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Abstract We propose an efficient scheme for remotely preparing an arbitrary n-qubit
equatorial state via n two-qubit maximally entangled states. Compared to the former
scheme (Wei et al. in Quantum Inf Process 16:260, 2017) that has the 50% successful
probability when the amplitude factors of prepared states are 2−n/2, the probability
would be increased to 100% by using of our modified proposal. The feasibility of
our scheme for remote preparation arbitrary multi-qubit equatorial states is explicitly
demonstrated by theoretical studies and concrete examples.
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1 Introduction

Quantum entanglement, an unique resource in quantum information, plays an impor-
tant role in quantum communication [1–4]. One of the typical applications of quantum
entanglement is remote state preparation (RSP), which is originally proposed by Lo [2]
and can be used to transmit quantum states from a sender to a remote receiver with
the aid of classical information and quantum entanglement. Compared with the usual
teleportation [4–11], the sender in RSP knows completely the information of prepared
state, while in the teleportation neither the sender nor the receiver has knowledge
of the transmitted state. For the sake that RSP could be applied to remote com-
munication, several theoretical protocols have been proposed for RSP of different
input states [12–22], RSP via various quantum entanglement channels [22–26], and
RSP with multi-party [27–30]. For example, Dai et al. [20] presented a scheme for
remote preparation of the four-particle GHZ class state and calculated the classi-
cal communication cost for this proposal. Zhang et al. [24] explored how to realize
deterministic controlled bidirectional remote state preparation via a six-qubit entan-
gled state. Recently, some experimental implementations of RSP proposals have been
presented via nuclear magnetic resonance [31] and spontaneous parametric down-
conversion [32].

For single states, the pure equatorial state is restricted in the equator circle of Bloch
sphere. Compared with general states, equatorial states contain less quantum correla-
tion. Nevertheless, there are also many advantages for equatorial states, such as simpler
method for generating quantum states [1], higher fidelity of quantum cloning [33], and
less required classical communication for RSP proposal [2,34] than general states.
Bruß et al. [33] presented the phase-covariant quantum cloning machine, of which
the input state is from the equatorial line of Bloch sphere, and the fidelity is higher
than that of the universal quantum cloning machine. Pati [34] demonstrated that the
RSP is more economical than quantum teleportation and requires only one classical
bit for equatorial states, but for general states, the RSP requires as much classical
communication cost as quantum teleportation does. Li et al. [35] presented a scheme
for joint remote state preparation of two-qubit equatorial states via GHZ states in a
deterministic manner.

The successful probability is always viewed as one of the main performance param-
eters for RSP proposals. Most recently, Wei et al. [36] presented a RSP scheme for
n-qubit states by using of an appropriate local 2n × 2n unitary operation with the suc-
cessful probability of 2−n for general n-qubit states, and the probability for equatorial
states would be increased to 1/2. We revisited this proceeding scenario and found that
the successful probability for equatorial states is not optimal. In this paper, inspired
by the RSP scheme in Ref. [35], we modify the measurement basis of the sender to
deterministically prepare the desired state with proper unitary operations. It is noting
that the receiver in our scheme can always perform a corresponding unitary operation
based on the possible measurement outcome of the sender and reconstruct the prepared
state with the 100% successful probability.

The rest of this paper are organized as follows: In Sect. 2, an efficient scheme for
remote preparation of an arbitrary n-qubit equatorial state is presented with the aid of
n maximally entangled two-qubit states. The measurement basis of the sender is given
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in detail. The total successful probability of our scheme is obtained, and it is equal
to 100%. In Sect. 3, concrete realization processes for preparing remotely two-qubit
and three-qubit states are illustrated to demonstrate explicitly the feasibility of our
scheme. The paper concludes with Sect. 4.

2 RSP of n-qubit equatorial states

To present our protocol more clearly, let us first begin with the RSP task of arbitrary
n-qubit equatorial states. Suppose there are two legitimate participants, customarily
called Alice and Bob in quantum communication network, and they are spatially
separated in different sites. Let Alice and Bob be the sender and receiver, respectively.
Assume that Alice wants to remotely prepare multi-qubit equatorial states for Bob.
Generally, an arbitrary n-qubit equatorial state has the form

|ψ〉 = 1√
2n

2n−1∑

x=0

(
eiφx |dn . . . d2d1〉

)
dl ∈ {0, 1}; x =

n∑

l=1

dl · 2l−1 (1)

where x is the decimal form of the binary string dn . . . d2d1 and φx (x = 0, 1 . . . 2n−1)

is real with the region 0 ≤ φx < 2π . Usually, φ0 is set to be zero. The maximally
entangled two-qubit states previously shared along Alice and Bob can be presented as
follows:

|Ψ 〉 jk = 1√
2
(|00〉 + |11〉) j,k j = 1, 3, . . . , 2n − 1; k = j + 1. (2)

Without loss of generality, particle j belongs to the sender Alice, while particle k
is hold by the receiver Bob. Alice is in possession of particle j , and Bob possesses
particle k, respectively. To help Bob prepare the initial state remotely, Alice need to
perform the n-qubit projective measurement on her particles (1, 3 . . . 2n − 1) under
the 2n mutual orthogonal measurement bases {|Γm〉 | m = 0, 1 . . . 2n − 1} as follow

|Γm〉 = 1√
2n

2n−1∑

x=0

[
exp

(
iπxm

2n−1 − iφx

)
|dn . . . d2d1〉

]
(3)

Moreover, the whole system composed of n maximally entangled states can be pre-
sented as

|Ψ 〉1,2 ⊗ |Ψ 〉3,4 · · · |Ψ 〉2n−1,2n

= 1√
2n

·
2n−1∑

m=0

⎧
⎨

⎩|Γm〉1,3,··· ,2n−1 ⊗
2n−1∑

x=0

[
exp

(
iφx − iπxm

2n−1

)
|dn . . . d2d1〉2,4,··· ,2n

]⎫
⎬

⎭

(4)

From Eq. (4), it can be obtained that there are 2n kinds of measurement results
{|Γm〉|m = 0, 1 . . . 2n −1} on Alice’s particles (1, 3 . . . 2n − 1), of which the relative
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Table 1 The measurement results of particles (1, 3, . . . , 2n − 1) and the unitary operations on particles
(2, 4, . . . , 2n)

Measurement
results of qubits
(1, 3 . . . 2n − 1)

The state of qubits
(2, 4 . . . 2n)

Probability Gates Un
m on qubits

(2, 4 . . . 2n)

|Γm 〉
2n−1∑
x=0

[
exp

(
iφx − iπxm

2n−1

)
·|dn . . . d2d1〉] Pm = 1

2n Eq. (5)

m = 0, 1 . . . 2n − 1

measurement probabilities Pm are all equal to
(

1/
√

2n
)2 = 1/2n . Note that no matter

what measurement results Alice obtains, the state of Bob’s particles can always be
transformed into the desired form via the corresponding unitary operation

Un
m =

2n−1∑

x=0

[
exp

(
iπxm

2n−1

)
|dn . . . d2d1〉〈dn . . . d2d1|

]

=
(

1 0
0 eiπm

)
⊗

(
1 0
0 ei

πm
2

)
⊗ · · · ⊗

(
1 0
0 ei

πm
2n

)
(5)

Subsequently, Bob only has to perform this unitary operation based on Alice’s mea-
surement results |Γm〉 in order to obtain the original state. Table 1 shows the relation
between the measurement results of particles (1, 3, . . . , 2n − 1) with the unitary
transformations on particles (2, 4, . . . , 2n).

The successful probability of RSP schemes is considered as one of the most impor-
tant parameters. For all of the measurement results {|Γm〉 | m = 0, 1 . . . 2n − 1}, the
initial state in Eq. (1) always can be prepared successfully. It could be found that each
of the 2n kinds of measurement outcomes has the same probability as 1/2n . Hence,
the whole successful probability of our scheme is equal to

Ptotal =
2n−1∑

m=0

Pm = 1

2n
· 2n = 1 (6)

This result is in agreement with the successful probabilities of previous RSP
schemes [20,21,25] when equatorial states would be remotely prepared in the for-
mer proposals by using of quantum maximally entangled states.

3 Examples of RSP

To illustrate our proposal explicitly, we would demonstrate how remotely prepare two-
qubit and three-qubit equatorial states, which are elementary resources for quantum
information processing.
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3.1 Two-qubit states

Suppose that the sender Alice wishes to help the receiver Bob prepare the following
two-qubit equatorial state

|ψ〉 = 1/2 ·
(
|00〉 + eiφ1 |01〉 + eiφ2 |10〉 + eiφ3 |11〉

)
(7)

In order to fulfill the RSP, Alice performs the two-qubit projective measurement on
particles (1, 3) in the four basis vectors {|Γm〉 | m = 0, 1, 2, 3}, which are given by

|Γ0〉 = 1/2 ·
(
|00〉 + e−iφ1 |01〉 + e−iφ2 |10〉 + e−iφ3 |11〉

)

|Γ1〉 = 1/2 ·
(
|00〉 + ie−iφ1 |01〉 − e−iφ2 |10〉 − ie−iφ3 |11〉

)

|Γ2〉 = 1/2 ·
(
|00〉 − e−iφ1 |01〉 + e−iφ2 |10〉 − e−iφ3 |11〉

)

|Γ3〉 = 1/2 ·
(
|00〉 − ie−iφ1 |01〉 − e−iφ2 |10〉 + ie−iφ3 |11〉

)

The maximally entangled two-qubit states between Alice with Bob can be shown as

|Ψ 〉1,2 =
√

2

2
(|00〉 + |11〉)1,2

|Ψ 〉3,4 =
√

2

2
(|00〉 + |11〉)3,4 (8)

The whole system including particles (1, 2, 3, 4) can be expressed as

|Ψ 〉1,2 ⊗ |Ψ 〉3,4 = 1

2

2n−1∑

i=0

(|Γi 〉1,3 ⊗ |�i 〉2,4
)

(9)

where

|Φ0〉 = 1/2 ·
(
|00〉 + eiφ1 |01〉 + eiφ2 |10〉 + eiφ3 |11〉

)

|Φ1〉 = 1/2 ·
(
|00〉 − ieiφ1 |01〉 − eiφ2 |10〉 + ieiφ3 |11〉

)

|Φ2〉 = 1/2 ·
(
|00〉 − eiφ1 |01〉 + eiφ2 |10〉 − eiφ3 |11〉

)

|Φ3〉 = 1/2 ·
(
|00〉 + ieiφ1 |01〉 − eiφ2 |10〉 − ieiφ3 |11〉

)

After the projective measurements {|Γm〉} | (m = 0, 1 . . . 3) on the qubit pair (1, 3),
Alice informs Bob of her measurement results via classical communication. Then,
Bob performs the following relevant unitary transformation U2

m on particles (2, 4) to
reconstruct the original state.
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U 2
m =

(
1 0
0 eiπm

)
⊗

(
1 0
0 ei

πm
2

)
(10)

Note that the successful probability for each kind of the measurement outcomes
{|Γm〉 | m = 0, 1, 2, 3} is 1/4. Thus, the total probability for two-qubit equatorial
states is equal to 1/4 · 4 = 1.

3.2 Three-qubit states

The three-qubit equatorial states can be presented as

|ψ〉 = 1/2
√

2 · (|000〉 + eiφ1 |001〉 + eiφ2 |010〉 + eiφ3 |011〉 + eiφ4 |100〉
+ eiφ5 |101〉 + eiφ6 |110〉 + eiφ7 |111〉) (11)

The three maximally entangled two-qubit states shared previously between the sender
Alice with the receiver Bob can be given by

|Ψ 〉 j,k =
√

2

2
(|00〉 + |11〉) j,k j = 1, 3, 5; k = j + 1. (12)

Thus, the whole particles (1, 2, . . . , 6) could be rewritten as

|Ψ 〉1,2 ⊗ |Ψ 〉3,4 ⊗ |Ψ 〉5,6 = 1

2
√

2

8∑

i=1

(|Γi 〉1,3,5 ⊗ |�i 〉2,4,6
)

(13)

where

|Γ0〉 = 1/2
√

2 · (|000〉 + e−iφ1 |001〉 + e−iφ2 |010〉 + e−iφ3 |011〉
+ e−iφ4 |100〉 + e−iφ5 |101〉 + e−iφ6 |110〉 + e−iφ7 |111〉)

|Γ1〉 = 1/2
√

2 · (|000〉 + ei
π
4 e−iφ1 |001〉 + ei

2π
4 e−iφ2 |010〉 + ei

3π
4 e−iφ3 |011〉

+ ei
4π
4 e−iφ4 |100〉 + ei

5π
4 e−iφ5 |101〉 + ei

6π
4 e−iφ6 |110〉 + ei

7π
4 e−iφ7 |111〉)

|Γ2〉 = 1/2
√

2 · (|000〉 + ei
2π
4 e−iφ1 |001〉 + ei

4π
4 e−iφ2 |010〉 + ei

6π
4 e−iφ3 |011〉

+ ei
8π
4 e−iφ4 |100〉 + ei

10π
4 e−iφ5 |101〉 + ei

12π
4 e−iφ6 |110〉 + ei

14π
4 e−iφ7 |111〉)

|Γ3〉 = 1/2
√

2 · (|000〉 + ei
3π
4 e−iφ1 |001〉 + ei

6π
4 e−iφ2 |010〉 + ei

9π
4 e−iφ3 |011〉

+ ei
12π

4 e−iφ4 |100〉 + ei
15π

4 e−iφ5 |101〉 + ei
18π

4 e−iφ6 |110〉 + ei
21π

4 e−iφ7 |111〉)
|Γ4〉 = 1/2

√
2 · (|000〉 + ei

4π
4 e−iφ1 |001〉 + ei

8π
4 e−iφ2 |010〉 + ei

12π
4 e−iφ3 |011〉

+ ei
16π

4 e−iφ4 |100〉 + ei
20π

4 e−iφ5 |101〉 + ei
24π

4 e−iφ6 |110〉 + ei
28π

4 e−iφ7 |111〉)
|Γ5〉 = 1/2

√
2 · (|000〉 + ei

5π
4 e−iφ1 |001〉 + ei

10π
4 e−iφ2 |010〉 + ei

15π
4 e−iφ3 |011〉

+ ei
20π

4 e−iφ4 |100〉 + ei
25π

4 e−iφ5 |101〉 + ei
30π

4 e−iφ6 |110〉 + ei
35π

4 e−iφ7 |111〉)
|Γ6〉 = 1/2

√
2 · (|000〉 + ei

6π
4 e−iφ1 |001〉 + ei

12π
4 e−iφ2 |010〉 + ei

18π
4 e−iφ3 |011〉
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+ ei
24π

4 e−iφ4 |100〉 + ei
30π

4 e−iφ5 |101〉 + ei
36π

4 e−iφ6 |110〉 + ei
42π

4 e−iφ7 |111〉)
|Γ7〉 = 1/2

√
2 · (|000〉 + ei

7π
4 e−iφ1 |001〉 + ei

14π
4 e−iφ2 |010〉 + ei

21π
4 e−iφ3 |011〉

+ ei
28π

4 e−iφ4 |100〉 + ei
35π

4 e−iφ5 |101〉 + ei
42π

4 e−iφ6 |110〉 + ei
49π

4 e−iφ7 |111〉)
|Φ0〉 = 1/2

√
2 · (|000〉 + eiφ1 |001〉 + eiφ2 |010〉 + eiφ3 |011〉

+ eiφ4 |100〉 + eiφ5 |101〉 + eiφ6 |110〉 + eiφ7 |111〉)
|Φ1〉 = 1/2

√
2 · (|000〉 + ei

−π
4 eiφ1 |001〉 + e−i 2π

4 eiφ2 |010〉 + e−i 3π
4 eiφ3 |011〉

+ e−i 4π
4 eiφ4 |100〉 + ei

−5π
4 eiφ5 |101〉 + e−i 6π

4 eiφ6 |110〉 + e−i 7π
4 eiφ7 |111〉)

|Φ2〉 = 1/2
√

2 · (|000〉 + ei
−2π

4 eiφ1 |001〉 + e−i 4π
4 eiφ2 |010〉 + e−i 6π

4 eiφ3 |011〉
+ e−i 8π

4 eiφ4 |100〉 + ei
−10π

4 eiφ5 |101〉 + e−i 12π
4 eiφ6 |110〉 + e−i 14π

4 eiφ7 |111〉)
|Φ3〉 = 1/2

√
2 · (|000〉 + ei

−3π
4 eiφ1 |001〉 + e−i 6π

4 eiφ2 |010〉 + e−i 9π
4 eiφ3 |011〉

+ e−i 12π
4 eiφ4 |100〉 + ei

−15π
4 eiφ5 |101〉 + e−i 18π

4 eiφ6 |110〉 + e−i 21π
4 eiφ7 |111〉)

|Φ4〉 = 1/2
√

2 · (|000〉 + ei
−4π

4 eiφ1 |001〉 + e−i 8π
4 eiφ2 |010〉 + e−i 12π

4 eiφ3 |011〉
+ e−i 16π

4 eiφ4 |100〉 + ei
−20π

4 eiφ5 |101〉 + e−i 24π
4 eiφ6 |110〉 + e−i 28π

4 eiφ7 |111〉)
|Φ5〉 = 1/2

√
2 · (|000〉 + ei

−5π
4 eiφ1 |001〉 + e−i 10π

4 eiφ2 |010〉 + e−i 15π
4 eiφ3 |011〉

+ e−i 20π
4 eiφ4 |100〉 + ei

−25π
4 eiφ5 |101〉 + e−i 30π

4 eiφ6 |110〉 + e−i 35π
4 eiφ7 |111〉)

|Φ6〉 = 1/2
√

2 · (|000〉 + ei
−6π

4 eiφ1 |001〉 + e−i 12π
4 eiφ2 |010〉 + e−i 18π

4 eiφ3 |011〉
+ e−i 24π

4 eiφ4 |100〉 + ei
−30π

4 eiφ5 |101〉 + e−i 36π
4 eiφ6 |110〉 + e−i 42π

4 eiφ7 |111〉)
|Φ7〉 = 1/2

√
2 · (|000〉 + ei

−7π
4 eiφ1 |001〉 + e−i 14π

4 eiφ2 |010〉 + e−i 21π
4 eiφ3 |011〉

+ e−i 28π
4 eiφ4 |100〉 + ei

−35π
4 eiφ5 |101〉 + e−i 42π

4 eiφ6 |110〉 + e−i 49π
4 eiφ7 |111〉)

From Eq. (13), it can be found that if the measurement outcome of Alice’s particles
(1, 2, 3) is |Γm〉 (m = 0, 1 . . . 8), the particles (2, 4, 6) would be transported into |Φm〉.
In order to reconstruct the original state, Bob performs the relevant unitary gate U 3

m
on particles (2, 4, 6).

U 3
m =

(
1 0
0 eiπm

)
⊗

(
1 0
0 ei

πm
2

)
⊗

(
1 0
0 ei

πm
4

)
(14)

It should be emphasized that the total successful probability of preparing three-qubit
equatorial states is one.

4 Discussion and conclusions

In summary, we put forward an efficient scheme to prepare an arbitrary n-qubit equa-
torial state via n two-qubit maximally entangled states with the 100% successful
probability. This is in contrast with the fact that the RSP scheme in Ref. [36] only
has the 50% successful probability for equatorial states. The concrete measurement
basis of the sender and the corresponding unitary operation performed by the receiver
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are presented in detail. The feasibility of our scheme in preparing remotely arbitrary
multi-qubit equatorial states is proved by theoretical studies and concrete examples.
From the point of potential applications of controlled teleportation, our scheme would
be useful in the field of quantum network. Furthermore, even though the equatorial
states include less quantum information than general states, some special advantages
make them important for quantum computation and quantum communication, such
as simplifying the remote preparation of unitary operations [37–39], reducing the
required classical information of RSP [2,34], and improving the fidelity of quantum
cloning [33,40]. Further research will focus on the usefulness of equatorial states on
quantum information processing.
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