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Abstract Spatial filtering is one principal tool used in image processing for a broad
spectrum of applications. Median filtering has become a prominent representation of
spatial filtering because its performance in noise reduction is excellent. Although fil-
tering of quantum images in the frequency domain has been described in the literature,
and there is a one-to-one correspondence between linear spatial filters and filters in
the frequency domain, median filtering is a nonlinear process that cannot be achieved
in the frequency domain. We therefore investigated the spatial filtering of quantum
image, focusing on the design method of the quantum median filter and applications in
image de-noising. To this end, first, we presented the quantum circuits for three basic
modules (i.e., Cycle Shift, Comparator, and Swap), and then, we design two composite
modules (i.e., Sort and Median Calculation). We next constructed a complete quantum
circuit that implements the median filtering task and present the results of several sim-
ulation experiments on some grayscale images with different noise patterns. Although
experimental results show that the proposed scheme has almost the same noise sup-
pression capacity as its classical counterpart, the complexity analysis shows that the
proposed scheme can reduce the computational complexity of the classical median
filter from the exponential function of image size n to the second-order polynomial
function of image size n, so that the classical method can be speeded up.
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1 Introduction

Quantum computing as a new computing method has received ever greater attention
because of its high parallelism. In the near future, quantum computers are expected
to replace classical computers. Therefore, it is meaningful to study the mechanisms
underlying information processing in quantum computers. In classical image process-
ing, the pixel coordinates and pixel grayscale values are both integers, the latter based
on power of two. These features of the classical image have some similarity to the
basis states of multi-qubit systems. These similarities helped to make quantum image
processing a new inter-discipline at the beginning of this century. In the development
of quantum image processing, the earliest literature can be traced back to 2003, and
Reference [1] is the first paper in this sub-discipline, which marks the birth of this
sub-discipline. For a detailed account of its developmental timeline, the interested
reader is referred to [2].

To deal with images on a quantum computer, the first task is to convert classi-
cal images into quantum images; hence, the representation of quantum images is the
first problem needing to be solved. Concerning the quantum image description, in
2003, Venegas-Andraca and Bose proposed the qubit lattice representation to encode
quantum images [3]. This was closely followed by Latorre’s real ket representation for
quantum images [4]. Years later, Le et al.’s flexible representation for quantum images
(FRQI) was proposed in 2010 [5] and later reviewed in 2011 [6]. These three mod-
els are collectively regarded as prototypical of the sub-discipline of quantum image
processing [7]. The various models proposed later are a modification or extension
of these three models. For example, in a procedure similar to the qubit lattice repre-
sentation, termed the SQR model [8], the infrared radiation energy from objects was
transformed into a quantum state |I 〉 by a converter C , i.e., C detected and recorded
radiation energy and then produced a quantum state |I 〉 as output. By extending the
grayscale information in FRQI to a color representation, a multichannel representa-
tion of quantum images, MCQI, was proposed in [9,10], which uses the R, G, and B
channels to represent the different color information of an image and also retains the
normalized state.

Reference [11] notes that the above FRQI has three disadvantages that limit its
application: 1) The original classical image cannot be accurately retrieved. According
to the postulates of quantum mechanics, the probability amplitudes of a quantum
state cannot be accurately determined using a finite number of measurements. 2) Only
simple color operations can be performed on the quantum image. This limitation
arises because only a single qubit is used to represent the color information for each
pixel. Hence, it is difficult to design quantum circuits for image processing tasks
that need to separate pixels of different colors to apply distinct transformations. 3)
There are practical limitations on the number of colors/positions that can be physically
represented using the angle parameter of a qubit. The energy separation between the
states of the qubit should be greater than the thermal energy. Therefore, to encode
information in 224 qubit angles is not feasible even if we have a scheme operating at
very low temperatures and with very high frequency radiation.

To overcome these shortcomings, in 2013, Refernce [12] proposed the novel
enhanced quantum representation of digital images (NEQR). The model stores images
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with (2n+q) qubits, where 2n qubits describe the pixel position and q qubits describe
the grayscale intensity. In NEQR, both the color and position of a pixel in the image are
encoded in the basic quantum states (instead of the superposition state with complex
numbers as coefficients). Thus, both color and position information in this repre-
sentation can be retrieved deterministically through a finite number of projective
measurements, and a larger class of color-related image processing operations can
be easily achieved. Based on the background given, in this paper, the NEQR model is
used to describe quantum images because filtering is then a transformation operation
for the grayscale intensity of the pixel. For a concise review of quantum image repre-
sentations, we refer the reader to [7], which gives the most comprehensive review of the
principles, features, and relationships of all the existing models for image description.

After establishing this model for the quantum description from the classical image,
quantum image processing becomes the main theme of this sub-discipline. At present,
compared with classical image processing, quantum image processing technology is
still far from a mature field. Although preliminary research results have been obtained
in such some areas such as image matching [13], image location [14], geometric
transformation [15], color processing [16], feature extraction [17], image segmentation
[18], image scrambling [19,20], image encryption [21], image steganography [22],
image watermarking [23,24], and quantum movie [25], etc., in the quantum image
filtering, the relevant research results are still scarce. This is mainly because, in classical
image processing, the filter is related to convolution or correlation; realizing these
processes using quantum circuits has been proved impossible [26]. In 2013, Simona
et al. proposed the frequency domain filtering of quantum images in [27]. In this
approach, they use the principle of a quantum oracle to implement the filter function
and described quantum circuits that implement the filtering task and presented the
results of several simulation experiments on grayscale images.

Recently, [28] proposed a spatial filtering method for quantum images. In this
method, by using quantum addition instead of quantum multiplication, the unreal-
ization of quantum convolution is effectively avoided. Later, [29] pointed out two
shortcomings of this method: (1) It is necessary to know exactly the specific value of
the filter coefficients before each filtering behavior, and (2) this method is only suitable
for integer filter coefficients but not for decimal filter coefficients. In [29], an improved
version is proposed which takes full advantage of the quantum multiplication and can
overcome these two shortcomings. However, these two methods only apply to mean
filtering, not to median filtering. In the spatial domain, the median filtering methods
of quantum images have not been reported.

In summary, as an emerging interdisciplinary topic, although quantum image pro-
cessing has made many advances, it still faces many challenges. Compared with the
results of classical images processing, there is a big gap in depth and breadth. For exam-
ple, the spatial filtering method has been widely used in classical images processing,
but there is no quantum counterpart at present. To solve the problem of quantum
image filtering in the spatial domain, we must first consider how to avoid convolution
or correlation operations. In classical image processing, median filtering is notably a
nonlinear process that is unrelated to the convolution or correlation operations, which
means that median filtering does not involve convolution or correlation. Similarly, in
quantum image processing, median filtering also does not need to deal with convolu-

123



49 Page 4 of 25 P. Li et al.

tion or correlation operations, and hence sidesteps the restrictions mentioned in [26].
In this paper, a quantum median filtering method is proposed. Unlike classic median
filtering in the spatial domain, we have adopted a different implementation method.
The classic median filtering is achieved by sliding the filtering mask over the entire
image. In the proposed method, the original image is first translated by one unit in
eight directions (i.e., up, down, left, right, up left, up right, down left, down right),
and then, for nine images (the original image and the transposed eight images), the
median of nine pixels with the same position is calculated, which is the median of the
corresponding pixels in the filtered image. Different from the classical method, using
the parallelism of quantum computing, all the median calculations can be carried out
at the same time, so that the classical method can be speeded up.

The remainder of this paper is organized as follows. Section 2 introduces the quan-
tum median filtering operation, designs the module structure of filtering circuits, and
analyzes their complexity. Some simulation experiments are presented in Sect. 3. In
Sect. 4, we offer concluding remarks.

2 Median filtering of quantum images

We remark that this method applies only to grayscale images, with a grayscale range
of {0,1,. . .,2q − 1}, and assumes that the size of the image is 2n × 2n .

2.1 NEQR model of representing quantum images

For a grayscale image, NEQR encodes q bits of binary grayscale values into q qubits.
In NEQR, a grayscale image of size 2n × 2n has representation,

|Q〉 = 1
2n

2n−1∑

y=0

2n−1∑

x=0
| f (y, x)〉|yx〉 = 1

2n

2n−1∑

y=0

2n−1∑

x=0
|cq−1

yx cq−2
yx . . . c0

yx 〉|yx〉, (1)

where cq−1
yx , cq−2

yx , . . . c0
yx ∈ {0, 1}, and f (y, x) ∈ {0, 1, . . . , 2q − 1}. From [12],

NEQR needs q + 2n qubits to represent our grayscale image.

2.2 Median filter

As an aid to understand the content of this paper, we first introduce the concept of
median filtering.

Order-statistics filters are nonlinear spatial filters whose response is based on order-
ing (ranking) the pixels contained in the image area falling under the filter window and
then replacing the value of the center pixel with the value determined by the ranking
result [30]. The best-known filter in this category is the median filter, which, as its
name implies, replaces the value of a pixel by the median of the intensity values in the
neighborhood of that pixel (the original value of the pixel is included in the compu-
tation of the median). The median, ξ , of a set of values is such that half the values in
the set are less than or equal to ξ , and half are greater than or equal to ξ .
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Fig. 1 Tree structure reflecting the hierarchy between the various modules in a median filtering circuit.
The leaf nodes are the basic modules, the internal nodes are the composite modules, and the root node is
the total circuit

To perform median filtering at a point in an image, we first sort the values of
the pixel in the neighborhood, determine their median, and assign that value to the
corresponding pixel in the filtered image. Thus, the principal function of median filters
is to force points with distinct intensity levels to be more like their neighbors [30].
Indeed, isolated clusters of pixels that are light or dark with respect to their neighbors,
and whose area is less than m2/2 (one-half the filter area), are eliminated by an m×m
median filter. In this case, “eliminated” means forced to the median intensity of the
neighbors. Larger clusters are affected considerably less.

Median filters are quite popular because, for certain types of random noise, they
provide excellent noise reduction capabilities with considerably less blurring than
linear smoothing filters of similar size.

2.3 Modules used in proposed quantum median filter

Although the size of the median filter may be anym×m, wherem is an odd number, in
most cases, the 3 × 3 filter has been able to meet filtering requirements. In this paper,
for simplicity of description, we only consider design of 3 × 3 filters.

Designing a median filter circuit is a complex task. We decompose the design task
into several modules which can be divided into two categories: basic modules and com-
posite modules. The so-called basic module refers to the module is no longer formed by
other modules, such modules include: Cycle Shift modules (i.e., Sy−, Sy+, Sx−, Sy+),
Comparator module, and Swap module. The so-called composite module means that
the module is composed of other basic modules, such modules include Sort module
and Median Calculation module. The hierarchy of all these modules is depicted in
Fig. 1.

2.4 Quantum circuits of basic modules

In Fig. 1, there are the following basic modules: Cycle Shift, Comparator, and Swap.
The functions and quantum circuits of these modules are given below.
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(a) (b)

(c) (d)

Fig. 2 Cycle Shift modules. a Quantum circuit that translates all pixels in the image to the top by one unit.
(i) Circuit, (ii) example. b Quantum circuit that translates all pixels in the image to the bottom by one unit.
(i) Circuit, (ii) example. c Quantum circuit that translates all pixels in the image to the left by one unit. (i)
Circuit, (ii) example. d Quantum circuit that translates all pixels in the image to the right by one unit. (i)
Circuit, (ii) example. (figure adapted from [17])

(1) Cycle Shift modules

The four cyclic shift modules used in this paper are represented as Sy−, Sy+, Sx−,
and Sy+, respectively, which are derived from [17]. The function of these four modules
is to translates all pixels in the image by one unit. Specifically, for an image of sized
2n × 2n , let the position qubit be |y〉|x〉, then the roles of these four modules can be
described as

⎧
⎪⎪⎨

⎪⎪⎩

Sy−(|y〉) = |(y − 1) mod 2n〉
Sy+(|y〉) = |(y + 1) mod 2n〉
Sx−(|x〉) = |(x − 1) mod 2n〉
Sx+(|x〉) = |(x + 1) mod 2n〉

. (2)

The quantum circuits of these four modules are shown in Fig. 2.

(2) Comparator module

The Comparator module occupies an important position in the median filter. Here,
we use the quantum Comparator designed in [31], and its quantum circuit is shown
in Fig. 3.
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Fig. 3 Comparator module. (figure adapted from [31])

Fig. 4 Swap module

The Comparator compares x and y, where x = xn−1xn−2 . . . x0, y =
yn−1yn−2 . . . y0, xi , yi ∈ {0, 1}, i = n−1, n−2, . . . , 0. Qubits e1 and e0 are outputs.
If e1e0 = 10 then x > y; if e1e0 = 01 then x < y; and if e1e0 = 00 then x = y.

(3) Swap module

The function of this module is to swap two grayscale values. Specifically, if
the grayscale value cq−1cq−2. . .c0 is stored in register |c〉 and the grayscale value
ĉq−1ĉq−2. . .ĉ0 is stored in register |ĉ〉, then, after the module is executed, the
ĉq−1ĉq−2. . .ĉ0 is stored in register |c〉 and the cq−1cq−2. . .c0 is stored in register
|ĉ〉. That is, the module implements the interchange of two quantum register contents.
Its quantum circuit is shown in Fig. 4.

2.5 Quantum circuits of composite modules

(1) Sort module

The function of the Sort module is to sort two integers in ascending order. This
module consists of a Comparator and a Swap module; see Fig. 5. In this module, we
use the quantum Comparator to compare two input integers a and b. We then decide
whether to swap a and b according to the value of e1e0; if and only if e1e0 = 10 (i.e.,
a > b) is a and b swapped using the Swap module. At this point, in the output of the
module, â and b̂ are the sorting results of a and b.
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Fig. 5 Sort module

Fig. 6 Median Calculation module, where the |M〉 in the output denotes the median of nine integers

(2) Median Calculation module

The function of the Median Calculation module is to calculate the median of the
nine integers. This module is composed of thirty Sort. Figure 6 shows its quantum
circuit structure. In Fig. 6, c1, c2, . . . , c9 are nine integers that are input to this module.

We briefly describe the operation of this module. First, to obtain the median of the
nine integers, based on the bubble sort principle, we use the 30 Sort modules to order
the nine integers c1, c2, . . . , c9. Clearly, after sorting, the fifth integer ĉ5 = M is the
median of the nine integers.

2.6 Complete median filtering circuits

2.6.1 Background on proposed median filtering technique

In the proposed method, the original image is first translated by one unit in eight
directions (i.e., up, down, left, right, up left, up right, down left, down right). At this
time, for nine images (the original image|I 〉 and the transposed eight images |I1〉 ∼
|I8〉), nine pixels with the same position (e.g., |cyx 〉, |cy1x1=yx 〉, |cy2x2=yx 〉, |cy3x3=yx 〉,
|cy4x4=yx 〉, |cy5x5=yx 〉, |cy6x6=yx 〉, |cy7x7=yx 〉, |cy8x8=yx 〉) are exactly the same as nine
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(a)

(b)

Fig. 7 An explanation of the filtering scheme proposed in this paper. a The original image in a 3 × 3
window and the image that is shifted by a unit in 8 directions. b The median calculation process based on
the original image and the eight shifted images

pixels encompassed by a 3×3 filtering mask in the original image (i.e., |cyx 〉, |c(y−1)x 〉,
|c(y+1)x 〉, |cy(x−1)〉, |cy(x+1)〉, |c(y−1)(x−1)〉, |c(y−1)(x+1)〉, |c(y+1)(x−1)〉, |c(y+1)(x+1)〉).
Therefore, the median of nine pixels from the same position of the nine images is the
grayscale value of the corresponding position of the filtered image. Taking the part of
the original image in a 3 × 3 window as an example, an explanation of the filtering
scheme proposed in this paper is given in Fig. 7.
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2.6.2 Complete median filtering circuits

For the proposed quantum image median filtering method, the complete quantum
circuits are shown in Fig. 8, which consists of three types of modules: 12 Cycle Shift,
16 Comparator, and 1 Median Calculation.

Next, we explain the working process of quantum median filtering circuits as fol-
lows. The input of the filtering circuits is nine identical quantum images, as shown in
the following equation.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|I1〉 = 1
2n

∑2n−1
y1=0

∑2n−1
x1=0 |cy1x1〉|y1〉|x1〉

|I2〉 = 1
2n

∑2n−1
y2=0

∑2n−1
x2=0 |cy2x2〉|y2〉|x2〉

|I3〉 = 1
2n

∑2n−1
y3=0

∑2n−1
x3=0 |cy3x3〉|y3〉|x3〉

|I4〉 = 1
2n

∑2n−1
y4=0

∑2n−1
x4=0 |cy4x4〉|y4〉|x4〉

|I 〉 = 1
2n

∑2n−1
y=0

∑2n−1
x=0 |cyx 〉|y〉|x〉

|I5〉 = 1
2n

∑2n−1
y5=0

∑2n−1
x5=0 |cy5x5〉|y5〉|x5〉

|I6〉 = 1
2n

∑2n−1
y6=0

∑2n−1
x6=0 |cy6x6〉|y6〉|x6〉

|I7〉 = 1
2n

∑2n−1
y7=0

∑2n−1
x7=0 |cy7x7〉|y7〉|x7〉

|I8〉 = 1
2n

∑2n−1
y8=0

∑2n−1
x8=0 |cy8x8〉|y8〉|x8〉

, (3)

where if yi xi = yx then cyi xi = cyx , i = 1, 2, . . . , 8. In other words, these nine
images are exactly the same.

Fig. 8 Complete median filtering circuits
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First of all, with |I 〉 constant, 12 Cyclic Shift modules are used to perform a cyclic
shift operation on the other eight images (|I1〉 ∼ |I8〉) to obtain nine images (one
original image and eight shifted images), as shown in the following equation.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sy−|I1〉 = 1
2n

∑2n−1
y1=0

∑2n−1
x1=0 |cy1x1〉|(y1 − 1) mod 2n〉|x1〉

= 1
2n

∑2n−1
ŷ1=0

∑2n−1
x̂1=0 |cŷ1 x̂1〉|ŷ1〉|x̂1〉

Sy+|I2〉 = 1
2n

∑2n−1
y2=0

∑2n−1
x2=0 |cy2x2〉|(y2 + 1) mod 2n〉|x2〉

= 1
2n

∑2n−1
ŷ2=0

∑2n−1
x̂2=0 |cŷ2 x̂2〉|ŷ2〉|x̂2〉

Sx−|I3〉 = 1
2n

∑2n−1
y3=0

∑2n−1
x3=0 |cy3x3〉|y3〉|(x3 − 1) mod 2n〉

= 1
2n

∑2n−1
ŷ3=0

∑2n−1
x̂3=0 |cŷ3 x̂3〉|ŷ3〉|x̂3〉

Sx+|I4〉 = 1
2n

∑2n−1
y4=0

∑2n−1
x4=0 |cy4x4〉|y4〉|(x4 + 1) mod 2n〉

= 1
2n

∑2n−1
ŷ4=0

∑2n−1
x̂4=0 |cŷ4 x̂4〉|ŷ4〉|x̂4〉

|I 〉 = 1
2n

∑2n−1
y=0

∑2n−1
x=0 |cyx 〉|y〉|x〉

Sy−Sx−|I5〉 = 1
2n

∑2n−1
y5=0

∑2n−1
x5=0 |cy5x5〉|(y5 − 1) mod 2n〉|(x5 − 1) mod 2n〉

= 1
2n

∑2n−1
ŷ5=0

∑2n−1
x̂5=0 |cŷ5 x̂5〉|ŷ5〉|x̂5〉

Sy−Sx+|I6〉 = 1
2n

∑2n−1
y6=0

∑2n−1
x6=0 |cy6x6〉|(y6 − 1) mod 2n〉|(x6 + 1) mod 2n〉

= 1
2n

∑2n−1
ŷ6=0

∑2n−1
x̂6=0 |cŷ6 x̂6〉|ŷ6〉|x̂6〉

Sy+Sx−|I7〉 = 1
2n

∑2n−1
y7=0

∑2n−1
x7=0 |cy7x7〉|(y7 + 1) mod 2n〉|(x7 − 1) mod 2n〉

= 1
2n

∑2n−1
ŷ7=0

∑2n−1
x̂7=0 |cŷ7 x̂7〉|ŷ7〉|x̂7〉

Sy+Sx+|I8〉 = 1
2n

∑2n−1
y8=0

∑2n−1
x8=0 |cy8x8〉|(y8 + 1) mod 2n〉|(x8 + 1) mod 2n〉

= 1
2n

∑2n−1
ŷ8=0

∑2n−1
x̂8=0 |cŷ8 x̂8〉|ŷ8〉|x̂8〉

.

(4)

After completing the image cyclic shift, 16 Comparator modules are used to com-
pare the positions in order to find out the pixels with the same position in the 9 images.
Taking Eq. (4) as an example, if (y = ŷ1 = · · · = ŷ8) and (x = x̂1 = · · · = x̂8),
then cyx , cŷ1 x̂1 , · · · , cŷ8 x̂8 are the grayscale value of the nine pixels with the same
position. Next, using the output of 16 Comparators as a control condition, a Median
Calculation module is executed so as to obtain the median of grayscale value of nine
pixels with the same position. Let this median be ĉyx , at this point, quantum image

|I 〉 = 1
2n

∑2n−1
y=0

∑2n−1
x=0 |ĉyx 〉|y〉|x〉 is the median filtered image.

2.6.3 Difference between the proposed scheme and classical median filtering scheme

The difference between the scheme proposed in this paper and the classical median
filtering scheme is as follows.
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First, the classic median filtering is achieved by sliding the median filtering mask
over the entire image, and each time the mask moves to a new position, it is neces-
sary to calculate the median of 9 pixels encompassed by it so that all median values
are calculated one by one. In the scheme of this paper, with the parallelism of quan-
tum computation, all 2n × 2n median calculations involving 9 images are performed
simultaneously, which can greatly improve the median filtering efficiency.

Second, for the filtered image, the two schemes are slightly different for the bound-
ary pixels, whereas for the internal pixels, the processing results are exactly the same.
In other words, if the boundary pixels are ignored, the filtering effect of the two schemes
is exactly the same. When the boundary pixels are considered, the filtering effect is
slightly different. This is because the two schemes have different ways of dealing with
the boundary pixels. In the classic scenario, the method of replicating boundary pixels
is used to extend the original image outward by one pixel unit, turning the boundary
pixels into internal pixels, so that a 3 × 3 filtering mask can be used to calculate the
median. In the proposed scheme, all pixels in the image are first circularly shifted
by one unit in eight different directions, and then the median of nine pixels with the
same position in these shifted images is calculated simultaneously. Therefore, for the
scheme proposed in this paper, the boundary pixels and internal pixels are handled in
exactly the same way.

2.7 Complexity analysis

In quantum image processing (QIP), the circuit network complexity depends on the
number of elementary gates used. The complexity of elementary quantum gates is
taken to be unity. This includes the NOT-gate, Hadamard gate, Control-Not gate,
and any 2 × 2 unitary operator [32]. Below, we start by analyzing the complexity of
each sub-module and gradually establish the complexity of the entire median filtering
circuits.

• Cycle Shift modules. In [17], the Cycle Shift module is used to extract local feature
points from quantum images. From the analysis shown in [17], the complexity of
this model is no more than O(n2).

• Comparator module. In [33], this module is used in quantum image translation.
From the analysis presented in [33], the complexity of this model is no more than
O(n2).

• Swap module. In this module, q simple quantum swap gates are used (Fig. 4).
According to Reference [34], each swap gate can be constructed by three Control-
Not gates, and hence, the Swap module requires a total of 3q Control-Not gates,
that is, its complexity is O(q).

• Sort module. From Fig. 5, this module consists of only one Comparator module
and one Swap module, and hence, the complexity is no more than O(q2 + q). If
the lower-order term is ignored, its complexity is about O(q2).

• Median Calculation module. From Fig. 6, this module consists of 30 Sort mod-
ules. From the previous analysis, the complexity of this module does not exceed
O(30q2).
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Finally, we analyze the complexity of the entire filtering circuits. As is seen from
Fig. 8, the entire filtering circuits employs a total of 12 Cycle Shift modules, 16
Comparator modules, and 1 Median Calculation module. For a quantum image, the
color depth q of the image is generally fixed (e.g., for a grayscale image, q = 8, and for
a color image q = 24), whereas the size n of the image is variable. Therefore, without
considering the complexity of the image preparation stage, the total complexity is no
more than O(12n2 + 16n2 + 30q2) = O(28n2 + 30q2).

In summary, the computational complexity of the proposed filtering scheme is only
the second-order polynomial function of image size n. However, for classical median
filtering, the median of all pixels needs to be calculated one by one, so the complexity
must include the factor 22n . In terms of this factor alone, the complexity of classical
median filtering is necessarily the exponential function of the image size n.

2.8 Example verification

In this section, we employ a 4 × 4 grayscale image to illustrate a specific median
filtering process. Using the NEQR model of the quantum image, this image can be
represented as follows.

|Q〉= 1
4 (|01101111〉2|0,0〉+|10000010〉2|0,1〉+|10101100〉2|0,2〉+|10011111〉2|0,3〉+

|01101011〉2|1,0〉+|11110011〉2|1,1〉+|01000100〉2|1,2〉+|01011100〉2|1,3〉+
|01001001〉2|2,0〉+|00100011〉2|2,1〉+|10010001〉2|2,2〉+|10001010〉2|2,3〉+
|11101001〉2|3,0〉+|01000101〉2|3,1〉+|01111001〉2|3,2〉+|10110000〉2|3,3〉)

= 1
4 (|111〉|0,0〉+|130〉|0,1〉+|172〉|0,2〉+|159〉|0,3〉+
|107〉|1, 0〉 + |243〉|1, 1〉 + |68〉|1, 2〉 + |92〉|1, 3〉+
|73〉|2, 0〉 + |35〉|2, 1〉 + |145〉|2, 2〉 + |138〉|2, 3〉+
|233〉|3, 0〉 + |69〉|3, 1〉 + |121〉|3, 2〉 + |176〉|3, 3〉),

(5)

Figure 9a, b shows the median filtering process for this 4×4 grayscale image using
the proposed method and the classical method, respectively. Note, the thin black lines
in the image are used to distinguish pixels and are not part of the image. In Fig. 9(b.iv),
the 16 pixels in the blue box are the image filtered by the classical method.

As can be seen from Fig. 9, two filtered images are exactly the same for the four
internal pixels and the differences between them are only reflected on the edge pixels.

3 Simulation on classical computer

We now describe simulations of filtering operations for several grayscale images on a
classical computer while physical quantum computers are currently not at hand. The
simulations were run on a classical computer with an Intel(R) Core(TM) i5-3470 CPU
@ 3.20GHz 4.00GB RAM and 32-bit operating system. The simulations are based
on linear algebra with complex vectors as quantum states and unitary matrices as
unitary transforms with calculations performed using MATLAB 7.8.0(R2009a). The
six grayscale images (as shown in Fig. 10) used in the experiment are taken from the
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(a) (b)

Fig. 9 Median filtering process for a 4 × 4 grayscale image using the proposed method and the classical
method. a Filtering process of proposed method. b Filtering process of classical method

web [35]. The size of the first four images is 512 ×512 and that of the last two images
is 1024 × 1024.

Our experimental procedure is as follows. First, we mixed one of three noise patterns
in each image: Gaussian noise with mean 0 and variance of 0.05, salt-and-pepper
noise with a density of 0.10, and qubit flip noise with a flipping probability of 0.10.
We then used the median filter designed for this study to filter each noise-imposed
image. Finally, the noise reduction performance of the median filter is investigated by
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(a) 512× 512 (b) 512× 512 (c) 512× 512

(d) 512× 512 (e) 1024× 1024 (f) 1024× 1024

Fig. 10 Six grayscale images used in the experiments

calculating the correlation coefficient of adjacent pixels, peak signal-to-noise ratio,
and the quantum-based image fidelity metric (or simply QIFM) proposed in [36]. To
further verify the effectiveness of the proposed method, we also compared the filtering
performance of our method with that of the classical median filtering method.

Before beginning, we first explain what qubit flip noise is. qubit flip noise is essen-
tially a channel noise that is caused when information is transmitted in a quantum
channel. It is consistent with classic channel noise, i.e., “1” is received when “0”
is sent, or “0” is received when “1” is sent. For a quantum image transmitted in a
channel, the qubit flip noise transitions the state of the qubit from |0〉 to |1〉 (or vice
versa) with probability 1 − p, and this action can be described by operators such as

E0 = √
pI = √

p

[
1 0
0 1

]

and E1 = √
1 − pX = √

1 − p

[
0 1
1 0

]

. With respect to

the qubit flip noise used in this experiment, the flip probability 1 − p is equal to 0.10.

3.1 Comparison of filtering effects under different noise

The filtering effects for Gaussian noise, salt-and-pepper noise, and qubit flip noise
are shown in Figs. 11, 12, and 13, respectively.

For median filtering, its ability to suppress salt-and-pepper noise and qubit flip noise
is better than the ability to suppress Gaussian noise. Especially for salt-and-pepper
noise, its suppression ability is stronger than that for qubit flip noise. Although the
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(a) i (a) ii (a) iii (a) iv (a) v (a) vi

(b) i (b) ii (b) iii (b) iv (b) v (b) vi

(c) i (c) ii (c) iii (c) iv (c) v (c) vi

Fig. 11 Noise reduction effect of the median filter on Gaussian noise with mean 0 and variance of 0.05.
ai—avi are images after superimposing the Gaussian noise, bi—bvi are the respective median filtering
results for ai–avi using the proposed method, and ci–cvi are the respective median filtering results for
ai—avi using the classical method

(a) i (a) ii (a) iii (a) iv (a) v (a) vi

(b) i (b) ii (b) iii (b) iv (b) v (b) vi

(c) i (c) ii (c) iii (c) iv (c) v (c) vi

Fig. 12 Noise reduction effect of median filter on salt-and-pepper noise with a density of 0.10. ai—avi are
images after superimposing the salt-and-pepper noise, bi—bvi are the respective median filtering results
for ai—avi using the proposed method, and ci—(c)vi are the respective median filtering results for ai—avi
using the classical method

noise density is as high as 0.1, the filtering effect is still good. From the experimental
results, in terms of the visual effect of the filtered image, there are almost no differences
between the two methods for the three different types of noise filtering.

123



Quantum image median filtering in the spatial domain Page 17 of 25 49

(a) i (a) ii (a) iii (a) iv (a) v (a) vi

(b) i (b) ii (b) iii (b) iv (b) v (b) vi

(c) i (c) ii (c) iii (c) iv (c) v (c) vi

Fig. 13 Noise reduction effect of the median filter on qubit flip noise with a flipping probability of 0.10.
ai—avi are images after superimposing the qubit flip noise, bi—bvi are the respective median filtering
results for ai—avi using the proposed method, and ci—cvi are the respective median filtering results for
ai—avi using the classical method

We give the following explanation for the above experimental results. Median fil-
tering can completely eliminate isolated pulses. In general, the brighter and darker
areas in the image that are smaller than half of the template size are removed after
filtering. Therefore, the main function of median filtering is, for those pixels that are
significantly different from the surrounding pixels, to change their grayscale values to
values closest to those of the surrounding pixels. In this way, its ability to eliminate
isolated noise is very strong. Because it is not taking the mean, there is less ambiguity.
In other words, the median filter can eliminate noise and better retain image details.
Because the qubit flip noise and the salt-and-pepper noise are seen as specks added
to the original image, the median filter is very efficient at filtering out these two kinds
of noise.

Note that the above comparison is based only on observations with the human visual
system. To further strengthen our argument, we give a quantitative comparison of the
performance of the two methods in the next subsection.

3.2 Correlation analysis for adjacent pixels

In six original images in Fig. 10, each pixel is highly correlated with its adjacent
pixels. The addition of noise reduces the correlation of adjacent pixels, so that the
image becomes blurred. After the noise image is filtered by median filtering, the
correlation between adjacent pixels can be improved by suppressing noise. To quantify
and compare the correlations of the adjacent pixels in the original images, noise images,
and filtered images, we also calculated the correlation coefficient Rxy of adjacent pixels
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using the following equation [30].

R(x, y) = E((x − E(x))(y − E(y)))√
D(x)D(y)

, (6)

where E(x) and D(x) denote the expectation and variance, respectively, of the pixel
grayscale values.

To investigate the filtering effect of median filter on noise images, the correlation
is tested between two horizontally, vertically, and diagonally adjacent pixels in the
six original images, and their corresponding noise and filtered images. Specifically,
by randomly selecting 10,000 pairs of adjacent pixels in each direction from the
images, the correlation between pixels can be obtained. Let IO, IN, IF1, and IF2 denote,
respectively, the original image, noise image, filtered image by our method, and the
filtered image by the classical method. The results of the correlation coefficients for
the three directions and six images are listed in Table 1, where RX , (X = R, S, Q)

denote the correlation coefficients for Gaussian noise images, salt-and-pepper noise
images and qubit flip noise images, respectively.

From Table 1, the addition of noise significantly reduces the correlation of adjacent
pixels in the original image, but after the median filter is applied, the correlation is
restored to approximately equal to that of the original image. Moreover, from the
experimental results, for the first four images, the correlation coefficients obtained by
the two approaches are almost equal, while for the last two images, the correlation
coefficients obtained by the two approaches are exactly the same.

For the above experimental results, we give the following explanation. For the first
four images, each image contains 512 × 512 pixels, of which the number of boundary
pixels is 512 × 4 − 2 = 2044. Therefore, in the 10000 randomly selected pixels, there
are no more than 10000× 2044

512×512 ≈ 78 boundary pixels, indicating that the difference
of correlation coefficient between the two schemes does not exceed 0.0078. Similarly,
for the last two images, each image contains 1024×1024 pixels, of which the number
of boundary pixels is 1024×4−4 = 4092. Therefore, in the 10000 randomly selected
pixels, the number of boundary pixels does not exceed 10000 × 4092

1024×1024 ≈ 39, and
so, the difference of correlation coefficient between the two schemes does not exceed
0.0039.

3.3 Visual quality comparison

To describe quantitatively the visual quality of a filtered image, the evaluation index
used in this paper is the peak signal-to-noise ratio (PSNR) defined by the following
equation [22].

PSNR = 20 log10
255

√

1
22n

2n−1∑

i=0

2n−1∑

j=0
[IOri(i, j) − INF(i, j)]2

, (7)
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Table 2 PSNR values of the noise images and their corresponding filtered images (dB)

No. PG PG1 PG2 PS PS1 PS2 PQ PQ1 PQ2

1 13.8660 20.8937 20.8912 15.0255 34.1663 34.3040 14.8614 28.0986 28.1749

2 13.6465 20.6206 20.6264 15.4127 33.5663 33.7502 15.0316 28.7403 28.8902

3 13.5422 20.1379 20.2536 15.5338 28.8220 29.9531 15.0271 26.5098 27.1642

4 14.0164 20.4476 20.4643 14.8711 29.5417 29.6132 14.7700 24.9147 25.0080

5 13.6890 20.5052 20.5025 15.3709 32.7082 32.7468 14.9699 28.0418 28.0836

6 13.6750 20.7973 20.7957 15.3445 36.9149 37.0943 14.9549 29.9776 30.0744

Avg. 13.7392 20.5670 20.5890 15.2598 32.6199 32.9103 14.9358 27.7138 27.8992

where IOri and INF denote the original image and the noise or filtered image, respec-
tively.

Obviously, the closer IOri and INF are, the greater the PSNR obtained is. Table 2
shows the PSNR of the different noise images and the corresponding filtered images.
Here PX , PX1, and PX2 (X = G, S, Q) denote the PSNR of the X noise image and
the corresponding filtered images obtained using the proposed and classical methods.

From Table 2, the PSNR obtained by two filtering schemes is quite close, and
after filtering the Gaussian noise, salt-and-pepper noise, and qubit flip noise, the
PSNR increased by about 7 dB, 17 dB, and 13 dB according to the statistical average,
respectively.

In addition, it can be seen from the average PSNR of 6 images (the last row of
Table 2) that the average PSNR obtained by proposed scheme is slightly smaller than
that of the classical filtering scheme (specifically, 0.0220 dB less than the classical
scheme for Gaussian noise, 0.2904 dB for salt-and-pepper noise, and 0.1854 dB
for qubit flip noise). However, the computational efficiency advantage of proposed
scheme can completely compensate this slight weakness by means of the parallelism
of quantum computation.

3.4 Image fidelity comparison

Although most researchers in the field are content with adopting the classical PSNR
image quality measure to assess likeness between two or more quantum images, Iliyasu
et al. argued that these available classical metrics are insufficient and/or ill-suited to
effectively quantify the fidelity between two or more quantum images [36]. In recent
work [37], they proposed a wholly quantum-based QIFM to assess the “likeness”
between quantum images. They further perfected this method and showed using a sta-
tistical analysis that the QIFM metric gave better correlations with a digital expectation
of likeness between images than other available quantum image quality measures [37].

To further verify the validity of our proposed method, we used the QIFM metric
proposed in [37] to compare the fidelity of the noise image before and after filtering
with respect to the original image. Here, we give a brief outline of the steps in the
calculation of QIFM. For a more detailed explanations of the concepts and principles
of QIFM, the reader is referred to [37].
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First, the reference image IR and the test image IT can be transformed into their
binary versions based on a pixel threshold (p) that assigns a value of zero if 0 ≤ p <

127 and one if 128 ≤ p < 255. Then, binary details between IR and IT are evaluated
using the following equation [37]

� = IDR − TDT, (8)

where

IDR =
⎧
⎨

⎩

∑
(nR

b −nR
w)

N ; i f nR
b �= nR

w
∑

(nR
b −nR

w)

N + 1; otherwise
,

IDT =
⎧
⎨

⎩

∑
(nT

b −nT
w)

N ; i f nT
b �= nT

w
∑

(nT
b −nT

w)

N + 1; otherwise
.

Here nR
b , nR

w, nT
b , and nT

w denote the number of white (0) and black (1) pixels in the
reference and test images, and N = n × n represents the total pixel size of the image.

Next, we count the number of pixel correspondences, D, in the reference and test
image pair defined as the following equation [37]

D =
2n−1∑

i=0

2n−1∑

j=0

(IR(i, j) = (IT(i, j)), (9)

and compute the total pixel-wise variation (i.e., discordance) in the pair of reference

and test images, B =
∑

BER
8N , where BER denotes the bit error rate that is widely used

in other engineering and computer science domains.
Finally, the QIFM of the fidelity between the test image and the reference image

can be obtained from the following equation [37]

F = D + (1 − B) × �

N
× 100. (10)

Table 3 shows the QIFM values of the different noise images and the corresponding
filtered images in which QFX (X = G, S, Q) denotes the QIFM values of the X noise
images, and QFX1 and QFX2 that of the corresponding filtered images obtained by
the proposed and classical methods.

From Table 3, the QIFM values obtained by two filtering schemes is quite close,
and after filtering the Gaussian noise, salt-and-pepper noise, and qubit flip noise,
the QIFM increased by about 12.1650%, 3.1920%, and 7.7339% according to the
statistical average, respectively.

In addition, similar to the analysis of PSNR in Sect. 3.3, although the QIFM obtained
by proposed scheme is slightly smaller than that of the classical filtering scheme
(specifically, 0.0189% less than the classical scheme for Gaussian noise, 0.0117% for
salt-and-pepper noise, and 0.0234% for qubit flip noise), the computational advantages
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of the parallelism of quantum computation are enough to make up for this very weak
defect.

The experimental results verify the effectiveness of the proposed method in four
aspects: the filtering effect under different noise patterns, the correlation analysis
of adjacent pixels, the peak signal-to-noise ratio, and the image fidelity. For quantum
spatial filtering, the mean filtering cannot be implemented by quantum circuits because
it involves convolution. Although the median filtering does not involve convolution, the
corresponding quantum version is not reported at present. Therefore, the significance
of this study was to explore the quantum realization method of image median filtering
in the spatial domain, which to a certain extent solves the spatial filtering problem of
quantum images.

4 Conclusions

Filtering has a wide range of applications in image processing. It is usually applied in
the early stages of vision processing for image enhancement. For example, it can be
used to emphasize various structures in the image prior to a segmentation process (e.g.,
edges) or to eliminate undesirable characteristics introduced in the acquisition process
(e.g., noise). In the classic scenario, the linear spatial filtering is easily implemented
by employing convolution or correlation of an image with a mask representing the
filter. Unfortunately, quantum computation has been shown to be unable to implement
the convolution and correlation operations. However, median filtering is a nonlinear
filtering that is independent of convolution or correlation, and it does not involve
convolution or correlation calculations at all. This feature provides the feasibility
for designing quantum median filter. In this paper, we developed a quantum version
for the image median filtering operation. From basic modules designed for the ele-
mentary quantum gates, two composite modules designed for purposeful tasks were
constructed. These two composite modules were used in forming the complete median
filtering circuits. Several specific applications related to spatial filtering (noise elimi-
nation) were used to verify the feasibility of the proposed circuits. If only the filtering
effect is concerned, the performance of the proposed quantum median filtering scheme
is almost the same as that of its classical counterparts. However, with the parallelism
of quantum computation, the proposed quantum median filter can greatly improve the
filtering efficiency of digital image.
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