-quantum MDS codes, where 2 ≤ d ≤ 8m + 6 is even; there exists a q-

123



69 Page 4 of 23 L. Lu et al.

[[ q2+1
5 ,

q2+1
5 − 2d + 6, d; 4]]- EA-quantum MDS codes, where 8m + 7 ≤ d ≤

14m+11 is odd; and there exists a q-[[ q2+1
5 ,

q2+1
5 −2d +7, d; 5]]- EA-quantum

MDS codes, where 8m + 8 ≤ d ≤ 12m + 8 is even.

The first class of EAQMDS codes has minimum distance upper limit greater than
q
2 + 1 by consuming a few ebits. EAQMDS codes in (2)–(4) have minimum distance
upper limit closed to q

2 + 1. EAQMDS codes in (5) and (6) have minimum distance
upper limit more greater than q +1. Briefly, most of these EAQMDS codes are new in
the sense that their parameters are not covered by the codes available in the literature.

This paper is organized as follows. In Sect. 2, we introduce some basic notations
and definitions of classical negacyclic codes and EAQECCs. In Sect. 3, we give some
new classes of EA-quantum MDS codes. The conclusion is given in Sect. 4.

2 Preliminaries

In this section, we review some basic results on negacyclic codes, BCH codes, decom-
position of defining sets of codes and EAQECCs for the purpose of this paper. Details
on BCH codes and negacyclic codes can be found in standard textbook on coding
theory [27], and for EAQECCs please see Refs. [3–9].

Let p be a prime number andq a power of p, i.e.,q = pl for some l > 0. Fq2 denotes
the finite field with q2 elements. For any α ∈ Fq2 , the conjugation of α is denoted
by α = αq . Given two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Fn

q2 ,
their Hermitian inner product is defined as

(x, y)h =
∑

xi yi = x1y1 + x2y2 + · · · + xn yn .

For a linear code C over Fq2 of length n, the Hermitian dual code C⊥h is defined as

C⊥h = {x ∈ Fn
q2 |(x, y)h = 0,∀y ∈ C}

If C ⊆ C⊥h , then C is called a Hermitian dual-containing code, and C⊥h is called a
Hermitian self-orthogonal code.

We now recall some results about classical negacyclic codes. For any vector
(c0, c1, . . . , cn−1) ∈ Fn

q2 , if a q2-ary linear code C of length n is invariant under
the permeation of Fq2 , i.e.,

λ(c0, c1, . . . , cn−1) = (λcn−1, c0, . . . , cn−2),

where λ is a nonzero element of Fq2 , then C is a constacyclic code. If λ = 1, then C
is called a cyclic code , and if λ = −1, then C is called a negacyclic code.

For a negacyclic code C, each codeword c = (c0, c1, . . . , cn−1) is customarily
represented in its polynomial form: c(x) = c0 + c1x + · · · + cn−1xn−1, and the code
C is in turn identified with the set of all polynomial representations of its codewords.
The proper context for studying negacyclic codes is the residue class ring Rn =
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Fq [x]/(xn + 1). xc(x) corresponds to a negacyclic shift of c(x) in the ring Rn . As
we all know, a linear code C of length n over Fq2 is negacyclic if and only if C is
an ideal of the quotient ring Rn = Fq [x]/(xn + 1). It follows that C is generated by
monic factors of (xn + 1), i.e., C = 〈 f (x)〉 and f (x)|(xn + 1). The f (x) is called the
generator polynomial of Cn .

Let gcd(n, q) = 1 andm be the multiplicative order of q2 modulo 2n. Let β ∈ Fq2m

be a primitive 2n-th root of unity. Then, ξ be a primitive 2n-th root of unity such that
ξ = β2 ∈ Fq2m . Hence, xn + 1 = ∏n−1

i=0 (x − β2i+1). Let Z2n denote the set of odd
integers from 1 to 2n, i.e., Z2n = {1, 3, . . . , 2n − 1}. For each i ∈ Z2n , let s be
an integer with 0 ≤ s < 2n, the q2-cyclotomic coset modulo 2n that contains s is
defined by the setCs = {s, sq2, sq2·2, . . . , sq2(k−1)} (mod 2n), where k is the smallest
positive integer such that xq2k ≡ x (mod 2n).

The defining set of a negacyclic code C =< g(x) > of length n is the set T =
{i ∈ Z2n|β i is a root of g(x)}. We can see that the defining set T is a union of some
q2-cyclotomic cosets module 2n and dim(C) = n − |T |.
Lemma 2.1 [18] Let C be a q2-ary negacyclic code of length n with defining set T .
Then, C contains its Hermitian dual code if and only if T

⋂
T−q = ∅, where T−q

denotes the set Z−q = {−qz(mod 2n)|z ∈ T }.
Let C be a negacyclic code with a defining set T = ⋃

s∈S
Cs . Denoting T−q = {2n −

qs|s ∈ T }, then we can deduce that the defining set of C⊥h is T⊥h = Zn\T−q , see
Ref. [16].

Since there is a striking similarity between cyclic codes and negacyclic code, we
give a correspondence defining of skew-symmetric and skew-asymmetric as follows.

A cyclotomic coset Cs is skew-symmetric if 2n − qs mod 2n ∈ Cs , and otherwise
is skew-asymmetric. Skew-asymmetric cosets Cs and C2n−qs come in pair, and we use
(Cs,C2n−qs) to denote such a pair.

Thus, one has the following lemma.

Lemma 2.2 [28] If C is a negacyclic code of length n over Fq2 with defining set T ,
then C⊥h ⊆ C if and only if one of the following holds:

(1) T ∩ T−q = ∅, where T−q = {2n − qs | s ∈ T }.
(2) If i, j, k ∈ T , then Ci is a skew-asymmetric coset and (C j , Ck) is not a skew-

asymmetric cosets pair.

Using above-mentioned Lemma 2.2, one can get that C⊥h ⊆ C can be described
by the relationship of its cyclotomic coset Cs . Firstly, we introduce a fundamental
definition.

Definition 2.3 [12] Let C be a negacyclic code of length n with defining set T . Denote
Tss = T ∩ T−q and Tsas = T \ Tss , where T−q = {2n − qx |x ∈ T }. T = Tss ∪ Tsas
is called decomposition of the defining set of C.

To determine Tss and Tsas , we give the following lemma to characterize them.

Lemma 2.4 [12] Let C be a negacyclic code of length n over Fq2 with defining set T ,
T = Tss ∪ Tsas be decomposition of T .
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(1) If i, j ∈ Tsas , then Ci is skew-asymmetric coset, and Ci and C j cannot form a
skew-asymmetric cosets pair.

(2) If l ∈ Tss , then either Cl is a skew-symmetric coset, or Cl is a skew-asymmetric
coset and there is a p ∈ T such that Cl and Cp form a skew-asymmetric cosets
pair.

To determine Tss and Tsas , we give the following lemma to characterize them.

Lemma 2.5 [12,18,29] Let gcd(q, n) = 1, ord2n(q2) = m, 0 ≤ x, y, z ≤ n − 1.

(1) Cx is skew-symmetric if and only if there is a t ≤ �m
2 � such that x ≡ xq2t+1(mod

2n).
(2) If Cy �= Cz, (Cy,Cz) form a skew-asymmetric pair if and only if there is a t ≤ �m

2 �
such that y ≡ zq2t+1 (mod n) or z ≡ yq2t+1(mod 2n).

Using decomposition of the defining set T of a negacyclic code C, one can give a
decomposition of C⊥h as follow.

Lemma 2.6 [12] Let C be a negacyclic code with defining set T , T = Tss ∪ Tsas be
decomposition of T . Denote the negacyclic codes with defining set Tsas and Tss be CR
and CE , respectively. Then, C⊥h

R ⊆ CR, CE∩ C⊥h
E = {0}, C⊥h

R ⊂ CE , CR∩ CE = C and

C⊥h
R + C⊥h

E = C⊥h .

Lemma 2.7 [12] Let T be a defining set of a negacyclic code C, T = Tss ∪ Tsas be
decomposition of T . Using C⊥h as EA stabilizer, the optimal number of needed ebits
is c =| Tss |.
Proof According to Definition 2.3, we denote the defining sets of negacyclic codes
C1 and C2 into Tss and Tsas , respectively. The parity check matrix of C1 and C2 is H1

and H2, respectively. Let H =
(
H1
H2

)
be the parity check matrix of C. Then,

HH† =
(
H1H

†
1 H1H

†
2

H2H
†
1 H2H

†
2

)
.

Since H2 is the parity check matrix of C2 with defining set of Tsas , H2H
†
2 = 0.

Because of C⊥h
1 ⊆ C2, H1H

†
2 = 0 and H2H

†
1 = 0. Therefore,

HH† =
(
H1H

†
1 0

0 0

)
.

According to Refs. [3–5], one obtains that c = rank(HH†) = rank(H1H
†
1 ). Since

H1 is the parity check matrix of C2 with defining set of Tss , H1 is a full-rank matrix.
Hence, c = rank(H1H

†
1 ) = |Tss |. ��

Lemma 2.8 Let C be an [n, k, d]q2 negacyclic code with defining set T , and the
decomposition of T be T = Tss ∪ Tsas . Then, C⊥h EA stabilizes an q-ary [[n, n −
2|T | + |Tss |, d ≥ δ; |Tss |]] EAQECC.
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Proof The dimension of C is k = n − |T |. From Proposition 1 and Lemma 2.6,
we know C⊥h EA stabilizes an EAQECC with parameters [[n, 2k − n + c, d; c]] =
[[n, n − 2|T | + |Tss |, d; |Tss |]].

If C is a negacyclic BCH code BCH(n, δ), denote its defining set T as T = T (δ),
the decomposition of T as T (δ) = Tss(δ) ∪ Tsas(δ). According to Lemma 2.7, C⊥h

EA stabilizes an EAQECC with parameters [[n, kea, d; c]] = [[n, n − 2|T (δ)| +
|Tss(δ)|, d ≥ δ; |Tss |]]. In the following two sections, we will discuss how to determine
|Tss(δ)|, |T (δ)|. ��

3 New EA-quantum MDS codes

3.1 New EA-quantum MDS codes of length n = q2−1
at

In this subsection, we construct some classes of q-ary EA-quantum MDS codes of

length n = q2−1
at , where q be an odd prime power of the form q = atm + 1, a be a

even number, or a be an odd number and t be a even number. Since 2n|q2 − 1, then
for each odd x in the range 1 ≤ x ≤ 2n, the q2-cyclotomic coset Cx modulo 2n is
Cx = x .

Lemma 3.1 Let q be an odd prime power of the formq = atm+1, a be a even number,

or a be an odd number and t be a even number, n = q2−1
at . If C is a q2-ary negacyclic

code of length n with defining set T = ⋃s
j=0 C1+2 j , where 0 ≤ s ≤ ( at2 + 1)m − 1,

then C⊥h ⊆ C.
Proof For 0 ≤ s ≤ ( at2 +1)m−1, it is sufficient to prove T ∩ (−qT ) = ∅. According
to Lemma 2.2 and Definition 2.3, one obtains that C⊥h ⊆ C if and only if there is
no skew-symmetric cyclotomic coset and any two cyclotomic cosets do not form a
skew-asymmetric pair in the defining set T . Suppose there exist integers 0 ≤ x ≤
y ≤ (at + 2)m − 1 such that Cx = −qCy , that is x ≡ −qy mod 2n. In other words
x + qy ≡ 0 mod 2n. Since q = atm + 1, 2n = 2m(q + 1).

If 1 ≤ x ≤ y ≤ 2m−1, then 0 ≤ x+qy ≤ (2m−1)(q+1) ≤ 2m(q+1)−(q+1) <

2n, a contradiction.
Similarly, we have for 1 ≤ i ≤ at

2 , if [at + 2 − 2(i − 1)]m + 1 ≤ x < y ≤
(at + 2 − 2i)m − 1, then (i − 1)2n < [(at − 2i)(m + 1)](q + 1) ≤ x + qy ≤
[(at + 2 − 2i)m − 1](q + 1) ≤ 2im(q + 1) − (q + 1) < i2n, a contradiction.

Hence, for 0 ≤ s ≤ ( at2 +1)m−1, there are no skew-symmetric cyclotomic cosets
and skew-asymmetric cosets pairs in defining set T = ⋃s

j=0 C1+2 j . It means that

Tss = ∅. C⊥h ⊆ C holds. ��
Theory 3.2 Let q be an odd prime power of the form q = atm + 1, a be even, or a

be odd and t be even, n = q2−1
at . Then, there exists a q-ary [[ q2−1

at ,
q2−1
at − 2d + 2, d]]

quantum MDS codes, where 2 ≤ d ≤ ( at2 + 1)m + 1.

Proof Consider the negacyclic codes over Fq2 of length n = q2−1
at with defining set

T = ⋃s
i=0 C1+2i , where 0 ≤ s ≤ ( at2 + 1)m − 1 for q be an odd prime power of
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the form q = atm + 1, a be even, or a be odd and t be even. By Lemma 3.1, there
is C⊥h ⊆ C. Since every q2-cyclotomic coset Cx has exactly one element and x must
be odd number, we can obtain that T consists of s + 1 integers {1, 3, . . . , 1 + 2s}. It
implies that C has minimum distance at least s + 2. Hence, C is a q2-ary negacyclic
code with parameters [n, n− (s+1),≥ s+2]. Combining the Hermitian construction
with quantum singleton bound, we can obtain a quantum MDS code with parameters

[[ q2−1
at ,

q2−1
at − 2d + 2, d]], where 2 ≤ d ≤ ( at2 + 1)m + 1, q be an odd prime power

of the form q = atm + 1, a be even, or a be odd and t be even. ��
Example 1 Let a = 3, t = 2. Then, q = 19, n = 60 applying Theory 3.2 produces
quantum MDS codes with parameters [[60, 58, 2]]19, [[60, 56, 3]]19, [[60, 54, 4]]19,
[[60, 52, 5]]19,[[60, 50, 6]]19, [[60, 48, 7]]19, [[60, 46, 8]]19, [[60, 44, 9]]19,
[[60, 42, 10]]19, [[60, 40, 11]]19, [[60, 38, 12]]19, [[60, 36, 13]]19.

Lemma 3.3 Let q be an odd prime power of the form q = atm + 1, a be a even

number, or a be an odd number and t be a even number, n = q2−1
at .

(i) For 1 ≤ i ≤ 3, (C1+(at+2i)m,C1+(2im−2)) forms a skew-asymmetric pair.
(ii)

|Tss(δ)| =
⎧
⎨

⎩

0, if 2 ≤ δ ≤ ( at2 + 1)m + 1;
2, if ( at2 + 1)m + 2 ≤ δ ≤ ( at2 + 2)m + 1;
4, if ( at2 + 2)m + 2 ≤ δ ≤ ( at2 + 3)m + 1.

Proof (i) For q = atm + 1, then n = q2−1
at = m(q + 1). 2n − q(1 + (2im − 2)) =

2m(q + 1)−[2mi(q + 1)− 2mi −q] ≡ 1 + (at + 2i)m mod 2m(q + 1) . Hence,
for 1 ≤ i ≤ 3, (C1+(at+2i)m,C1+(2im−2)) forms a skew-asymmetric pair.

(ii) According to Lemma 3.1, for 2 ≤ δ ≤ ( at2 + 1)m + 1 in the defining set T (δ) =⋃δ−1
j=0 C1+2 j , we have Tss(δ) = ∅.

��
For ( at2 + 1)m + 2 ≤ δ ≤ ( at2 + 2)m + 1, according to Lemma 2.3 and Lemma 2.4,

one determine the set Tss and Tsas by decomposition of the defining set T . In Tsas ,
there is no skew-symmetric cyclotomic coset and any two cyclotomic cosets do not
form a skew-asymmetric pair; and in Tss , there are skew-symmetric cyclotomic cosets
or there exist skew-asymmetric pairs. Suppose there exist integers y ∈ [(at + 2)m +
3, (at + 4)m − 1] and x ∈ [0, (at + 2)m − 1] ∪ [(at + 2)m + 3, (at + 4)m − 1] such
that x ≡ −qy mod 2n. We find a contradiction as follows.

If (at + 2)m + 1 ≤ x < y ≤ (at + 4)m − 1, then ( at2 + 1)2n < ( at2 + 1)2m(q +
1)+3(q +1) = [(at +2)m+3](q +1) ≤ x + yq ≤ [(at +4)m−1](q +1) = ( at2 +
2)2m(q+1)−(q+1) < ( at2 +2)2n, that means that( at2 +1)2n < x+yq < ( at2 +2)2n,
a contradiction. And if (at + 2)m + 3 ≤ y ≤ (at + 4)m − 1, 0 ≤ y ≤ (at + 2)m − 1,
then ( at2 + 1)2n < ( at2 + 1)2m(q + 1) + 2atm + 2m + 3 = [(at + 2)m + 3]q ≤
x + yq ≤ (at + 2)m − 1 + [(at + 4)m − 1]q = ( at2 + 2)2n − q < ( at2 + 2)2n, a
contradiction.

Similarly, for ( at2 + 2)m + 2 ≤ δ ≤ ( at2 + 3)m + 1, suppose there exist integers
y ∈ [(at + 4)m + 3, (at + 6)m − 1] and x ∈ [0, (at + 2)m − 1] ∪ [(at + 2)m +
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3, (at + 4)m − 1] ∪ [(at + 4)m + 3, (at + 6)m − 1] such that x ≡ −qy mod 2n.
Using the same methods, we can deduce that ( at2 + 2)2n < x + qy < ( at2 + 3)2n, a
contradiction.

Theory 3.4 Let q be an odd prime power of the form q = atm+1, a be even, or a be

odd and t be even, n = q2−1
at . Then, there exists a q-ary [[ q2−1

at ,
q2−1
at −2d +4, d; 2]]-

EA-quantumMDS codes, where ( at2 +1)m+2 ≤ d ≤ ( at2 +2)m+1; and there exists a

q-ary [[ q2−1
at ,

q2−1
at −2d+6, d; 4]]- EA-quantumMDS codes, where ( at2 +2)m+2 ≤

d ≤ ( at2 + 3)m + 1.

Proof Consider the negacyclic codes over Fq2 of length n = q2−1
at with defining set

T = ⋃s
i=0 C1+2i , where 0 ≤ s ≤ ( at2 + 3)m − 1 for q be an odd prime power of

the form q = atm + 1, a be even, or a be odd and t be even. By Lemma 3.3, there
is c = |Tss(δ)| = 2 if ( at2 + 1)m ≤ s ≤ ( at2 + 2)m − 1 and c = |Tss(δ)| = 4 if
( at2 + 2)m ≤ s ≤ ( at2 + 3)m − 1. Since every q2-cyclotomic coset Cx has exactly
one element and x must be odd number, we can obtain that T consists of s + 1
integers {1, 3, . . . , 1 + 2s}. It implies that C has minimum distance at least s + 2.
Hence, C is a q2-ary negacyclic code with parameters [n, n − (s + 1),≥ s + 2].
Combining Lemma 2.8 with EA-quantum singleton bound, we can obtain a quantum

MDS code with parameters [[ q2−1
at ,

q2−1
at −2d+4, d; 2]], where ( at2 +1)m+2 ≤ d ≤

( at2 +2)m+1; [[ q2−1
at ,

q2−1
at −2d+6, d; 4]], where ( at2 +2)m+2 ≤ d ≤ ( at2 +3)m+1,

for q be an odd prime power of the form q = atm + 1, a be even, or a be odd and t
be even. ��
Example 2 Let a = 3, t = 2. Then, q = 19, n = 60 applying Theory 3.4 produces:

(1) new 2 − ebits EA-quantum MDS codes with parameters [[60, 36, 14; 2]]19,
[[60, 34, 15; 2]]19, [[60, 32, 16; 2]]19.

(2) new 4-ebits EA-quantum MDS codes with parameters [[60, 32, 17; 4]]19, [[60, 30,

18; 4]]19, [[60, 28, 19; 4]]19.

3.2 New EA-quantum MDS codes of length n = q2−1
2s1s2

In this subsection, we construct some classes of q-ary EA-quantum MDS codes of

length n = q2−1
2s1s2

, where q be an odd prime power, 2s1|(q − 1), s2|(q + 1) and s2 is an

odd integer. Let n = q2−1
2s1s2

, r = 2. Since 2n|q2 − 1, then for each odd x in the range

1 ≤ x ≤ 2n, the q2-cyclotomic coset Cx modulo 2n is Cx = x .

Lemma 3.5 Let q be an odd prime power of the form q = 30m + 11, n = q2−1
30 .

(i) (C1+2(10m+3),C1+2(5m+1)), (C1+2(13m+4),C1+2(8m+4)) and (C1+2(16m+5),

C1+2(11m+3)) form skew-asymmetric pairs.
(ii)

|Tss(δ)| =
⎧
⎨

⎩

0, if 2 ≤ δ ≤ 8m + 3;
2, if 8m + 4 ≤ δ ≤ 11m + 5;
4, if 11m + 6 ≤ δ ≤ 14m + 7.
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Proof (i) Let q = 30m + 11 and 2n = 2 q2−1
30 = 2(3m + 1)(10m + 4). Since

[1 + 2(5m + 1)]q = (10m + 4 − 1)(30m + 10 + 1) = 5 · 2(10m + 4)(3m + 1) −
[1 + 2(10m + 3)], −[1 + 2(5m + 1)]q ≡ 1 + 2(10m + 3) mod 2n.
Since [1 + 2(8m + 4)]q = (10m + 4 + 6m + 1)(30m + 10 + 1) = 8 · 2(10m +
4)(3m + 1) − [1 + 2(13m + 4)], −(16m + 5)q ≡ 1 + 2(13m + 4) mod 2n.
Since [1 + 2(11m + 3)]q = (20m + 8 + 2m − 7)(30m + 10 + 1) = 11 · 2(10m +
4)(3m + 1) − [1 + 2(16m + 5)], −(22m + 7)q ≡ 1 + 2(16m + 5) mod 2n.

(ii) According to Lemma 17 in Ref. 22, if the defining set T = ⋃l
j=2m+1 C1+2 j ,

where 2m + 1 ≤ l ≤ 10m + 2, then Tss(δ) = ∅ for 2 ≤ δ ≤ 8m + 3.
Let T1 = ⋃10m+2

j=2m+1 C1+2 j . If the defining set T = ⋃l
j=10m+4 C1+2 j

⋃
T1, where

10m + 4 ≤ l ≤ 13m + 3, then 8m + 4 ≤ δ ≤ 11m + 5 holds.
Let I0 = [1+2(2m+1), 1+2(10m+2)], I1 = [1+2(10m+4), 1+2(13m+3)]
and I2 = [1 + 2(13m + 5), 1 + 2(16m + 4)].

��
According to Lemmas 2.4 and 2.1 in [12], one needs to testify that for x, y ∈

I0 ∪ I1 ∪ I2, there x + yq �≡ 0 mod 2n holds.
For 8m + 4 ≤ δ ≤ 11m + 5, suppose there exist integers y ∈ I1, x ∈ I0 ∪ I1, such

that x ≡ −qy mod 2n. We find a contradiction in the following.
We divided I1 into three parts such as [1+2(10m+4), 1+2(10m+4)+2(m−1)]∪

[1 + 2(10m + 4) + 2m, 1 + 2(10m + 4) + 4(m − 1)] ∪ [1 + 2(10m + 4) + 4m −
2, 1 + 2(13m + 3)].

If x, y ∈ [1 + 2(10m + 4), 1 + 2(10m + 4) + 2(m − 1)], then 10(2n) < 10(2n) +
70m + 28 = (20m + 19)(30m + 12) ≤ y(q + 1) ≤ (22m + 7)(30m + 12) < 11(2n);
if x, y ∈ [1 + 2(10m + 4) + 2m, 1 + 2(10m + 4) + 4(m − 1)], then 11(2n) <

(22m + 9)(30m + 12) ≤ y(q + 1) ≤ (24m + 5)(30m + 12) < 12(2n); and if
x, y ∈ [1+2(10m+4)+4m−2, 1+2(13m+3)], then 12(2n) < (24m+7)(30m+
12) ≤ y(q + 1) ≤ (26m + 7)(30m + 12) = 13(2n) − 50m − 20 < 13(2n), a
contradiction.

Similarly, for 11m + 6 ≤ δ ≤ 14m + 7, suppose there exist integers y ∈ I2,
x ∈ I0 ∪ I1 ∪ I2, such that x ≡ −qy mod 2n. Using the same method, one also finds
a contradiction.

Theory 3.6 Let q be an odd prime power of the form q = 30m + 11, n = q2−1
30 .

There exists a q-ary [[ q2−1
30 ,

q2−1
30 − 2d + 4, d; 2]]- EA-quantum MDS codes, where

8m + 4 ≤ d ≤ 11m + 5; and there exists a q-ary [[ q2−1
30 ,

q2−1
30 − 2d + 6, d; 4]]-

EA-quantum MDS codes, where 11m + 6 ≤ d ≤ 14m + 7.

Proof Consider the negacyclic codes over Fq2 of length n = q2−1
30 with defining set

T = ⋃s
i=2m+1 C1+2i , where 2m + 1 ≤ s ≤ 16m + 4 for q be an odd prime power of

the form q = 30m+11, m is integer number. By Lemma 3.5, there is c = |Tss(δ)| = 2
if 10m + 3 ≤ s ≤ 13m + 3 and c = |Tss(δ)| = 4 if 13m + 4 ≤ s ≤ 16m + 4. Since
every q2-cyclotomic coset Cx has exactly one element and x must be odd number, we
can obtain that T consists of s+1 integers {1+2(2m+1), 1+2(2m+2), . . . , 1+2s}.
It implies that C has minimum distance at least s − (2m + 1)+ 1. Hence, C is a q2-ary
negacyclic code with parameters [n, n − (s − (2m + 1) + 1),≥ s − (2m + 1) + 2].
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Combining Lemma 2.8 with EA-quantum singleton bound, we can obtain a quantum

MDS code with parameters [[ q2−1
30 ,

q2−1
30 − 2d + 4, d; 2]], where 8m + 4 ≤ d ≤

11m + 5; [[ q2−1
30 ,

q2−1
30 − 2d + 6, d; 4]], where 11m + 6 ≤ d ≤ 14m + 7, for q be an

odd prime power of the form q = 30m + 11. ��
Example 3 Let q = 43, applying Theory 3.6 produces:

(1) new 2-ebits EA-quantum MDS codes with parameters [[56, 36, 12; 2]]43, [[56, 34,

13; 2]]43, [[56, 32, 14; 2]]43, [[56, 30, 15; 2]]43, [[56, 28, 16; 2]]43.
(2) new 4-ebits EA-quantum MDS codes with parameters [[56, 28, 17; 4]]43, [[56, 26,

18; 4]]43, [[56, 24, 19; 4]]43, [[56, 22, 20; 4]]43, [[56, 20, 21; 4]]43.

Lemma 3.7 Let q be an odd prime power of the form q = 30m + 19, n = q2−1
30 .

(i) (C1+2(9m+5),C1+2(6m+3)), (C1+2(12m+7),C1+2(3m+1)), (C1+2(14m+8),

C1+2(11m+6)) and (C1+2(16m+10),C1+2(8m+4)) form skew-asymmetric pairs.
(ii)

|Tss | =

⎧
⎪⎪⎨

⎪⎪⎩

0, if 2 ≤ δ ≤ 8m + 5;
2, if 8m + 6 ≤ δ ≤ 11m + 7;
4, if 11m + 8 ≤ δ ≤ 13m + 8;
6, if 13m + 9 ≤ δ ≤ 16m + 10.

Proof (i) Let q = 30m + 19 and 2n = 2 q2−1
30 = 2(3m + 1)(10m + 6). Since

[1 + 2(6m + 3)]q = (12m + 8 − 1)(30m + 18 + 1) = 6 · 2(10m + 6)(3m + 2) −
[1 + 2(9m + 5)], −[1 + 2(6m + 3)]q ≡ 1 + 2(9m + 5) mod 2n.
Since [1 + 2(3m + 1)]q = (6m + 4)(30m + 18 + 1) = 3 · 2(3m + 2)(10m +
6) − [1 + 2(12m + 7)], −[1 + 2(3m + 1)]q ≡ [1 + 2(12m + 7)] mod 2n.
Since [1 + 2(11m + 6)]q = (21m + 14 +m − 1)(30m + 18 + 1) = 12 · 2(3m +
2)(10m + 6)−[1 + 2(14m + 8)], −[1 + 2(11m + 6)]q ≡ [1 + 2(14m + 8)] mod
2n.
Since [1 + 2(8m + 4)]q = (15m + 14 + m − 1)(30m + 18 + 1) = 12 · 2(3m +
2)(10m + 6) − [1 + 2(17m + 10)], −[1 + 2(17m + 10)]q ≡ [1 + 2(8m + 4)]
mod 2n.

(ii) According to Lemma 17 in Ref. [22], if the defining set T = ⋃l
j=m+1 C1+2 j ,

where m + 1 ≤ l ≤ 9m + 4, then Tss(δ) = ∅ for 2 ≤ δ ≤ 8m + 5.
Let I0 = [1 + 2(m + 1), 1 + 2(9m + 4)], I1 = [1 + 2(9m + 6), 1 + 2(12m + 6)],
I2 = [1+2(12m+8), 1+2(14m+7)], and I3 = [1+2(14m+9), 1+2(17m+9)].

��
According to Lemmas 2.4 and 2.1 in [12], one needs to testify that for x, y ∈

I0 ∪ I1 ∪ I2 ∪ I3, there x + yq �≡ 0 mod 2n holds.
Let T1 = ⋃10m+2

j=m+1 C1+2 j . If the defining set T = ⋃l
j=9m+5 C1+2 j

⋃
T1, where

9m + 5 ≤ l ≤ 12m + 6, then 8m + 6 ≤ δ ≤ 11m + 7 holds.
For 8m + 6 ≤ δ ≤ 11m + 7, suppose there exist integers y ∈ I1, x ∈ I0 ∪ I1, such

that x ≡ −qy mod 2n. We find a contradiction in the following.

123



69 Page 12 of 23 L. Lu et al.

We divided I1 into three parts such as [1+2(9m+6), 1+2(10m+4)+2(m−1)]∪
[1 + 2(10m + 4) + 2m, 1 + 2(10m + 4) + 4(m − 1)] ∪ [1 + 2(10m + 4) + 4m −
2, 1 + 2(13m + 3)].

If x, y ∈ [1 + 2(10m + 4), 1 + 2(10m + 4) + 2(m − 1)], then 10(2n) < 10(2n) +
70m + 28 = (20m + 19)(30m + 12) ≤ y(q + 1) ≤ (22m + 7)(30m + 12) < 11(2n);
if x, y ∈ [1 + 2(10m + 4) + 2m, 1 + 2(10m + 4) + 4(m − 1)], then 11(2n) <

(22m + 9)(30m + 12) ≤ y(q + 1) ≤ (24m + 5)(30m + 12) < 12(2n); and if
x, y ∈ [1+2(10m+4)+4m−2, 1+2(13m+3)], then 12(2n) < (24m+7)(30m+
12) ≤ y(q + 1) ≤ (26m + 7)(30m + 12) = 13(2n) − 50m − 20 < 13(2n), a
contradiction.

Similarly, for δ ∈ [8m+6, 11m+7]∪ [11m+8, 13m+8]∪ [13m+9, 16m+10],
using the same method, the lemma holds.

Theory 3.8 Let q be an odd prime power of the form q = 30m + 19, n = q2−1
30 .

There exists a q-ary [[ q2−1
30 ,

q2−1
30 − 2d + 4, d; 2]]- EA-quantum MDS codes, where

8m + 6 ≤ d ≤ 11m + 7; there exists a q-ary [[ q2−1
30 ,

q2−1
30 − 2d + 6, d; 4]]- EA-

quantum MDS codes, where 11m + 8 ≤ d ≤ 13m + 8; and there exists a q-ary

[[ q2−1
30 ,

q2−1
30 − 2d + 8, d; 6]]- EA-quantum MDS codes, where 13m + 9 ≤ d ≤

16m + 10.

Proof Consider the negacyclic codes over Fq2 of length n = q2−1
30 with defining set

T = ⋃s
i=m+1 C1+2i , where m + 1 ≤ s ≤ 16m + 9 for q be an odd prime power of the

form q = 30m + 19, m is integer number. By Lemma 3.7, there is c = |Tss(δ)| = 2
if 9m + 5 ≤ s ≤ 12m + 6, c = |Tss(δ)| = 4 if 12m + 7 ≤ s ≤ 14m + 7, and
c = |Tss(δ)| = 6 if 14m + 8 ≤ s ≤ 17m + 9. Since every q2-cyclotomic coset Cx has
exactly one element and x must be odd number, we can obtain that T consists of s+ 1
integers {1 + 2(m + 1), 1 + 2(m + 2), . . . , 1 + 2s}. It implies that C has minimum
distance at least s− (m+1)+1. Hence, C is a q2-ary negacyclic code with parameters
[n, n − (s − (m + 1) + 1),≥ s − (m + 1) + 2]. Combining Lemma 2.8 with EA-
quantum singleton bound, we can obtain a EA-quantum MDS code with parameters

[[ q2−1
30 ,

q2−1
30 − 2d + 4, d; 2]]q where 8m + 6 ≤ d ≤ 11m + 7; [[ q2−1

30 ,
q2−1

30 − 2d +
6, d; 4]]qs, where 11m+8 ≤ d ≤ 13m+8; and [[ q2−1

30 ,
q2−1

30 −2d+8, d; 6]]q , where
13m + 9 ≤ d ≤ 16m + 10, for q be an odd prime power of the form q = 30m + 19. ��
Example 4 Let q = 49, applying Theory 3.8 produces:

(1) 2-ebits EA-quantum MDS codes with parameters [[80, 56, 14; 2]]49, [[80, 54,

15; 2]]49, [[80, 52, 16; 2]]49, [[80, 50, 17; 2]]49.
(2) 4-ebits EA-quantum MDS codes with parameters [[80, 48, 19; 4]]49, [[80, 46,

20; 4]]49, [[80, 44, 21; 4]]49.
(3) 6-ebits EA-quantum MDS codes with parameters [[80, 44, 22; 6]]49, [[80, 42,

23; 6]]49, [[80, 40, 24; 6]]49, [[80, 38, 25; 6]]49, [[80, 36, 26; 6]]49.

Lemma 3.9 Let q be an odd prime power of the form q = 12m + 5, n = q2−1
12 .

(i) (C1+2(7m+2),C1+2(5m+1)), (C1+2(9m+3),C1+6m) and (C1+2(10m+3),C1+2(8m+2))

form skew-asymmetric pairs.
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(ii)
|Tss | =

⎧
⎨

⎩

0, if 2 ≤ δ ≤ 5m + 2;
2, if 5m + 3 ≤ δ ≤ 7m + 3;
4, if 7m + 4 ≤ δ ≤ 8m + 3.

Proof (i) Let q = 12m+5 and 2n = 2 q2−1
30 = 4(2m+1)(3m+1). Since [1+2(5m+

1)]q = (10m+5−2)(12m+4+1) = 5 ·4(2m+1)(3m+1)−[1+2(7m+2)],
−[1 + 2(7m + 2)]q ≡ 1 + 2(5m + 1) mod 2n.
Since (6m + 1)q = (6m + 3 − 2)(12m + 4 + 1) = 3 · 4(2m + 1)(3m + 1)−[1 +
2(9m + 3)], −[1 + 2(9m + 3)]q ≡ 6m + 1 mod 2n.
Since (6m + 1)q = (6m + 3 − 2)(12m + 4 + 1) = 3 · 4(2m + 1)(3m + 1)−[1 +
2(9m + 3)], −[1 + 2(9m + 3)]q ≡ 6m + 1 mod 2n.
Since [1 + 2(8m + 2)]q = (16m + 8 − 3)(12m + 4 + 1) = 8 · 4(2m + 1)(3m +
1) − [1 + 2(10m + 3)], −[1 + 2(10m + 3)]q ≡ 1 + 2(8m + 2) mod 2n.

(ii) According to Lemma 17 in Ref. 22, if the defining set T = ⋃l
j=2m+1 C1+2 j ,

where 2m + 1 ≤ l ≤ 7m + 2, then Tss(δ) = ∅ for 2 ≤ δ ≤ 5m + 2.
Let I0 = [1 + 2(m + 1), 1 + 2(7m + 1)], I1 = [1 + 2(7m + 3), 1 + 2(9m + 2)]
and I2 = [1 + 2(9m + 4), 1 + 2(10m + 2)].

��
According to Lemmas 2.4 and 2.1 in [12], one needs to testify that for x, y ∈

I0 ∪ I1 ∪ I2, there x + yq �≡ 0 mod 2n holds.
Let T0 = ⋃7m+2

j=m+1 C1+2 j . If the defining set T = ⋃l
j=7m+3 C1+2 j

⋃
T0, where

7m + 3 ≤ l ≤ 9m + 3, then 5m + 3 ≤ δ ≤ 7m + 3 holds.
For 5m + 3 ≤ δ ≤ 7m + 3, suppose there exist integers y ∈ I1, x ∈ I0 ∪ I1, such

that x ≡ −qy mod 2n. We find a contradiction in the following.
We divided I1 into two parts such as [1+2(7m+3), 1+2(8m+2)]∪ [1+2(8m+

3), 1 + 2(9m + 2)].
If x, y ∈ [1 + 2(7m + 3), 1 + 2(8m + 2)], then 7(2n) < 7(2n) + 28m + 14 =

(14m + 7)(12m + 6) ≤ y(q + 1) ≤ (16m + 5)(12m + 6) = 8(3m + 1)(8m + 4) −
(4m + 2) < 8(2n); and if x, y ∈ [1 + 2(8m + 3), 1 + 2(9m + 2)], then 8(2n) <

(16m + 7)(12m + 6) ≤ y(q + 1) ≤ (18m + 5)(12m + 6) < 9(2n), a contradiction.
If x ∈ I0, y ∈ [1 + 2(7m + 3), 1 + 2(8m + 2)], since 7(2n) + 14m + 7 =

(14m + 7)(12m + 5) ≤ yq ≤ (16m + 5)(12m + 5) = 7(2n) + 24m2 − 3, then
2n − yq > x mod 2n;

and if x ∈ I0, y ∈ [1 + 2(8m + 3), 1 + 2(9m + 2)], since 8(2n) + 4m + 3 =
(16m + 7)(12m + 5) ≤ yq ≤ (18m + 5)(12m + 5) = 9(2n) − 30m2 − 11, then
2n − yq > x mod 2n, a contradiction.

Similarly, for δ ∈ [7m + 4, 8m + 3], using the same method, the lemma holds.

Theory 3.10 Let q be an odd prime power of the form q = 12m + 5, n = q2−1
12 .

There exists a q-ary [[ q2−1
12 ,

q2−1
12 − 2d + 4, d; 2]]- EA-quantum MDS codes, where

5m + 3 ≤ d ≤ 7m + 3; and there exists a q-ary [[ q2−1
12 ,

q2−1
12 − 2d + 6, d; 4]]-

EA-quantum MDS codes, where 7m + 4 ≤ d ≤ 8m + 3.

Proof Consider the negacyclic codes over Fq2 of length n = q2−1
12 with defining set

T = ⋃s
i=2m+1 C1+2i , where 2m + 1 ≤ s ≤ 10m + 2 for q be an odd prime power of
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the form q = 12m+5,m is integer number. By Lemma 3.9, there is c = |Tss(δ)| = 2 if
7m+2 ≤ s ≤ 9m+2 and c = |Tss(δ)| = 4 if 9m+3 ≤ s ≤ 10m+2. Since every q2-
cyclotomic cosetCx has exactly one element and x must be odd number, we can obtain
that T consists of s+1 integers {1+2(2m+1), 1+2(2m+2), · · · , 1+2s}. It implies
that C has minimum distance at least s− (2m+1)+1. Hence, C is a q2-ary negacyclic
code with parameters [n, n − (s − (2m + 1) + 1),≥ s − (2m + 1) + 2]. Combining
Lemma 2.8 with EA-quantum singleton bound, we can obtain a quantum MDS code

with parameters [[ q2−1
12 ,

q2−1
12 − 2d + 4, d; 2]]q , where 5m + 3 ≤ d ≤ 7m + 3; and

[[ q2−1
12 ,

q2−1
12 − 2d + 6, d; 4]]q , where 7m + 4 ≤ d ≤ 8m + 3; for q be an odd prime

power of the form q = 12m + 5. ��
Example 5 Let q = 29, applying Theory 3.10 produces:

(1) 2-ebits EA-quantum MDS codes with parameters [[70, 48, 13; 2]]29, [[70, 46,

14; 2]]29, [[70, 44, 15; 2]]29, [[70, 42, 16; 2]]29, [[70, 40, 17; 2]]29.
(2) 4-ebits EA-quantum MDS codes with parameters [[70, 40, 18; 4]]29, [[70, 38,

19; 4]]29.

3.3 New EA-quantum MDS codes of length n = q2+1
5

In this section, let q be an odd prime power of the q = 10m+3 or q = 10m+7, where

m is a positive integer. Let n = q2+1
5 , r = 2 and η ∈ Fq2 be a primitive r th root of

unity. Since 5 and 2 are two factors of q2 +1 and 2n|q4 −1, then for each odd x in the
range 1 ≤ x ≤ n, the q2-cyclotomic cosetCx modulo 2n isCx = {x, n−x}. Then, we
discuss negacyclic codes of length n over Fq2 to construct EA-quantum MDS codes.

Lemma 3.11 Let q be an odd prime power of the form q = 10m + 3, n = q2+1
5 ,

s = n
2 .

(1) If 1 ≤ x ≤ 12m + 3, then (C1+4m,C1+2m) and (C1+2(6m+1),C1+2(3m+1)) form
skew-asymmetric pairs, respectively;

|Tss(δ)| =
{

0, if 3 ≤ δ ≤ 4m + 1, for δ is odd;
4, if 4m + 3 ≤ δ ≤ 12m + 3, for δ is odd.

(2) If m = 2t + 1 is odd, and s ≤ x ≤ s + 10m + 4, then (Cs+6m+2,Cs+2m),
(Cs+10m+4,Cs+10m+2) form skew-asymmetric pairs, respectively;

|Tss(δ)| =
{

0, if 2 ≤ δ ≤ 6m + 2, for δ is even;
4, if 6m + 4 ≤ δ ≤ 10m + 4, for δ is even.

If m = 2t is even, and s ≤ x ≤ s + 12m + 4, then Cs is skew-symmetric, and
(Cs+8m+2,Cs+4m+2), (Cs+12m+4,Cs+4m) form skew-asymmetric pairs, respec-
tively;

|Tss(δ)| =
{

1, if 2 ≤ δ ≤ 8m + 2, for δ is even;
5, if 8m + 4 ≤ δ ≤ 12m + 4, for δ is even.
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Proof Let q = 10m + 3. Since 2n = 40m2 + 24m + 4.
(1) (i) Let 1 ≤ x ≤ 12m + 2. Since (4m + 1)q = 40m2 + 24m + 3 − (2m + 1),

(C1+4m,C1+2m) form skew-asymmetric pairs. Since (12m + 3)q = 120m2 + 66m +
9 = 4n + 2n − (6m + 3) ≡ 2n − (6m + 3) mod 2n, (C1+2(6m+1),C1+2(3m+1)) form
skew-asymmetric pairs.

(ii) (a) If the defining set T = ⋃l
j=1 C1+2 j , where 1 ≤ l ≤ 2m − 1, we testify that

Tss(δ) = ∅ for 2 ≤ δ ≤ 4m + 1. According to Lemmas 2.4 and 2.1 in [12], one needs
to testify that for x, y ∈ [1, 4m − 1], there x + yq �≡ 0 mod 2n holds.

If x, y ∈ [1, 4m − 1], 1 < y(q + 1) < (4m − 1)(q + 1) = 40m2 + 6m − 4 < 2n.
Hence, if the defining set T = ⋃l

j=1 C1+2 j , where 1 ≤ l ≤ 2m − 1, the Tss(δ) = ∅
for 2 ≤ δ ≤ 6m + 2.

(b) Let I0 = [1, 4m − 1], I1 = [4m + 3, 12m + 1].
According to Lemmas 2.4 and 2.1 in [12], one needs to testify that for x, y ∈ I0∪ I1,

there x + yq �≡ 0 mod 2n holds.
Let T0 = ⋃ j=4m−1

1 C1+2 j , and the defining set T = ⋃l
j=2m C1+2 j

⋃
T0, where

2m ≤ l ≤ 6m.
For 4m + 3 ≤ δ ≤ 12m + 3, suppose there exist integers y ∈ I1, x ∈ I0 ∪ I1, such

that x ≡ −qy mod 2n. We find a contradiction in the following.
We divided I1 into four parts such as [4m+3, 6m+1]∪ [6m+3, 8m+1]∪ [8m+

3, 10m + 1] ∪ [10m + 3, 12m + 1].
If x, y ∈ [4m + 3, 6m + 1], then (2n) < 40m2 + 24m + 4 + 22m + 8 = (4m +

3)(q + 1) ≤ y(q + 1) ≤ (6m + 1)(q + 1) = 60m2 + 34m + 4 < 2(2n); if x, y ∈
[6m+3, 8m+1], 2(2n) < (6m+3)(q+1) ≤ y(q+1) ≤ (8m+1)(q+1) < 4(2n); if
x, y ∈ [8m+3, 10m+1], 4(2n) < (8m+3)(q+1) ≤ y(q+1) ≤ (8m+1)(q+1) <

6(2n); if x, y ∈ [10m + 3, 12m + 1], 6(2n) < (10m + 3)(q + 1) ≤ y(q + 1) ≤
(12m + 1)(q + 1) < 8(2n), a contradiction.

If x ∈ I0, y ∈ [4m + 3, 6m + 1], since 2n < 2n + 18m + 5 = (4m + 3)q ≤ yq ≤
(6m + 1)q = 2(2n) − 20m2 − 20m − 3, then 2n − yq > x mod 2n, a contradiction.
Similarly, if x ∈ I0, y ∈ [8m + 3, 10m + 1] and x ∈ I0, y ∈ [10m + 3, 12m + 1],
using the same method, one can deduce a contradiction.

(2) (i) If m = 2t + 1, s ≤ x ≤ s + 10m + 4, (s + 6m + 2)q = ( n2 + 6m + 2)q =
5mn + 4n + n

2 + 2m. Since m = 2t + 1, (s + 6m + 2)q ≡ 3
2n + 2m mod 2n.

−(s + 6m + 2)q ≡ n
2 + 2m mod 2n.

Since (s+10m+4)q = ( n2 +10m+4)q = 5mn+6n+ 1
2n+10m+2, −(s+10m+

4)q ≡ 1
2n+10m+2 mod 2n. Hence, (Cs+6m+2,Cs+2m), (Cs+10m+4,Cs+10m+2) form

skew-asymmetric pairs, respectively;
If the defining set T = ⋃l

j=1 C j , where s ≤ l ≤ s+6m, we testify that Tss(δ) = ∅
for 2 ≤ δ ≤ 6m + 2. According to Lemma 2.4 and Lemma 2.1 in [12], one needs to
testify that for x, y ∈ [s, s + 6m], there x + yq �≡ 0 mod 2n holds.

If x, y ∈ [s, s + 6m], 1 < y(q + 1) < (4m − 1)(q + 1) = 40m2 + 6m − 4 < 2n.
Hence, if the defining set T = ⋃l

j=1 C1+2 j , where 1 ≤ l ≤ 2m − 1, the Tss(δ) = ∅
for 2 ≤ δ ≤ 6m + 2.

Let I0 = [s, s + 6m], I1 = [s + 6m + 4, s + 10m + 4].
According to Lemmas 2.4 and 2.1 in [12], one needs to testify that for x, y ∈ I0∪ I1,

there x + yq �≡ 0 mod 2n holds.
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Let T0 = ⋃3m
j=0 Cs+2 j , and the defining set T = ⋃l

j=3m+2 Cs+2 j
⋃

T0, where
3m + 4 ≤ l ≤ 5m + 2.

For 6m + 4 ≤ δ ≤ 10m + 4, suppose there exist integers y ∈ I1, x ∈ I0 ∪ I1, such
that x ≡ −qy mod 2n. We find a contradiction in the following.

We divided I1 into four parts such as [4m+3, 6m+1]∪ [6m+3, 8m+1]∪ [8m+
3, 10m + 1] ∪ [10m + 3, 12m + 1].

If x, y ∈ [4m + 3, 6m + 1], then (2n) < 40m2 + 24m + 4 + 22m + 8 = (4m +
3)(q + 1) ≤ y(q + 1) ≤ (6m + 1)(q + 1) = 60m2 + 34m + 4 < 2(2n); if x, y ∈
[6m+3, 8m+1], 2(2n) < (6m+3)(q+1) ≤ y(q+1) ≤ (8m+1)(q+1) < 4(2n); if
x, y ∈ [8m+3, 10m+1], 4(2n) < (8m+3)(q+1) ≤ y(q+1) ≤ (8m+1)(q+1) <

6(2n); if x, y ∈ [10m + 3, 12m + 1], 6(2n) < (10m + 3)(q + 1) ≤ y(q + 1) ≤
(12m + 1)(q + 1) < 8(2n), a contradiction.

(ii) Form = 2t is even, since 2n−sq = 2n−(5mn+n+ n
2 ) ≡ s mod 2n,Cs is skew-

symmetric. 2n−(s+8m+2)q ≡ s+4m+2 mod 2n and 2n−(s+12m+4)q ≡ s+4m
mod 2n.

If the defining set T = ⋃ j=l
1 Cs+2 j , where 1 ≤ l ≤ 4m, we testify that Tss(δ) =

{Cs} for 2 ≤ δ ≤ 8m + 2. Since Cs is skew-symmetric, according to Lemma 2.4
and Lemma 2.1 in [12], one needs to testify that for x, y ∈ [s + 2, s + 8m], there
x + yq �≡ 0 mod 2n holds.

If x, y ∈ [s + 2, s + 8m], 5mn + 2n + 20m + 8 = (s + 2)(q + 1) < y(q + 1) <

(4m − 1)(q + 1) = 5mn + 2n + 4n − 16m − 8. For x, y ∈ [s + 2, s + 8m], there
is no skew-symmetric cyclotomic coset and any two cyclotomic cosets are not skew-
asymmetric cosets. Hence, if the defining set T = ⋃ j=l

1 Cs+2 j , where 1 ≤ l ≤ 4m,
the Tss(δ) = {Cs} for 2 ≤ δ ≤ 8m + 2.

Let T0 = ⋃ j=4m
2 Cs+2 j , and the defining set T = ⋃ j=l

4m+2 Cs+2 j
⋃

T0, where
4m + 2 ≤ l ≤ 6m + 1. We testify that for x, y ∈ T , there is no skew-symmetric
cyclotomic coset and any two cyclotomic cosets are not skew-asymmetric cosets.

Let I0 = [s + 2, s + 8m], I1 = [s + 8m + 4, s + 12m + 2]. According to Lemmas
2.4 and 2.1 in [12], one needs to testify that for x, y ∈ I0 ∪ I1, there x + yq �≡ 0
mod 2n holds. Using the same above-mentioned method, one can easily testify that
the lemma holds. ��
Theory 3.12 Let q be an odd prime power of the form q = 10m + 3.

(1) If m = 2t + 1 is odd, then there exists a q-[[ q2+1
5 ,

q2+1
5 − 2d + 6, d; 4]]- EA-

quantum MDS codes, where 4m + 3 ≤ d ≤ 6m + 1 be odd and 6m + 4 ≤ d ≤
10m + 4 be even.

(2) If m = 2t is even, then there exists a q-ary [[ q2+1
5 ,

q2+1
5 − 2d + 3, d; 1]]-EA-

quantum MDS codes, where 2 ≤ d ≤ 8m + 1 be even; there exists a q-ary

[[ q2+1
5 ,

q2+1
5 − 2d + 6, d; 4]]-EA-quantum MDS codes, where 4m + 3 ≤ d ≤

6m+1 be odd; and there exists a q-ary [[ q2+1
5 ,

q2+1
5 −2d+7, d; 5]]-EA-quantum

MDS codes, where 8m + 4 ≤ d ≤ 12m + 4 be even.

Proof (a) Consider the negacyclic codes over Fq2 of length n = q2+1
5 with defining

set T = ⋃s
i=0 C1+2i , where 0 ≤ s ≤ 6m for q be an odd prime power of the

form q = 10m + 3. If m is odd, by Lemma 3.11 (i), there is c = |Tss(δ)| = 4
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if 2m ≤ s ≤ 6m. Since every q2-cyclotomic coset Cx = {x, n − x} and x
must be odd number, we can obtain that T consists of 2s + 1 integers {n − (1 +
2s), . . . , n − 1, 1, 3, . . . , 1 + 2s}. It implies that C has minimum distance at least
2s+2. Hence, C is a q2-ary negacyclic code with parameters [n, n−2(s+1)+1,≥
2s+2]. Combining Lemma 2.8 with EA-quantum singleton bound, we can obtain

a EA-quantum MDS code with parameters [[ q2+1
5 ,

q2+1
5 −2d +6, d; 4]]q , where

4m + 3 ≤ d ≤ 6m + 1 be odd. If m is even, using the same method, one can

obtain that [[ q2+1
5 ,

q2+1
5 − 2d + 6, d; 4]]q , where 4m + 3 ≤ d ≤ 6m + 1 be odd.

(b) Consider the negacyclic codes over Fq2 of length n = q2+1
5 with defining set

T = ⋃k
i=0 Cs+2i , where 0 ≤ k ≤ 5m + 1, s = n

2 for q be an odd prime
power of the form q = 10m + 3. If m is odd, by Lemma 3.11 (ii), there is
c = |Tss(δ)| = 4 if 3m + 1 ≤ s ≤ 5m + 1. Since every q2-cyclotomic coset
Cx = {x, n − x} and x must be odd number, we can obtain that T consists
of 2k + 1 integers {n − (s + 2k), . . . , n − s, s, s + 2, . . . , s + 2k}. It implies
that C has minimum distance at least 2k + 2. Hence, C is a q2-ary negacyclic
code with parameters [n, n − 2(s + 1) + 1,≥ 2s + 2]. Combining Lemma 2.8
with EA-quantum singleton bound, we can obtain a EA-quantum MDS code with

parameters [[ q2+1
5 ,

q2+1
5 − 2d + 6, d; 4]]q , 6m + 4 ≤ d ≤ 10m + 4 be even.

If m is even, by Lemma 3.11 (ii), there is c = |Tss(δ)| = 1 if 1 ≤ k ≤ 4m
and c = |Tss(δ)| = 5 if 4m + 1 ≤ k ≤ 6m + 1. Since every q2-cyclotomic
coset Cx = {x, n − x} and x must be odd number, we can obtain that T consists
of 2k + 1 integers {n − (s + 2k), . . . , n − s, s, s + 2, . . . , s + 2k}. It implies
that C has minimum distance at least 2k + 2. Hence, C is a q2-ary negacyclic
code with parameters [n, n − 2(s + 1) + 1,≥ 2s + 2]. Combining Lemma 2.8
with EA-quantum singleton bound, we can obtain a EA-quantum MDS code with

parameters [[ q2+1
5 ,

q2+1
5 − 2d + 6, d; 1]]q , where 2 ≤ d ≤ 8m + 1 be even; and

[[ q2+1
5 ,

q2+1
5 − 2d + 7, d; 5]]q codes, where 8m + 4 ≤ d ≤ 12m + 4 be even.

��

Example 6 Let m = 1, q = 13, applying Theory 3.12 (1) produces 4-ebits EA-
quantum MDS codes with parameters [[34, 26, 7; 4]]13 for d odd; and [[34, 20, 10;
4]]13, [[34, 16, 12; 4]]13, [[34, 12, 14; 4]]13 for d even.

Example 7 Let m = 2, q = 23, applying Theory 3.12 (2) produces 1-ebits
EA-quantum MDS codes with parameters [[106, 105, 2; 1]]23, [[106, 101, 4; 1]]23,
[[106, 97, 6; 1]]23, [[106, 93, 8; 1]]23, [[106, 89, 10; 1]]23, [[106, 85, 12; 1]]23, [[106,

81, 14; 1]]23, [[106, 77, 16; 1]]23 for d even; 4-ebits EA-quantum MDS codes
with parameters [[106, 90, 11; 4]]23, [[106, 86, 13; 4]]23 for d odd; and 5-ebits
EA-quantum MDS codes with parameters [[106, 73, 20; 5]]23, [[106, 69, 22; 5]]23,
[[106, 65, 24; 5]]23, [[106, 61, 26; 5]]23, [[106, 57, 28; 5]]23 for d even.

Lemma 3.13 Let q = 10m + 7, n = q2+1
5 , s = n

2 .
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(1) If 1 ≤ x ≤ 14m + 9, then (C8m+5,C6m+5), (C14m+11,C12m+7) form skew-
asymmetric pairs, respectively.

|Tss(δ)| =
{

0, if 3 ≤ δ ≤ 8m + 5, for δ is odd;
4, if 8m + 7 ≤ δ ≤ 14m + 11, for δ is odd.

(2) If m = 2t + 1 is odd, and s ≤ x ≤ s + 10m + 8, then (Cs+6m+4,Cs+2m+2),
(Cs+10m+8,Cs+10m+6) form skew-asymmetric pairs;

|Tss(δ)| =
{

0, if 2 ≤ δ ≤ 6m + 4, for δ is even;
4, if 6m + 6 ≤ δ ≤ 10m + 8, for δ is even.

If m = 2t is even,and s ≤ x ≤ s + 12m + 8, then Cs is skew-symmetric, and
(Cs+8m+6,Cs+4m+2), (Cs+12m+8,Cs+4m+4) form skew-asymmetric pairs;

|Tss(δ)| =
{

1, if 2 ≤ δ ≤ 8m + 6, for δ is even;
5, if 8m + 8 ≤ δ ≤ 12m + 8, for δ is even.

Proof Let q = 10m + 7. Since 2n = 40m2 + 56m + 20.

(1) Let 1 ≤ x ≤ 14m + 10. Since (8m + 5)q = 40m2 + 56m + 20 − (6m + 5),
(C8m+5,C6m+5) form skew-asymmetric pairs.
Since (8m + 5)q = 40m2 + 56m + 20 − (6m + 5), (C8m+5,C6m+5) form skew-
asymmetric pairs.
(a) If the defining set T = ⋃l

j=1 C1+2 j , where 1 ≤ l ≤ 4m + 1, we testify that
Tss(δ) = ∅ for 3 ≤ δ ≤ 8m + 5. According to Lemmas 2.4 and 2.1 in [12],
one needs to testify that for x, y ∈ [1, 8m + 3], there x + yq �≡ 0 mod 2n
holds.
We divided [1, 8m + 3] into [1, 4m + 1] ∪ [4m + 3, 8m + 3]. If x, y ∈
[1, 4m + 1], 1 < y(q + 1) < (4m + 1)(q + 1) = 40m2 + 42m + 8 < 2n;
if x, y ∈ [4m + 3, 8m + 3], 2n < 4m2 + 62m + 24 = (4m + 1)(q + 1) <

y(q + 1) < (8m + 3)(q + 1) = 80m2 + 94m + 24 < 4n. Hence, if the
defining set T = ⋃l

j=1 C1+2 j , where 1 ≤ l ≤ 4m + 1, the Tss(δ) = ∅ for
3 ≤ δ ≤ 8m + 5.

(b) Let I0 = [1, 8m + 3], I1 = [8m + 7, 14m + 9].
According to Lemmas 2.4 and 2.1 in [12], one needs to testify that for x, y ∈
I0 ∪ I1, there x + yq �≡ 0 mod 2n holds.
Let T0 = ⋃4m+1

j=1 C1+2 j , and the defining set T = ⋃l
j=4m+3 C1+2 j

⋃
T0,

where 4m + 3 ≤ l ≤ 7m + 4.
For 8m+7 ≤ δ ≤ 14m+11, suppose there exist integers y ∈ I1, x ∈ I0 ∪ I1,
such that x ≡ −qy mod 2n. We find a contradiction in the following.
We divided I1 into four parts such as [8m+7, 12m+7]∪[12m+9, 14m+9].
If x, y ∈ [8m+7, 12m+7], 2·2n < 80m2+134m+56 = (8m+7)(10m+8) ≤
y(q + 1) ≤ (12m + 7)(10m + 8) = 120m2 + 166m + 56 < 3 · 2n; if
x, y ∈ [12m + 9, 14m + 9], 3 · 2n < 120m2 + 186m + 72 = (12m + 9)(q +
1) ≤ y(q + 1) ≤ (14m + 9)(q + 1) = 140m2 + 202m + 72 < 4 · 2n.
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Hence, if the defining set T = ⋃l
j=1 C1+2 j , where 1 ≤ l ≤ 7m + 4, besides

(Cs+8m+6,Cs+4m+2), there is no skew-symmetric cyclotomic coset and any
two cyclotomic cosets are not skew-asymmetric cosets in T .

(2) Form = 2t is even, since 2n−sq = 2n−(5mn+3n+ n
2 ) ≡ s mod 2n,Cs is skew-

symmetric. 2n−(s+8m+6)q ≡ s+4m+2 mod 2n and 2n−(s+12m+8)q ≡
s + 4m + 4 mod 2n.
(a) Let T0 = ⋃4m+3

j=s C1+2 j , and the defining set T = ⋃l
j=4m+5 C1+2 j

⋃
T0,

where 4m + 3 ≤ l ≤ 7m + 4.
If the defining set T = T0, we testify that Tss(δ) = {Cs} for 2 ≤ δ ≤ 8m + 6
and δ is even. Since Cs is skew-symmetric cyclotomic coset, and according
to Lemma 2.4 and Lemma 2.1 in [12], one needs to testify that for x, y ∈
[s + 2, s + 8m + 4], there x + yq �≡ 0 mod 2n holds.
We divided [s + 2, s + 8m + 4] into three parts such as [s + 2, s + 3m + 2] ∪
[s + 3m + 4, s + 7m + 4] ∪ [s + 7m + 6, s + 8m + 4].
If x, y ∈ [s + 2, s + 3m + 2], (5t + 2) · 2n < (5m + 4)n + 20m + 16 =
(s + 2)(10m + 8) ≤ y(q + 1) ≤ (s + 3m + 2)(10m + 8) < (5t + 3) · 2n; if
x, y ∈ [s+3m+4, s+7m+4], (5t+3)·2n < (s+3m+4)(q+1) ≤ y(q+1) ≤
(s+7m+4)(q+1) < (5t+4)·2n. If x, y ∈ [s+7m+6, s+8m+4], (5t+5)·
2n < (s+7m+6)(q+1) ≤ y(q+1) ≤ (s+8m+4)(q+1) < (5t +5) ·2n.
Hence, if the defining set T = ⋃l

j=s Cs+2 j , where 1 ≤ l ≤ 4m + 2, besides
Cs , there is no skew-symmetric cyclotomic coset and any two cyclotomic
cosets are not skew-asymmetric cosets in the defining set T .

(b) We divided [s+8m+8, s+12m+6] into two parts such as [s+8m+8, s+
11m + 6] ∪ [s + 11m + 8, s + 12m + 6].
If x, y ∈ [s+8m+8, s+11m+6], (5t +4) ·2n < (5m+8)n+32m+24 =
(s+8m+8)(10m+8) ≤ y(q+1) ≤ (s+11m+6)(10m+8) = (5m+8)n+
30m2 + 36m + 8 < (5t + 8) · 2n + 2n; if x, y ∈ [s + 11m + 8, s + 12m + 6],
(5t + 9) · 2n < (s + 11m + 8)(q + 1) ≤ y(q + 1) ≤ (s + 12m + 6)(q + 1) <

(5t + 9) · 2n + 2n.
Hence, using the same method, one can obtain that if the defining set T =⋃l

j=s Cs+2 j , where 1 ≤ l ≤ 6m + 3, besides Cs and (Cs+8m+6,Cs+4m+2),
there is no skew-symmetric cyclotomic coset and any two cyclotomic cosets are
not skew-asymmetric cosets in the defining set T .

��
Theory 3.14 Let q be an odd prime power of the form q = 10m + 7.

If m = 2t+1 is odd, then there exists a q-[[ q2+1
5 ,

q2+1
5 −2d+6, d; 4]]- EA-quantum

MDS codes, where 8m + 7 ≤ d ≤ 14m + 11 be odd; and 6m + 6 ≤ d ≤ 10m + 8 be
even.

If m = 2t is even, then there exists a q-[[ q2+1
5 ,

q2+1
5 − 2d + 3, d; 1]]- EA-quantum

MDS codes, where 2 ≤ d ≤ 8m + 6 be even; there exists a q-[[ q2+1
5 ,

q2+1
5 − 2d +

6, d; 4]]- EA-quantum MDS codes, where 8m + 7 ≤ d ≤ 14m + 11 be odd; and there

exists a q-[[ q2+1
5 ,

q2+1
5 − 2d + 7, d; 5]]- EA-quantum MDS codes, where 8m + 8 ≤

d ≤ 12m + 8 be even.
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Proof (a) Consider the negacyclic codes over Fq2 of length n = q2+1
5 with defining

set T = ⋃s
i=0 C1+2i , where 0 ≤ s ≤ 7m + 4 for q be an odd prime power

of the form q = 10m + 7. By Lemma 3.13 (i), there is c = |Tss(δ)| = 4 if
4m + 2 ≤ s ≤ 7m + 4. Since every q2-cyclotomic coset Cx = {x, n − x}
and x must be odd number, we can obtain that T consists of 2s + 1 integers
{n−(1+2s), . . . , n−1, 1, 3, . . . , 1+2s}. It implies thatC has minimum distance at
least 2s+2. Hence,C is aq2-ary negacyclic code with parameters [n, n−2(s+1)+
1,≥ 2s + 2]. Combining Lemma 2.8 with EA-quantum singleton bound, we can

obtain a EA-quantum MDS code with parameters [[ q2+1
5 ,

q2+1
5 −2d+6, d; 4]]q ,

8m + 7 ≤ d ≤ 14m + 11 be odd.
(b) If m is odd, consider the negacyclic codes over Fq2 of length n = q2+1

5 with

defining set T = ⋃k
i=0 Cs+2i , where 0 ≤ k ≤ 5m+4, s = n

2 for q be an odd prime
power of the form q = 10m + 7. By Lemma 3.11 (ii), there is c = |Tss(δ)| = 4
if 3m + 2 ≤ s ≤ 5m + 4. Since every q2-cyclotomic coset Cx = {x, n − x}
and x must be odd number, we can obtain that T consists of 2k + 1 integers
{n − (s + 2k), . . . , n − s, s, s + 2, . . . , s + 2k}. It implies that C has minimum
distance at least 2k + 2. Hence, C is a q2-ary negacyclic code with parameters
[n, n−2(s+1)+1,≥ 2s+2]. Combining Lemma 2.8 with EA-quantum singleton

bound, we can obtain a EA-quantum MDS code with parameters [[ q2+1
5 ,

q2+1
5 −

2d + 6, d; 4]]q , 6m + 6 ≤ d ≤ 10m + 8 be even.

If m is even, consider the negacyclic codes over Fq2 of length n = q2+1
5 with

defining set T = ⋃k
i=0 Cs+2i , where 0 ≤ k ≤ 6m + 3, s = n

2 for q be an odd prime
power of the form q = 10m + 7. By Lemma 3.11 (ii), there is c = |Tss(δ)| = 1
if 1 ≤ k ≤ 4m + 2 and c = |Tss(δ)| = 5 if 4m + 3 ≤ k ≤ 6m + 3. Since every
q2-cyclotomic coset Cx = {x, n − x} and x must be odd number, we can obtain that
T consists of 2k+1 integers {n− (s+2k), . . . , n− s, s, s+2, . . . , s+2k}. It implies
that C has minimum distance at least 2k + 2. Hence, C is a q2-ary negacyclic code
with parameters [n, n − 2(s + 1) + 1,≥ 2s + 2]. Combining Lemma 2.8 with EA-
quantum singleton bound, we can obtain a EA-quantum MDS code with parameters

[[ q2+1
5 ,

q2+1
5 − 2d + 6, d; 1]]q , 2 ≤ d ≤ 8m + 6 be even; and [[ q2+1

5 ,
q2+1

5 − 2d +
7, d; 5]]q codes, where 8m + 8 ≤ d ≤ 12m + 8 be even. ��
Example 8 Let m = 1, q = 17, applying Theory 3.14 (1) produces 4-ebits
EA-quantum MDS codes with parameters [[58, 34, 15; 4]]17, [[58, 30, 17; 4]]17,
[[58, 26, 19; 4]]17, [[58, 22, 21; 4]]17, [[58, 18, 23; 4]]17, [[58, 14, 25; 4]]17 for d odd;
and [[58, 40, 12; 4]]17, [[58, 36, 14; 4]]17, [[58, 32, 16; 4]]17, [[58, 28, 18; 4]]17 for d
even.

Example 9 Let m = 2, q = 27, applying Theory 3.14 (2) produces 1-ebits
EA-quantum MDS codes with parameters [[146, 145, 2; 1]]27, [[146, 141, 4; 1]]27,
[[146, 137, 6; 1]]27, [[146, 133, 8; 1]]27, [[146, 129, 10; 1]]27, [[146, 125, 12; 1]]27,
[[146, 121, 14; 1]]27, [[146, 117, 16; 1]]27, [[146, 113, 18; 1]]27, [[146, 109, 20; 1]]27,
[[146, 105, 22; 1]]27 for d even; 4-ebits EA-quantum MDS codes with parameters
[[146, 106, 23; 4]]27, [[146, 102, 25; 4]]27, [[146, 98, 27; 4]]27, [[146, 94, 29; 4]]27,
[[146, 90, 31; 4]]27, [[146, 86, 33; 4]]27, [[146, 82, 35; 4]]27, [[146, 78, 37; 4]]27,
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[[146, 74, 39; 4]]27 for d odd; and 5-ebits EA-quantum MDS codes with parameters
[[146, 105, 24; 5]]27, [[146, 101, 26; 5]]27, [[146, 97, 28; 5]]27, [[146, 93, 30; 5]]27,
[[146, 89, 32; 5]]27 for d even.

4 Discussion and Conclusion

In this paper, we have constructed six families of entanglement-assisted quantum MDS
(EAQMDS) codes based on classical negacyclic MDS codes. Two of these six classes
q-ary EAQMDS have minimum distance more larger than q + 1. Most of these q-ary
EAQMDS codes are new in the sense that their parameters are not covered by the codes
available in the literature. In Table 1, we list the EA-quantum MDS codes constructed
in this paper. The results show that using entanglement, EAQMDS codes have a larger

Table 1 New EA-Quantum MDS codes

Class q Code Distance

1 q=atm+1, [[ q2−1
at ,

q2−1
at − 2d + 2, d; 0]] 2 ≤ d ≤ ( at2 + 1)m + 1

a even,

or [[ q2−1
at ,

q2−1
at − 2d + 4, d; 2]] ( at2 + 1)m + 2 ≤ d ≤ ( at2 + 2)m + 1

a odd, t even,

[[ q2−1
at ,

q2−1
at − 2d + 6, d; 4]] ( at2 + 2)m + 2 ≤ d ≤ ( at2 + 3)m + 1

2 q = 30m + 11 [[ q2−1
30 ,

q2−1
30 − 2d + 4, d; 2]] 8m + 4 ≤ d ≤ 11m + 5

[[ q2−1
30 ,

q2−1
30 − 2d + 6, d; 4]] 11m + 6 ≤ d ≤ 14m + 7

3 q = 30m + 19 [[ q2−1
30 ,

q2−1
30 − 2d + 4, d; 2]] 8m + 6 ≤ d ≤ 11m + 7

[[ q2−1
30 ,

q2−1
30 − 2d + 6, d; 4]] 11m + 8 ≤ d ≤ 13m + 8

[[ q2−1
30 ,

q2−1
30 − 2d + 8, d; 6]] 13m + 9 ≤ d ≤ 16m + 10

4 q = 12m + 5 [[ q2−1
12 ,

q2−1
12 − 2d + 4, d; 2]] 5m + 3 ≤ d ≤ 7m + 3

[[ q2−1
12 ,

q2−1
12 − 2d + 6, d; 4]] 7m + 4 ≤ d ≤ 8m + 3

5 q = 10m + 3, [[ q2+1
5 ,

q2+1
5 − 2d + 6, d; 4]] 4m + 3 ≤ d ≤ 6m + 1 is odd

m odd 6m + 6 ≤ d ≤ 10m + 8 is even.

m even [[ q2+1
5 ,

q2+1
5 − 2d + 3, d; 1]] 2 ≤ d ≤ 8m + 1 is even

[[ q2+1
5 ,

q2+1
5 − 2d + 6, d; 4]] 4m + 3 ≤ d ≤ 6m + 1 is odd

[[ q2+1
5 ,

q2+1
5 − 2d + 7, d; 5]] 8m + 4 ≤ d ≤ 12m + 4 is even

6 q = 10m + 7, [[ q2+1
5 ,

q2+1
5 − 2d + 6, d; 4]] 8m + 7 ≤ d ≤ 14m + 11 is odd

m odd 6m + 6 ≤ d ≤ 10m + 8 is even

m even [[ q2+1
5 ,

q2+1
5 − 2d + 3, d; 1]] 2 ≤ d ≤ 8m + 6 is even

[[ q2+1
5 ,

q2+1
5 − 2d + 6, d; 4]] 8m + 7 ≤ d ≤ 14m + 11 is odd

[[ q2+1
5 ,

q2+1
5 − 2d + 7, d; 5]] 8m + 8 ≤ d ≤ 12m + 8 is even
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minimum distance than QMDS codes. We look forward to seeing that some special
types of [[n, k, d; c]] EAQMDS codes that better perform than [[n + c, k, d]] QMDS
codes even if these [[n, k, d; c]] EAQMDS codes are equivalent to those [[n+c, k, d]]
QMDS codes.
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