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Abstract In this paper, by utilizing the idea of stabilizer codes, we give some rela-
tionships between one local unitary representation of braid group in N-qubit tensor
space and the corresponding entanglement properties of the N-qubit pure state |Ψ 〉,
where the N-qubit state |Ψ 〉 is obtained by applying the braiding operation on the
natural basis. Specifically, we show that the separability of |Ψ 〉 = B|0〉⊗N is closely
related to the diagrammatic version of the braid operator B. This may provide us more
insights about the topological entanglement and quantum entanglement.
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1 Introduction

Braid operators have been widely used for quantum information and computation.
Especially in topological quantum computation, the processes of braiding anyons,
usually related to the unitary Jones representation of braids, act as the role of unitary
quantum gates that are immune to local errors [1–3]. On the other hand, the local uni-
tary representations of braids [4], which are different from the Jones representation,
have been also well connected to the quantum information and quantum computation
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[5–8]. In terms of the relationships between braid and quantum entanglement, one of
the simplest examples is that a special 4 × 4 braid matrix, which has been appeared
in another form long ago [9], generates Bell basis from the 2-qubit natural basis [6],
where Bell basis represents the maximal entangled 2-qubit pure state. This interesting
result has made well connections between the braid operators and quantum entan-
glement. After that, a series of generalized works have been made [7,10–13]. One
significant generalization is that the parametrized form of the braid relation, Yang–
Baxter equation, has been used for describing the entangled degree of pure states, such
as 2-qubit [10] and 3-qubit [14]. Besides that, other further investigations associated
with Yang–Baxter equation and generalized Yang–Baxter equation are also made to
generate specific N-qudit entangled states [15,16]. Based on the previous progresses
in generating multipartite entanglements, we then come up with a natural question:
Are there any general relationships between braid and quantum entanglement?

In this paper, based on the local unitary representation of braid group associated
with Ising theory [3,4], we discuss the general relationship between the local unitary
representation of N-strand braid group in tensor product space (C2)⊗N and the entan-
glement of N-qubit final state obtained by applying braid operators on the initial tensor
product state. Our results show that the entangled parties of the final state generated by
braiding operation depend only on the permutations of the strands in the diagrammatic
version. In other words, only the permutation group, as a quotient group of the braid
group, entangles the qubit sites.

Here we adopt the idea that if the initial state is stabilized by a stabilizer set S, then
the final state after braiding operation B is also stabilized by the final stabilizer set
S ′ = BSB†. Bravyi’s paper [17] shows that for the Majorana representation of braid
group in Ising anyon theory, the final stabilizer set after braiding is just a permutation
of the site number of the Majorana operators in the initial stabilizer set. Because of
the equivalence between our Pauli version of braid representation and the Majorana
version, we can utilize the similar properties of the Majorana stabilizer set to our
case.

Now we briefly introduce the logic of the proof. Firstly, we have local unitary rep-
resentation of braids expressed by Pauli matrices and an initial state |Ψ0〉 in tensor
product space (C2)⊗N . Secondly, we transform the braid representation of Pauli ver-
sion into the equivalent Majorana version by using Jordan–Wigner transformation.
Then, we choose stabilizer set S including N independent stabilizers for the initial
state |Ψ0〉. Applying braiding operation B on state |Ψ0〉, the final state |Ψ 〉 = B|Ψ0〉
is also stabilized by the final stabilizer set S ′ = BSB†. At last, we use the final
stabilizer set S ′ to classify the entangled parties of the final state |Ψ 〉. In this paper,
we call a state entangled if it cannot be separated into any two parties. The paper
is organized as follows. In Sect. 2, we introduce the local unitary representation of
braids in Pauli version and the equivalent Majorana version. In Sect. 3, we give
some examples and detailed explanations about the braiding operation and qubit
entanglement. In Sect. 4 we discuss a general case of braiding and entanglement
including arbitrary number of qubits. In the last section, we make conclusions and
discussions.
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2 Braid group representation in Pauli version and Majorana version

In this section, we mainly introduce one local unitary representation of N-strand
braid group BN in N-qubit tensor product space (C2)⊗N and its equivalent Majo-
rana fermionic version.

The N-strand braid group BN is presented by generators {τi |i = 1, 2, . . . N − 1}
with the relations

τiτ j = τ jτi if |i − j | ≥ 2, (1)

τiτi+1τi = τi+1τiτi+1. (2)

One local unitary representation of BN in N-qubit space (C2)⊗N is

τi = 1√
2

(
I
⊗N − iI⊗i−1 ⊗ σ

y
i ⊗ σ x

i+1 ⊗ I
⊗N−i−1

)
,

= Exp
[
−i

π

4
σ
y
i ⊗ σ x

i+1

]
,

(3)

where I represents 2D identity matrix and σ
x(y)
i represents the usual Pauli X (Y ) matrix

on the ith site. This is the Pauli version of the local unitary braid representation, which
is related to Ising theory.

It is easy to verify that by applying τi to the initial tensor product basis |Ψ0〉 =
|0〉⊗N ,1 one obtains the entangled 2-qubit Bell state on ith and (i + 1)th sites [6],

τi |0〉⊗N = |0〉⊗i−1 ⊗
[

1√
2

(|00〉 + |11〉)
]

i,i+1
⊗ |0〉⊗N−i−1. (4)

Now we turn the Pauli version of braid representation into the Majorana version.
Majorana operators are well connected to Pauli matrices under Jordan–Wigner trans-
formation,

γ2 j−1 =
⎡
⎣

j−1∏
k=1

σ z
k

⎤
⎦ σ x

j , γ2 j =
⎡
⎣

j−1∏
k=1

σ z
k

⎤
⎦ σ

y
j . (5)

We see from above definition that one spin site corresponds to two Majorana sites.
The Majorana operators are Hermitian and satisfy Clifford algebra,

γi = γ
†
i , {γi , γ j } = 2δi j . (6)

Substituting Eq. (5) into Eq. (3), one obtains the Majorana representation of braid
generators, as

τi = 1√
2

(1 + γ2i−1γ2i+1) = e
π
4 γ2i−1γ2i+1 . (7)

1 |0〉 and |1〉 are two eigenvectors of Pauli Z matrix σ z in C
2, where σ z |0〉 = −|0〉, σ z |1〉 = |1〉.
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This braid representation, as was presented in many papers, describes the non-Abelian
statistics properties of Majorana zero modes [18–20]. However, different from braiding
nearest Majorana zero modes as it usually appears in papers, the braid generators that
we define in Eq. (7) include only odd number Majorana sites and transform the odd
Majorana operators into

τiγ2 j−1τ
†
i =

⎧⎪⎨
⎪⎩

γ2 j−1, if j /∈ {i, i + 1},
−γ2i+1, if j = i,

γ2i−1, if j = i + 1.

(8)

We find that the operations of braid generators on Majorana operators are equivalent
to exchanging two odd-nearest Majorana operators (up to a sign). Let us define the
braiding operation Bp,q exchanging only two Majorana operators γp and γq with odd
p and q,

Bp,qγp B
†
p,q ∝ γq , Bp,qγq B

†
p,q ∝ γp, (9)

while all other Majorana operators are not exchanged except p and q. Here symbol “∝”
means that the result is up to a sign. Bp,q represents a set of different braid operators
sharing the same property: In diagrammatic version of the set of braid operators Bp,q ,
the pth strand ends at the qth strand site, and the qth strand ends at the pth strand site,
regardless of the concrete path of the strand.

In this paper, we choose |0〉⊗N as the initial N-qubit state. Indeed, from the view
point of stabilizer code, the state is stabilized by a set of N independent operators with
all eigenvalues −1,

S = {σ z
1 , σ z

2 , . . . σ z
N−1, σ z

N }
= {iγ2γ1, iγ4γ3, . . . iγ2N−2γ2N−3, iγ2Nγ2N−1}.

(10)

For the N-qubit space, if there are N independent stabilizers, then the logical space
should have dimension 2N−N = 1, i.e., there is only one common eigenstate |0〉⊗N

for all stabilizers in S with the same eigenvalue -1.
Applying any braid operator B to the initial state |0〉⊗N is equivalent to changing

the stabilizer set S into (up to a sign)

S ′ = BSB†

∼ {iγ2γp(1), iγ4γp(3), . . . iγ2Nγp(2N−1)},
(11)

where p stands for a permutation of the odd site number of the Majorana operators.
The final state |Ψ 〉 = B|0〉⊗N is stabilized by S ′ with all eigenvalues −1. In this paper,
we will use the final stabilizer set S ′ to classify the entanglement. As was shown in
Eq. (8), for the stabilizer set , the sign before the Majorana operators is not important
and can be ignored. Indeed, for the Majorana representation, the permutation group
SN is the quotient group of braid group BN . Hence, the only useful part of the braid
group in our paper is the permutation group SN , which describes the permutation of
odd number Majorana sites.
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3 Some simple examples of generating entanglement by braiding

In this section, to give an intuitive description about the relationship between braids
and entanglement, we consider some simple cases.

3.1 Permuting two Majorana operators

Let us consider the simplest example about relationships between braiding and entan-
glement by exchanging only two Majorana operators γ2a−1 and γ2b−1 that correspond
to spin sites a and b, respectively. We denote the braiding exchange of γ2a−1 and γ2b−1
by cyclic permutation P = (ab). Then, the final stabilizer set S ′ is (up to a sign)

S ′ = {iγ2γ1, . . . iγ2aγ2b−1, . . . iγ2bγ2a−1, . . . iγ2Nγ2N−1}. (12)

Except a and b, all other spin sites in the final state |Ψ 〉 must be separable with each
others since only two stabilizers iγ2aγ2b−1 and iγ2bγ2a−1 in S ′ are different from the
initial S and the stabilized space is 2N−N = 1 dimensional. In other words, we only
need to check whether the ath and bth spin sites are entangled or not in the final state
|Ψ 〉.

Now we prove that the ath and bth sites must be entangled. We denote the 2-qubit
state on a and b sites by |ϕ〉ab. Substituting Eq. (5) into two stabilizers iγ2aγ2b−1 and
iγ2bγ2a−1, one obtains (suppose a < b)

iγ2aγ2b−1 = −I
⊗a−1 ⊗ σ

y
a ⊗ [σ z]⊗b−a−1 ⊗ σ

y
b ⊗ I

⊗N−b, (13)

iγ2bγ2a−1 = −I
⊗a−1 ⊗ σ x

a ⊗ [σ z]⊗b−a−1 ⊗ σ x
b ⊗ I

⊗N−b. (14)

Obviously, |ϕ〉ab must be common eigenstate of σ
y
a ⊗ σ

y
b and σ x

a ⊗ σ x
b due to the

stabilizer condition. If |ϕ〉ab is not entangled, say, |ϕ〉ab = |φ〉a ⊗ |φ〉b, |φ〉a must be
common eigenstate of σ

y
a and σ x

a . But σ
y
a and σ x

a cannot share the same eigenstate.
Hence, |ϕ〉ab is an entangled 2-qubit state. Hence, we conclude that only if strand a in
braid diagram ends at the position of strand b, the corresponding a and bth spin sites
are entangled in the final state |Ψ 〉.

3.2 Permuting three Majorana operators

Now we discuss the case that three Majorana operators γ2a−1, γ2b−1 and γ2c−1 are
permuted under the braiding operation. Similar to the previous section, we denote the
three Majorana operators’ permutation by cyclic notation P = (abc), which describes
strand a ends at strand position b, strand b ends at position c, strand c ends at position
a in braid diagram. After the braiding operation, the stabilizer set of final state |Ψ 〉
becomes (up to a sign)

S ′ ∼ {iγ2γ1, . . . iγ2aγ2b−1, . . . iγ2bγ2c−1, . . . iγ2cγ2a−1, . . .}. (15)
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In comparison with the initial stabilizer set S, S ′ only has three different stabilizers
{iγ2aγ2b−1, iγ2bγ2c−1, iγ2cγ2a−1}. Due to the stabilizer condition, spin sites other
than a, b and c must be separable with each others. Now let us focus on the 3-qubit
subsystem final state |ϕ〉abc stabilized by {iγ2aγ2b−1, iγ2bγ2c−1, iγ2cγ2a−1} on sites
a, b and c. We will prove that |ϕ〉abc cannot be separated into any two parties. For
3-qubit case, we only need to prove that any one qubit is entangled with another
two. Without loss of generality, if we suppose |ϕ〉abc = |φ1〉a ⊗ |φ2〉bc, the a-site
part of all stabilizers must commute. But it is easy to find two stabilizers iγ2aγ2b−1
and iγ2a−1γ2aγ2b−1γ2bγ2c−1γ2c, so that the a-site subsystem operators in them do
not commute. Concretely, in Pauli version, the a-site part of iγ2aγ2b−1 is σ

x(y)
a (here

x or y only depends on which one of a and b is larger), while the a-site part of
iγ2a−1γ2aγ2b−1γ2bγ2c−1γ2c is σ z

a . Clearly, it violates our assumption and means that
|ϕ〉abc cannot be separated into a and bc parties. Similar constructions can also be
applied to b − ac and c − ab cases. Hence, three sites a, b and c are entangled in the
final state |Ψ 〉.

3.3 Permuting four Majorana operators

Now we consider the braiding operation that permutes four Majorana operators
with only 1 sub-cyclic permutation P = (abcd). Then, only four stabilizers
{iγ2aγ2a−1, iγ2bγ2b−1, iγ2cγ2c−1, iγ2dγ2d−1} in initial stabilizer set S are changed
by braiding operation nontrivially into {iγ2aγ2b−1, iγ2bγ2c−1, iγ2cγ2d−1, iγ2dγ2a−1}
in final stabilizer set S ′. Since qubit sites other than a, b, c and d must be separable,
now we prove that the final 4-qubit state |ϕ〉abcd on a, b, c, d sites are entangled,
i.e., the 4-qubit state cannot be separated into any 2 parties. There are two cases to be
proved. The first case is the entanglement between 1-qubit and 3-qubit, and the second
case is the entanglement between 2-qubit and 2-qubit.

Let us consider the first case. To prove a-site and bcd-site are not separable,
one only needs to find two stabilizers from S ′ so that their corresponding a-site
parts do not commute. We can choose iγ2aγ2b−1 with a-site part σ x

a or σ
y
a and

γ2a−1γ2aγ2b−1γ2bγ2c−1γ2cγ2d−1γ2d with a-site part σ z
a . Since [σ x(y)

z , σ z
a ] 
= 0, a-

site and bcd-site must be not separable. Similar results can also be applied to b−acd,
c − abd and d − abc cases.

Now we consider the second case. Our goal is still finding non-commuting subsys-
tem operators from stabilizers in S ′. We first choose one stabilizer operator

γ2a−1γ2aγ2b−1γ2bγ2c−1γ2cγ2d−1γ2d ∝ σ z
a ⊗ σ z

b ⊗ σ z
c ⊗ σ z

d . (16)

In {iγ2aγ2b−1, iγ2bγ2c−1, iγ2cγ2d−1, iγ2dγ2a−1}, each stabilizer has only 2 spin sites
that are not σ z or I. For example, for iγ2aγ2b−1 in Pauli version, only the operators
on sites a and b are σ x or σ y , while all of the other sites are σ z or I. If we want to
prove that ab-site and cd-site are entangled, we can choose iγ2dγ2a−1 with ab-site
part σ

x(y)
a ⊗ σ z

b or σ
x(y)
a ⊗ Ib together with γ2a−1γ2aγ2b−1γ2bγ2c−1γ2cγ2d−1γ2d with

ab-site part σ z
a ⊗ σ z

b . Then, we find two non-commuting operators on ab-sites from
stabilizer sets. Hence, ab-site and cd-site must be entangled. Similar proof can be also
applied to ac − bd and ad − bc cases.
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In summary, the 4-qubit sites a, b, c and d are not separable in the final state |Ψ 〉.

4 Braiding and entanglement for multiqubits

In the previous section, we give some simple examples about the relationship between
braids and few qubits entanglement. Now we extend the cases to multiqubit system. We
consider two special types of permutation. The first type includes only one sub-cyclic
permutation, and the second type includes two sub-cyclic permutations.

4.1 Permuting (r + s)Majorana operators with P = (a1a2 . . . ar . . . ar+s)

Now we consider the braiding operation permuting (r+s) Majorana operators with
only one sub-cyclic permutation P = (a1a2 . . . ar . . . ar+s). Here r and s are arbitrary
positive integers satisfying r + s ≤ N , and {ai | i ∈ [1, r + s]} represent arbitrary
different (r + s) spin sites. As was discussed in previous sections, the spin sites not
belonging to {ai | i ∈ [1, r + s]} must be still separate with each others due to the
stabilizer condition. Let |ϕ〉a1...a(r+s) be the subsystem state of the final state |Ψ 〉. Now
we prove that |ϕ〉a1...a(r+s) on sites {ai | i ∈ [1, r + s]} is an entangled (r + s)-qubit
state, i.e., the state cannot be separated into any two parties.

Let us consider two parties: one party includes sites {b j | j ∈ [1, r ]}, the other party
includes sites {b j | j ∈ [r+1, r+s]}, where {b j | j ∈ [1, r+s]} = {ai | i ∈ [1, r+s]}.
Here we choose the new notation {b j | j ∈ [1, r + s]} instead of {ai | i ∈ [1, r + s]}
to ensure that the entangled parties are irrelevant to the permutation order. Due to the
permuting operation P = (a1a2 . . . ar . . . ar+s), there must be at least one Majorana
operator γ2bm−1(m ∈ [1, r ]) that is permuted into γ2bn−1(n ∈ [r + 1, r + s]) by
the braiding operation. In other words, iγ2bmγ2bn−1 must be a stabilizer of the final
state |Ψ 〉. Then, the {b j | j ∈ [1, r ]} party of the Pauli version of iγ2bmγ2bn−1 can be
expressed as

Γ1 = (σ z
b1

)c1 ⊗ (σ z
b2

)c2 ⊗ · · · ⊗ σ
x(y)
bm

⊗ · · · ⊗ (σ z
br

)cr , (17)

where each ci corresponds to the power of the operator on site bi , and {c1, . . . cm−1,

cm+1, . . . cr } = 0 or 1. Another stabilizer we need is
∏r+s

i=1(γ2bi−1γ2bi ), whose
{b j | j ∈ [1, r ]}-site party is

Γ2 = σ z
b1

⊗ σ z
b2

⊗ · · · ⊗ σ z
bm

⊗ · · · ⊗ σ z
br

. (18)

It is easy to check that [Γ1 Γ2] 
= 0, then the {b j | j ∈ [1, r ]} party and {b j | j ∈
[r + 1, r + s]} party must be entangled. Here r and s can be any positive integers
satisfying r + s ≤ N ; hence, |ϕ〉a1...a(r+s) is an entangled subsystem state of the final
state |Ψ 〉.

4.2 Permuting (r + s)Majorana operators with P = (a1a2 . . . ar)(b1b2 . . . bs)

Now we consider the braiding operation that permutes Majorana operators in the
case with two sub-cyclic permutations P = (a1a2 . . . ar )(b1b2 . . . bs), here ai
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and bi are irrelevant to the notations in previous sections. Since the final state
corresponding to permutation process P = (a1a2 . . . ar ) has been proved to be
entangled, here we only need to consider whether the two parties {ai |i ∈ [1, r ]}-
site and {bi |i ∈ [1, s]}-site are entangled or not. After braiding operation on
the initial stabilizer set, the changed stabilizers on {ai |i ∈ [1, r ]} and {bi |i ∈
[1, s]} parties are S ′

a = {iγ2a1γ2a2−1, iγ2a2γ2a3−1, . . . iγ2ar γ2a1−1} and S ′
b =

{iγ2b1γ2b2−1, iγ2b2γ2b3−1, . . . iγ2bsγ2b1−1}, respectively. In the following discussion,
we only need to consider the changed stabilizers after braiding operation because the
unchanged stabilizers act trivially on the sites {ai |i ∈ [1, r ]} and {bi |i ∈ [1, s]}. There
are totally three cases to be discussed.

1. max{ai |i ∈ [1, r ]} < min{bi |i ∈ [1, s]}.
In this case, due to the condition max{ai |i ∈ [1, r ]} < min{bi |i ∈ [1, s]}, it is
obvious that all the {ai |i ∈ [1, r ]} party of stabilizers in S ′ commute with each
others. Hence, the {ai |i ∈ [1, r ]} and {bi |i ∈ [1, s]} parties are separable in the
final state.

2. min{ai |i ∈ [1, r ]} < min{bi |i ∈ [1, s]} < max{ai |i ∈ [1, r ]} < max{bi |i ∈
[1, s]}.
In this case, we prove that after braiding operation, the {ai |i ∈ [1, r ]} and
{bi |i ∈ [1, s]} parties are entangled. We denote the permutation processing
P = (a1a2 . . . ar )(b1b2 . . . bs) by P = Pa · Pb, where Pa = (a1a2 . . . ar ) and
Pb = (b1b2 . . . bs). In combination with the condition min{ai |i ∈ [1, r ]} <

min{bi |i ∈ [1, s]} < max{ai |i ∈ [1, r ]} < max{bi |i ∈ [1, s]}, to preserve the
permutation Pa and Pb, there must be two stabilizers iγ2apγ2aq−1 and iγ2b j γ2bk−1
in S ′ so that ap < b j < aq < bk , where {ap, aq} ⊆ {ai |i ∈ [1, r ]},
{b j , bk} ⊆ {bi |i ∈ [1, s]},

iγ2apγ2aq−1

∝ I
⊗ap−1 ⊗ σ x

ap ⊗ (σ z)⊗aq−ap−1 ⊗ σ x
aq ⊗ (I)⊗N−aq , (19)

iγ2b j γ2bk−1

∝ I
⊗b j−1 ⊗ σ x

b j
⊗ (σ z)⊗bk−b j−1 ⊗ σ x

bk ⊗ (I)⊗N−bk . (20)

The {ai |i ∈ [1, r ]} parties of Eqs. (19) and (20) are

iγ2apγ2aq−1 −→ Γ3 :
(σ z

a1
)u1 ⊗ (σ z

a2
)u2 . . . ⊗ σ x

ap ⊗ . . . ⊗ σ x
aq ⊗ . . . ⊗ (σ z

ar )
ur , (21)

iγ2b j γ2bk−1 −→ Γ4 :
(σ z

a1
)v1 ⊗ (σ z

a2
)v2 . . . ⊗ Iap ⊗ . . . ⊗ σ z

aq ⊗ . . . ⊗ (σ z
ar )

vr , (22)

whereui andvi correspond to the power of operators on siteai , and {u1, u2 . . . u p−1,

u p+1, . . . uq−1, uq+1, . . . ur } = 0 or 1, {v1, v2 . . . vq−1, vq+1, . . . vr } = 0 or 1. We
can see from Eqs. (21) and (22) that only the aq -site parties of Γ3 and Γ4 do not
commute, hence [Γ3, Γ4] 
= 0. Hence, the {ai |i ∈ [1, r ]} and {bi |i ∈ [1, s]} parties
are entangled in the final state |Ψ 〉.
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3. min{ai |i ∈ [1, r ]} < min{bi |i ∈ [1, s]} < max{bi |i ∈ [1, s]} < max{ai |i ∈
[1, r ]}.
(a) ∀a j /∈ [min{bi |i ∈ [1, s]}, max{bi |i ∈ [1, s]}] , j ∈ [1, r ].

In this case, we prove that the {ai |i ∈ [1, r ]} party and {bi |i ∈ [1, s]} parties
are separable. Let us first consider the stabilizers in set S ′

a . It is known that the
stabilizers commute with each others, and all of the sites other than {ai |i ∈
[1, r ]} of the stabilizers in S ′

a must be σ z or I. Hence, the {ai |i ∈ [1, r ]} parties
of all stabilizers inS ′

a must commute. Secondly, for the stabilizers in setS ′
b, due

to the condition ∀a j /∈ [min{bi |i ∈ [1, s]}, max{bi |i ∈ [1, s]}] , j ∈ [1, r ],
the {ai |i ∈ [1, r ]} parties of the stabilizers in set S ′

b must be identity. Then,
all of the {ai |i ∈ [1, r ]} parties of the stabilizers in set S ′ commute with each
others. Hence, in this case, the {ai |i ∈ [1, r ]} party and {bi |i ∈ [1, s]} parties
are separable in the final state |Ψ 〉.

(b) ∃ a j ∈ [min{bi |i ∈ [1, s]}, max{bi |i ∈ [1, s]}] , j ∈ [1, r ].
This case is similar to the Case 2 we mentioned above. To preserve the per-
mutation processing P = Pa · Pb, we can always find at least two stabilizers
iγ2apγ2aq−1 and iγ2b j γ2bk−1 in S ′ so that ap < b j < aq < bk or b j < ap <

bk < aq , where {ap, aq} ⊆ {ai |i ∈ [1, r ]}, {b j , bk} ⊆ {bi |i ∈ [1, s]}. Then,
the result of Case 2 can be applied here directly.

5 Conclusion and discussion

In summary, by analyzing the properties of the final stabilizer set after braiding oper-
ations, we obtain the entanglement properties of the final stabilized state |Ψ 〉. Our
proof ends at the case including only two sub-cyclic permutations. However, braid-
ing operations permuting Majorana operators under the multi sub-cyclic permutations
P = (a1a2 . . . ar )(b1b2 . . . bs)(c1 . . . ct ) . . . (d1 . . . du) can be discussed in a similar
way like the two sub-cyclic case P = (a1a2 . . . ar )(b1b2 . . . bs). Here we recall that
an entangled state in our paper is defined by the non-separability of the state into any
two parties. To check whether two parties are entangled or not, one only needs to find
two non-commuting operators on the sites of one party from the final stabilizer set S ′.
If there exist two non-commuting operators, then the two parties are entangled; if not,
then the two parties must be separable because the dimension of the stabilized space
is only 2N−N = 1.

Our results show the close relationships between quantum entanglement and the
permutation of the strands in the diagrammatic version under braiding operations. The
results rely on the Majorana fermionic representation of braids. Mathematically, it is
perhaps not too surprising, as the representation has finite image [21]. Recently, the
Z3 parafermionic representation of braids [22,23] is also explicitly connected to the
Jones representation in SU (2)4 metaplectic anyon system [24]. Further extension of
the results may be related to the Z3 parafermionic representation of braids, which is
also related to the local unitary representation of the braids [4].

Acknowledgements The author would like to thank Professor Z. H. Wang for his helpful discussions and
encouragements.

123



44 Page 10 of 10 L.-W. Yu

References

1. Kitaev, A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321(1), 2–111 (2006)
2. Nayak, C., Simon, S.H., Stern, A., Freedman, M., Sarma, S.D.: Non-Abelian anyons and topological

quantum computation. Rev. Mod. Phys. 80(3), 1083 (2008)
3. Wang, Z.: Topological Quantum Computation, vol. 112. American Mathematical Society, Providence

(2010)
4. Rowell, E.C., Wang, Z.: Localization of unitary braid group representations. Commun. Math. Phys.

311(3), 595–615 (2012)
5. Kauffman, L.H., Lomonaco Jr., S.J.: Quantum entanglement and topological entanglement. New J.

Phys. 4(1), 73 (2002)
6. Kauffman, L.H., Lomonaco Jr., S.J.: Braiding operators are universal quantum gates. New J. Phys.

6(1), 134 (2004)
7. Chen, J.L., Xue, K., Ge, M.L.: Braiding transformation, entanglement swapping, and Berry phase in

entanglement space. Phys. Rev. A 76(4), 042,324 (2007)
8. Delaney, C., Rowell, E.C., Wang, Z.: Local unitary representations of the braid group and their appli-

cations to quantum computing. Rev. Colomb. Mat. 50, 211–276 (2016)
9. Jones, V.F.: Braid groups, Hecke algebras and type II1 factors. Geom. Methods Oper. Algebras 123,

242–273 (1983)
10. Zhang, Y., Kauffman, L.H., Ge, M.L.: Universal quantum gate, Yang–Baxterization and Hamiltonian.

Int. J. Quantum Inf. 3(04), 669–678 (2005)
11. Zhang, Y., Kauffman, L.H., Ge, M.L.: Yang–Baxterizations, Universal quantum gates and Hamiltoni-

ans. Quantum Inf. Proc. 4(3), 159–197 (2005)
12. Zhang, Y., Ge, M.L.: GHZ states, almost-complex structure and Yang–Baxter equation. Quantum Inf.

Proc. 6(5), 363–379 (2007)
13. Ge, M.L., Xue, K.: Yang–Baxter equations in quantum information. Int. J. Mod. Phys. B 26(27–28)

(2012)
14. Yu, L.W., Zhao, Q., Ge, M.L.: Factorized three-body S-matrix restrained by the Yang–Baxter equation

and quantum entanglements. Ann. Phys. 348, 106–126 (2014)
15. Rowell, E.C.: Parameter-dependent Gaussian (n, z)-generalized Yang–Baxter operators. Quantum Inf.

Comput. 16(1&2), 0105–0114 (2016)
16. Rowell, E.C., Zhang, Y., Wu, Y.S., Ge, M.L.: Extra-special two-groups, generalized Yang–Baxter

equations and braiding quantum gates. Quantum Inf. Comput. 10(7), 685–702 (2010)
17. Bravyi, S.: Universal quantum computation with the ν = 5/2 fractional quantum hall state. Phys. Rev.

A 73, 042,313 (2006)
18. Kitaev, A.Y.: Unpaired majorana fermions in quantum wires. Phys. Uspekhi 44(10S), 131 (2001)
19. Ivanov, D.A.: Non-abelian statistics of half-quantum vortices in p-wave superconductors. Phys. Rev.

Lett. 86, 268–271 (2001)
20. Alicea, J., Oreg, Y., Refael, G., von Oppen, F., Fisher, M.P.: Non-Abelian statistics and topological

quantum information processing in 1D wire networks. Nat. Phys. 7(5), 412–417 (2011)
21. Franko, J.M., Rowell, E.C., Wang, Z.: Extraspecial 2-groups and images of braid group representations.

J. Knot Theory Ramif. 15(4), 413–427 (2006)
22. Fendley, P.: Parafermionic edge zero modes in Zn -invariant spin chains. J. Stat. Mech. Theory Exp.

2012(11), 11020 (2012)
23. Yu, L.W., Ge, M.L.: Z3 parafermionic chain emerging from Yang–Baxter equation. Sci. Rep. 6, 21,497

(2016)
24. Fern, R., Kombe, J., Simon, S.H.: How SU (2)4 Anyons are Z3 Parafermions. arXiv preprint

arXiv:1706.06098 (2017)

123

http://arxiv.org/abs/1706.06098

	Local unitary representation of braids and N-qubit entanglements
	Abstract
	1 Introduction
	2 Braid group representation in Pauli version and Majorana version
	3 Some simple examples of generating entanglement by braiding
	3.1 Permuting two Majorana operators
	3.2 Permuting three Majorana operators
	3.3 Permuting four Majorana operators

	4 Braiding and entanglement for multiqubits
	4.1 Permuting (r+s) Majorana operators with P=(a1a2…ar…ar+s)
	4.2 Permuting (r+s) Majorana operators with P=(a1a2 …ar)(b1b2 …bs)

	5 Conclusion and discussion
	Acknowledgements
	References




