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Abstract Based on unitary phase shift operation on single qubit in association with
Shamir’s (t, n) secret sharing, a (t, n) threshold quantum secret sharing scheme
(or (t, n)-QSS) is proposed to share both classical information and quantum states.
The scheme uses decoy photons to prevent eavesdropping and employs the secret
in Shamir’s scheme as the private value to guarantee the correctness of secret
reconstruction. Analyses show it is resistant to typical intercept-and-resend attack,
entangle-and-measure attack and participant attacks such as entanglement swapping
attack. Moreover, it is easier to realize in physic and more practical in applications
when compared with related ones. By the method in our scheme, new (t, n)-QSS
schemes can be easily constructed using other classical (t, n) secret sharing.

Keywords Quantum cryptography · Threshold quantum secret sharing · Single
qubit · Phase shift operation

B Fuyou Miao
mfy@ustc.edu.cn

Changbin Lu
lcb@mail.ustc.edu.cn

Keju Meng
mkj@mail.ustc.edu.cn

Yue Yu
yuyue204@mail.ustc.edu.cn

1 School of Computer Science and Technology, University of Science and Technology of China,
Hefei 230027, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-017-1793-6&domain=pdf


64 Page 2 of 13 C. Lu et al.

1 Introduction

It is very popular and critical to keep a secret among a group of users securely and
robustly in many applications. Suppose the dealer Alice has a secret message (e.g., a
confidential recipe of some food or medicine) which is supposed to be confidential to
others except for her agents. If she wants to share the secret with her agents through
networks, she may have two methods to attain this goal: (a) duplicating the secret
and allocating each agent a copy, but the secret may be disclosed in case any agent is
comprised or leak the copy to the outside intentionally or accidentally. Therefore, this
method is not secure enough and (b) breaking the secret S into n pieces such that S
can be derived from all pieces, e.g., S = k1 + k2 + · · · + kn , each agent with a piece.
However, the secret cannot be recovered as long as an agent is absent, and thus, this
method lacks robustness in keeping the secret. To solve the problem of confidentiality
and robustness in keeping a secret among users, (t, n) threshold secret sharing scheme
(or (t, n)-SS) was first presented by Shamir [1] and Blakely [2], respectively, in 1979.
A (t, n)-SS scheme divides a secret into n pieces such that any t or more than t out of
n pieces can recover the secret, while less than t pieces cannot. Today, (t, n)-SS has
become a fundamental cryptographic primitive and is widely used in many aspects
such as threshold signature, threshold encryption, group authentication, group key
agreement and secure multiparty computation.

Recently, with the development of quantum information and quantum computation,
which leads to unconditionally secure communication [3,4], quantum secret sharing
scheme (QSS) is attracting more and more interest. The first QSS scheme was presented
by Hillery et al. [5], which used the entangled Greenberger–Horne–Zeilinger (GHZ)
state in 1999. In their scheme, the dealer splits the GHZ triplet and allocates a particle
to each of 2 agents; then, both agents randomly measure their respective particle in x
or y base and consequently determine the dealer’s measurement result by combining
their own ones. Obviously, this allows the dealer to establish a joint secret with both
agents. On the basis of [5], Imoto et al. [6] implemented a secret sharing scheme
with Bell entangled state and proposed the two state QSS. In the same year, Lo et
al. [7] proposed a (t, n) threshold QSS scheme based on quantum error correcting
code, but it requires special coding which maps the quantum state into n quantum
states to support the scheme construction. Since then, more and more scholars begun
to focus on this area and have proposed various QSS schemes based on different
physical characteristics. According to the type of shared information, QSS schemes
can be divided into Classical Information Sharing [5,8,13–15,18–20] or Quantum
Information (i.e., Quantum States) Sharing [5–7,9,10,16,17]. According to quantum
states used in secret sharing, QSS schemes can be divided into entanglement-based
QSS [5,6,10–12,18–20] and non-entangled QSS [7–9,13–17,21]. According to the
number of participants in secret recovering, QSS can be divided into one-to-two [5]
(i.e., one dealer with 2 participants), one-to-many [6–12,14–21] and many-to-many
[13,22] QSS.

However, most existing schemes are (n, n) structure, which are not authentic thresh-
old secret sharing in nature because they require all n shareholders to participate
in secret recovering. Obviously, (t, n) threshold QSS is more flexible and useful in
practice for n ≥ t . In 2005, Tokunaga et al. [8] presented the notion of threshold
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collaborative unitary transformation or threshold quantum cryptography. It employs
Shamir’s (t, n)-SS and avoids the constraint of the quantum no-cloning theorem. Dis-
tinct from [7] using quantum error correcting code, this work presents a new way in
constructing (t, n) threshold QSS. However, it is still complicated and can only share
classical information. There are some other threshold schemes, e.g., Yang et al. [19]
employed the orthogonal multipartite entangled states in d-qudit system to construct
a QSS scheme which is ramp; Song et al. [20] constructed a d-level threshold QSS
based on quantum Fourier transform, but it is complicated to realize.

Therefore, the paper proposes a simple (t, n)-QSS scheme based on Shamir’s (t, n)-
SS and unitary operation on quantum state. In the scheme, the dealer divides a private
value into n shares and allocates each share to a shareholder using Shamir’s (t, n)-SS,
and then, it embeds the private value into initial quantum states. Any t or more than
t shareholders can perform phase shift operations related to their respective shares
on the quantum state one by one to remove the private value, and finally recover the
secret.

Compared with existing schemes, the proposed scheme has the following properties:

1. It can be used to share both classical information and quantum states.
2. Any t or more than t participants out of n shareholders are allowed to use their

private shares repeatedly to recover a secret.
3. Simply based on unitary operation on a single qubit, the scheme is easier to realize

in physic and more practical in applications when compared with related ones.
4. The scheme can also be constructed using other classical (t, n)-SS schemes while

keeping the above properties.

The rest of the paper is organized as follows: In Sect. 2, we propose the threshold
scheme which can share both classical information and quantum states. Section 3
shows the correctness of the scheme. Section 4 gives a concrete example of the scheme,
Sect. 5 presents security analysis, related work and comparisons, a generic method to
construct (t, n)-QSS is given in Sect. 6 and Sect. 7 concludes the paper.

2 Proposed (t, n) QSS based on single qubit

2.1 Overview

The proposed (t, n) QSS consists of two protocols: (1) Classical Information Sharing
and (2) Quantum States Sharing. Both protocols share the same process, classical
private share distribution.

To distribute classical private shares, the dealer divides a private value s into n
private shares based on classical Shamir’s (t, n)-SS and allocates each share to a
shareholder; when they need to recover the secret, they can exchange their value of
shares; after collecting at least t shares, each shareholder can compute the private
value by polynomial interpolation, such that any t or more than t shareholders can
recover the private value. These shareholders are also called participants when they
collaborate to recover the private value. Classical private share distribution prepares
private shares, and each participant uses the share to perform unitary phase shift on
qubit in both protocols.
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In the protocol of Classical Information Sharing, the dealer first prepares a sequence
of qubits and embeds the secret by performing a unitary operation related to the private
value on each qubit. Each participant then performs in sequence the unitary operation,
related to the private share, on the qubit. Finally, the secret is recovered by the last
participant when the private value is removed from each qubit by the cooperation of
any t or more than t participants.

The protocol of Quantum States Sharing is similar to Classical Information Sharing
except that all participants share the initial state of a qubit sequence as the secret.

2.2 Classical private share distribution

Shamir’s (t, n) secret sharing scheme [1] consists of 2 steps: (1) share distribution
and (2) secret reconstruction. In share distribution, the dealer chooses a polynomial
to generates n shares, each for a shareholder; in secret reconstruction, t out of n
shareholders collaborate to recover the secret by pooling their shares together.

In the proposed scheme, classical private share distribution is the same as share
distribution in [1]. In detail, the dealer Alice distributes the classical private shares to
n shareholders as follows.

1. Alice picks a random polynomial f (x) of degree t − 1 over finite field GF(p):

f (x) = a0 + a1x + · · · + at−1x
t−1 mod p,

where s = a0 = f (0) is the private value and all coefficients a j , j = 0, 1, . . . , t−
1, are in finite field GF(p) for large prime p.

2. Alice computes f (x j ) as the share of shareholder Bob j for j = 1, 2, . . . , n, where
x j , x j ∈ GF(p) is the public information of Bob j with x j �= xv for j �= v.

3. Alice sends each share y j = f (x j ) to corresponding shareholder Bob j through
quantum secure direct communication presented in [23,24].

2.3 Classical Information Sharing

To share a bit string as the secret, the dealer first prepares a sequence of quantum
states including four different phase values and then embeds a private value into
the initial quantum states by phase shift operation to mix the phase values. Based on
Shamir’s (t, n)-SS, any t or more than t participants can perform phase shift operations
sequentially on each quantum state of the sequence and finally remove the private value.
These participants publish the classes of their operations, and the dealer determines
the measurement base. After the last participant measures and publishes the result, all
participants can share a bit string as the secret according to the dealer’s definition of
bits.

The protocol (see Fig. 1) can be described in detail as follows.
Dealer Alice first randomly prepares a sequence of qubits, Qs = {|Φk〉 |k =

1, 2, . . . ,m}, and each qubit |Φk〉 has one state in |± x〉 , |± y〉 of two mutually unbi-
ased bases x and y with
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|± x〉 = 1√
2

(|0〉 ± |1〉)

|± y〉 = 1√
2

(|0〉 ± i |1〉) .

In this case, each qubit can be written as

|Φk〉 = 1√
2

(
|0〉 + eiϕk |1〉

)
, k = 1, 2, . . . ,m,

where {ϕk |ϕk ∈ {0, π, π/2, 3π/2} , k = 1, 2, . . . ,m} is used to carry the secret.

1. Embedding private value into quantum state Alice performs the unitary phase
operationU (ψ0) on each qubit, whereU (ψ0) = |0〉 〈0|+eiψ0 |1〉 〈1| , ψ0 = −2πs

p
and s is the private value. Then each qubit |Φk〉 in Qs will be in the state

|Φk〉0 = 1√
2

(
|0〉 + ei(ϕk+ψ0) |1〉

)
, k = 1, 2, . . . ,m.

2. Inserting decoy photons Alice prepares some decoy photons, each with the state
in {|0〉 , |1〉 , |+ x〉 , |− x〉}, randomly inserts them into Qs to obtain an expanded
sequence Qs′ and then records the position as well as state of each decoy photon in
Qs′. Suppose that t participants {Bob1, Bob2, . . . , Bobt } need to reconstruct each
initial quantum state |Φk〉 in Qs to achieve the value of ϕk for k = 1, 2, . . . ,m,
and Alice sends the expanded sequence Qs′ to the first participant Bob1 through
quantum communications.

3. Checking eavesdropping by decoy photons After Bob1 receives Qs′, Alice sends
the position and state of each decoy photon to Bob1 through classical communi-
cations. Then Bob1 measures each decoy photon in the corresponding base and
analyzes every measurement result according to the published positions and states.
If the error rate exceeds the threshold value, Qs′ will be discarded and Alice then
starts a new sequence. Otherwise, Bob1 obtains the sequence Qs and the protocol
proceeds with step 4. Note that each participant Bob j employs decoy photons to
check eavesdropping as Bob1 does after receiving an expanded sequence from the
preceding participant Bob j−1, j = 2, 3, . . . , t.

4. Performing phase shift operation by private share After computing the compo-
nent c1 = f (x1)

∏t
r=2

xr
xr−x1

mod p, Bob1 performs the unitary phase operation

U (ψ1), with ψ1 = φ1 + 2πc1
p , φ1 ∈ {0, π, π/2, 3π/2} , on each qubit |Φk〉0

to get |Φk〉1 = 1√
2

(|0〉 + ei(ϕk+ψ0+ψ1) |1〉), and then sends |Φk〉1 to Bob2 for
k = 1, 2, . . . ,m.

5. Performing respective phase shift operations Bob j , j = 2, 3, . . . , t, repeats the
same procedure as Bob1 does in step 4. That is, Bob j first computes the component
c j = f (x j )

∏t
r=1,r �= j

xr
xr−x j

mod p and then performs unitary phase operation

U (ψ j )on each qubit |Φk〉 j−1 to obtain |Φk〉 j = 1√
2

(
|0〉+ei(ϕk+ψ0+∑ j

v=1 ψv) |1〉
)

,
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k = 1, 2, . . . ,m, with ψ j = φ j + 2πc j
p , φ j ∈ {0, π, π/2, 3π/2}. At last, he sends

|Φk〉 j to the next participant Bob j+1.
After the last participant Bobt performs the unitary phase operation on each qubit
|Φk〉t−1, k = 1, 2, . . . ,m, the states of them become

|Φk〉t = 1√
2

(
|0〉 + e

i
[
ϕk+∑t

j=1 φ j+ 2π
p

(∑t
j=1 c j−s

)]
|1〉

)

= 1√
2

(
|0〉 + e

i
(
ϕk+∑t

j=1 φ j

)
|1〉

)
, k = 1, 2, . . . ,m.

6. Determining measurement base Each participant divides his operation into 2
classes, X and Y, representing choices φ j ∈ {0, π} and φ j ∈ {π/2, 3π/2}, respec-
tively. They inform the dealer Alice about their classification of operation for each
qubit through classical communications. According to classes of all participants’
phase operations on each qubit, Alice determines the base in which Bobt measures

the qubit. Specifically, the measurement base is x for
∣∣∣cos(ϕk + ∑t

j=1 φ j )

∣∣∣ = 1

and y for
∣∣∣sin(ϕk + ∑t

j=1 φ j )

∣∣∣ = 1. After the measurement, Bobt publishes each

result kt , k = 1, 2, . . . ,m through classical communications.
7. Recovering the secret After the t participants exchange their choice of φ j , j =

1, 2, . . . , t, any participant can infer the initial values ϕk, k = 1, 2, . . . ,m. Given
the definition ϕk = 0 ⇒ 00, ϕk = π/2 ⇒ 01, ϕk = π ⇒ 10 and ϕk = 3π/2 ⇒
11 (i.e., a qubit carries 2 bits), all participants can collectively share a string of 2 m
bits as the secret.

2.4 Quantum States Sharing

This protocol is similar to Classical Information Sharing; the dealer first prepares
a sequence of initial quantum states as the secret, and then embeds a private value
into the sequence by phase shift operation. After any t or more than t participants
complete respective phase shift operations sequentially on each quantum state, the
initial quantum states can be recovered. The protocol (see Fig. 2) can be described as
follows.

Alice first prepares a sequence of m quantum states Qs = {|Ψk〉 | |Ψk〉 = αk |0〉 +
βk |1〉 , |αk |2 + |βk |2 = 1, k = 1, 2, . . . ,m}, and then, she can share Qs with at least t
shareholders by taking the following steps.

Fig. 1 Sequential operations on each qubit in Classical Information Sharing. (ϕk -initial phase value of each
qubit |Φk 〉 , k = 0, 1, 2, . . . ,m;ψ0-phase shifted by the dealer Alice on the qubit; ψ j = (φ j + 2πc j /p)-
phase shifted by Bob j on the qubit, j = 1, 2, . . . , t; kt -result measured by the last participant Bobt )
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Fig. 2 Sequential operations on each qubit in Quantum States Sharing. (|Ψk 〉-each initial qubit, k =
1, 2, . . . ,m; ψ0-phase shifted by the dealer Alice on the qubit; ψ j = 2πc j /p-phase shifted by Bob j on
the qubit, j = 1, 2, . . . , t)

1. Just like the steps in 2.3, Alice performs the unitary phase operation U (ψ0) on
each quantum state |Ψk〉 in Qs with ψ0 = − 2πs

p ; then, |Ψk〉 becomes |Ψk〉0 =
αk |0〉 + βk · eiψ0 |1〉 , k = 1, 2, . . . ,m.

2. Suppose that t participants {Bob1, Bob2, . . . , Bobt } need to reconstruct the initial
state of Qs as the secret. Similarly to the case in Classical Information Sharing,
Alice and Bob1 employ decoy photons to check eavesdropping as in 2.3. Then,
Bob1 performs the unitary phase operation U (ψ1), with ψ1 = 2πc1

p and c1 =
f (x1)

∏t
r=2

xr
xr−x1

mod p, on each qubit |Ψk〉0 and obtains the new state |Ψk〉1 =
αk |0〉+βk · ei(ψ0+ψ1) |1〉 , k = 1, 2, . . . ,m. Subsequently, Bob1 sends |Ψk〉1, k =
1, 2, . . . ,m to Bob2.

3. Each of the other participants, Bob j , j = 2, 3, . . . , t, repeats the procedure as
Bob1 does in last step. That is, Bob j first performs the unitary phase operation

U (ψ j ) on each quantum state |Ψk〉 j−1 = αk |0〉 + βk · ei
(
ψ0+∑ j−1

v=1 ψv

)
|1〉 and

obtains the next state |Ψk〉 j = αk |0〉+βk ·ei
(
ψ0+∑ j

v=1 ψv

)
|1〉 for k = 1, 2, . . . ,m,

where ψ j = 2πc j
p , c j = f (x j )

∏t
r=1,r �= j

xr
xr−x j

mod p for j = 2, 3, . . . , t − 1.

Then, Bob j sends |Ψk〉 j to the next participant Bob j+1.
4. After the last participant Bobt completes the unitary phase operation U (ψt ), each

quantum state becomes |Ψk〉t = αk |0〉 + βk · e 2π i
p

(∑t
j=1 c j−s

)
|1〉 = αk |0〉 +

βk |1〉 , k = 1, 2, . . . ,m. Consequently, all participants reconstruct the initial quan-
tum state of sequence Qs successfully.

3 Correctness

We now show the correctness of two proposed protocols based on Lemmas 1 and 2.

Lemma 1 In Shamir’s (t, n)-SS, suppose each participant Bob j has the public
information x j and the share f (x j ), j = 1, 2, . . . , k, n ≥ k ≥ t. All partici-
pants are able to recover the secret s = f (0), if they sum up each component
c j = f (x j )

∏k
r=1,r �= j

xr
xr−x j

mod p. That is, s = f (0) = ∑k
j=1 c j mod p =

∑k
j=1 f (x j )

∏k
r=1,r �= j

xr
xr−x j

mod p, where f (x) is the polynomial of degree t-1 over
GF(p), p is a prime.

Proof Lemma 1 can be immediately obtained by Lagrange interpolation formula. 
�
Lemma 2 The unitary phase operation performed on the qubit |ϕ〉 = α |0〉 +
β |1〉 , |α|2 + |β|2 = 1 has the following feature
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U (ψ1)U (ψ2) |ϕ〉 = α |0〉 + β · ei(ψ1+ψ2) |1〉 = U (ψ1 + ψ2) |ϕ〉 .

1. Correctness of Classical Information Sharing
The initial state of each qubit in the sequence is |Φk〉 = 1√

2

(|0〉 + eiϕk |1〉) , ϕk ∈
{0, π, π/2, 3π/2} , k = 1, 2, . . . ,m. After Alice performs the operation U (ψ0),

ψ0 = −2πs
p , the state becomes |Φk〉0 = 1√

2

(|0〉 + ei(ϕk+ψ0) |1〉) . When all par-

ticipants have completed their respective operations U (ψ j ), j = 1, 2, . . . , t , the
state is finally converted into |Φk〉t . For each qubit |Φk〉t , we have

|Φk〉t = U

⎛
⎝ψ0 +

t∑
j=1

ψ j

⎞
⎠ |Φk〉 = U

⎡
⎣

t∑
j=1

φ j + 2π

p

⎛
⎝

t∑
j=1

c j − s

⎞
⎠

⎤
⎦ |Φk〉

= U

⎡
⎣

t∑
j=1

φ j + 2π

p
(Np + s − s)

⎤
⎦ |Φk〉 = U

⎛
⎝

t∑
j=1

φ j + 2Nπ

⎞
⎠ |Φk〉

= 1√
2

(
|0〉 + e

i
(
ϕk+∑t

j=1 φ j

)
|1〉

)
. (N ∈ Z)

Using the measurement base determined by the dealer,
(
ϕk + ∑t

j=1 φ j

)
mod 2π

can be pinpointed by Bobt . Therefore, the initial state of each qubit |Φk〉 can be
reconstructed and ϕk can be eventually recovered by Bobt with the knowledge of
φ j , j = 1, 2, . . . , t .

2. Correctness of Quantum States Sharing
Each initial state of a qubit in the sequence is |Ψk〉 = αk |0〉 + βk |1〉 , k =
1, 2, . . . ,m. After all the unitary operations U (ψ j ), j = 0, 1, . . . , t, the last par-
ticipant Bobt can reconstruct the initial state |Ψk〉 , k = 1, 2, . . . ,m, due to the
following equation

U

⎛
⎝ψ0+

t∑
j=1

ψ j

⎞
⎠ |Ψk〉=U

⎡
⎣2π

p

⎛
⎝

t∑
j=1

c j − s

⎞
⎠

⎤
⎦ |Ψk〉 = U (2Nπ) |Ψk〉=|Ψk〉 ,

N ∈ Z . Therefore, at least t participants can collaborate to reconstruct the sequence
of initial quantum states as the secret.

4 Concrete example of the scheme

To make the proposed scheme clearer, an example of (4, 6) threshold quantum secret
sharing, which shares two bits of classical information by a single qubit, is given as
follows.

During share distribution, the dealer Alice first chooses a random polynomial f (x)
of degree 3 over GF(23): f (x) = 17+5x+12x2 +6x3 mod 23, and thus, the private
value is a0 = s = f (0) = 17 with threshold t = 4 and the prime p = 23. Then she
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computes and allocates a share y j to each shareholder Bob j with public information
x j = j + 1 for j = 1, 2, . . . , 6. As a result, y1 = f (x1 = 2) = 123 mod 23 =
8, y2 = f (x2 = 3) = 302 mod 23 = 3, y3 = f (x3 = 4) = 15, y4 = f (x4 = 5) =
11, y5 = f (x5 = 6) = 4 and y6 = f (x6 = 7) = 7.

To share 2 bits of classical information by a single qubit in Classical Information
Sharing, Alice first prepares a qubit in the state |Φ〉 = 1√

2
(|0〉 + i |1〉) , i.e., ϕ = π/2,

and performs the unitary phase operation U (ψ0) on the qubit, ψ0 = −2πs
p = −34π

23 .
Suppose participants Bob j , j = 1, 3, 4, 6, need to reconstruct the initial state and
share 2 bits of classical information, they compute a component each by Lagrange
interpolation as follows:

c1 = f (x1)

t∏
r=2

xr
xr − x1

mod p = f (2) · 4

4 − 2
· 5

5 − 2
· 7

7 − 2
mod 23 = 22,

c3 = f (x3)

t∏
r=1,r �=3

xr
xr − x3

mod p = f (4) · 2

2 − 4
· 5

5 − 4
· 7

7 − 4
mod 23 = 9,

c4 = f (x4)

t∏
r=1,r �=4

xr
xr − x4

mod p = f (5) · 2

2 − 5
· 4

4 − 5
· 7

7 − 5
mod 23 = 3,

c6 = f (x6)

t∏
r=1,r �=6

xr
xr − x6

mod p = f (7) · 2

2 − 7
· 4

4 − 7
· 5

5 − 7
mod 23 = 6.

Then each participant picks φ j as φ1 = π/2, φ3 = 0, φ4 = π, φ6 = 3π/2 and

performs the unitary phase operation U (ψ j ) with ψ j = φ j + 2πc j
p on the qubit in

sequence for j = 1, 3, 4, 6. After Bob6 completes the unitary operation, the final state
is

|Φ〉4 = U (ψ0 + ψ1 + ψ3 + ψ4 + ψ6) |Φ〉
= U (ϕ1 + ϕ3 + ϕ4 + ϕ6 + 2π

23
(22 + 9 + 3 + 6 − 17)) |Φ〉

= U (π/2 + 0 + π + 3π/2 + 2π) |Φ〉
= U (π) |Φ〉 .

All participants inform the dealer of their operation classifications which are
class Y, X, X, Y. Then Alice determines the measurement base is y because

of
∣∣∣sin

(
ϕ + ∑t

j=1 φ j

)∣∣∣ = 1. The last participant Bob6 measures the qubit in

y base and publishes the measurement result of |Φ〉4 = 1√
2

(|0〉 − i |1〉), i.e.,(
ϕ + ∑t

j=1 φ j

)
mod 2π = 3π/2. After participants Bob j , j = 1, 3, 4, 6 exchange

their φ j , they all know the dealer’s value of ϕ is π/2 because of (ϕ + π) mod 2π =
3π/2. According to the definition ϕ = 0 ⇒ 00, ϕ = π/2 ⇒ 01, ϕ = π ⇒ 10 and
ϕ = 3π/2 ⇒ 11 , all participants share the 2-bit classical information 01 by a qubit.
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5 Security analysis, related work and comparison

5.1 Security

In both proposed protocols, the decoy photons are used to check eavesdropping. Con-
sequently, when eavesdropper Eve mounts the intercept-and-resend attack and tries to
obtain the transmitted message, he can only intercept the quantum sequence but with-
out the sequence states, and thus fails to resend a perfect copy of the sequence due
to Heisenberg uncertainty principle and quantum no-cloning principle. Furthermore,
Eve doesn’t know the positions and states of the decoy photons, so the attack will
cause an increase in error rate and thus be detected with the probability 1 − (1/4)n ,
where n is the number of the decoy photons. Obviously, the probability converges to
1 for large integer n. Another attack Eve may take is entangle-and-measure attack;
however, also due to the decoy photon, he will not get any useful information about
the secret.

In Classical Information Sharing, as the participant attack, the first recipient Bob1
maybe want to infer the secret without the help of other participants. Knowing true posi-
tions of quantum states in the expanded sequence, he can directly measure the quantum
states. However, Alice has performed unknown unitary phase shift operationU (ψ0) on
these quantum states. If Bob1 happens to choose the true base in the measurement of
each qubit |Φ〉0 = 1√

2

(|0〉 + ei(ϕk+ψ0) |1〉) , k = 1, 2, . . . ,m, he will get (ϕk + ψ0),

instead of ϕk itself. Generally speaking, due to ψ0 = −2πs
p , s ∈ GF(p), Bob1

figures out ϕk with the probability 1/p without the exact value of ψ0. However,
ϕk ∈ {0, π/2, π, 3π/2} and p > 4 means Bob1 has the probability of 1/4 to
obtain the value of each ϕk . That is, Bob1 gets no additional information about each
ϕk, k = 1, 2, . . . ,m.

Another possible participant attack is entanglement swapping [25]. To mount the
attack, an malicious participant prepares an EPR pair and sends the second qubit of the
pair to the following participant while keeping the protocol’s qubit to himself. Based
on collective measurement result, the participant can determine which action he should
take to avoid being detected. Although this attack works in [14], it doesn’t work in
our scheme. Concretely, suppose that the qth participant Rq cheats by entanglement
swapping during the protocol, in the first case: Since some participant R j ( j < q)

has not broadcast the class of his operation, using entanglement swapping without
information about measurement base Rq gains no information about ϕk ; in the second
case: After all participants R j ( j < q) broadcast the classes of their operations, Rq

will know Eq−1 ≡
∣∣∣cos

(∑q−1
j φ j

)∣∣∣ although he does not know each φ j , but when he

measures the qubit in the base
{
|0〉 ± i1−Eq−1 |1〉/√2

}
, he will face the same problem

in the first attack strategy because of the unitary phase operation U (ψ0) performed by
Alice, and thus, he cannot achieve the value of ϕk .

In Quantum States Sharing, the case is similar to that in Classical Information
Sharing when any less than t participants mount the participant attack, because these
participants fail to reconstruct the phase value ψ0 = −2πs

p of the dealer. Therefore,
they cannot achieve any information about the quantum states.
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5.2 Related work and comparison

The existing (t, n) threshold quantum secret sharing schemes in [8,15] change the
field of Shamir’s (t, n)-SS into F2N and use Hadamard transformations in asso-
ciation with simple rotations to encode classical bit string. Compared with our
scheme, they are complicated since each participant has to apply different oper-
ations to quantum state according to the classical share. Moreover, both schemes
only allow to share classical information and thus cannot be used to share quantum
information.

Cleve et al.’s scheme [7] uses quantum error correcting to construct the (t, n)

threshold scheme, but this method needs a special coding to map the quantum state
into n shares, such that any t participants can use linear transformation to recover
the initial state. However, preparing a special coding to map states makes the scheme
difficult to design and implement. Yang et al. [19] employed orthogonal multipartite
entangled states ind-qudit system to construct (t, n) threshold QSS scheme. In addition
to being harder to design because of the dependence on entangled state, the scheme is
a ramp one in security, which means there exits information leak about the secret in
some cases. In comparison, our scheme is perfect, i.e., no information about the secret
is leaked if less than t participants try to recover the secret. Moreover, our scheme is
easier to design and realize since it merely employs simple phase shift operation on
single qubit.

Recently, Song et al. [20] proposed a (t, n) threshold d-level QSS scheme based on
several unitary operations such as d-level CNOT, (inverse) quantum Fourier transform
and generalized Pauli operator performed on particles. As a (t, n) threshold d-level
QSS, it is more universal and practical than our two-level QSS. Nevertheless, our
scheme is easier to realize if compared with Song’s scheme, because our scheme
only uses phase shift operation on single qubit and a single qubit can be more easily
produced as well as operated in physics.

Qin–Zhu–Dai’s scheme [16] is similar to our scheme which also uses phase shift
operation and Shamir’s (t, n)-SS , but the scheme is wrong. In the proof, the scheme
takes

∑t
i=1

Li f (xi )
N = S

N for granted. As a matter of fact,
∑t

i=1
Li f (xi )

N is equivalent
to S+kd

N , k ∈ Z instead of S
N . Consequently, this leads to the scheme cannot recover

the initial state correctly. In our scheme, each participant Bob j performs the novel

phase shift operation U (ψ j ) with ψ j = φ j + 2πc j
p (in Classical Information Sharing)

or ψ j = 2πc j
p (in Quantum States Sharing), φ j ∈ {0, π, π/2, 3π/2} on each qubit. As

a result, each initial state of a qubit can be successfully reconstructed after the dealer
and all participants complete their operations.

In summary, our scheme is allowed to share both classical information and quantum
states. Moreover, a shareholder can use his single private share repeatedly to share a
bit string or a sequence of quantum states. The only dependence on single qubit and
phase shift operation makes our scheme easier to realize and more practical to use
when compared to schemes using entangled state.
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6 Generic method to construct (t, n)-QSS based on single qubit

In the proposed (t, n)-QSS scheme, we acquire the property of (t, n) threshold by clas-
sical Shamir’s (t, n)-SS. As a matter of fact, our scheme presents a generic method to
realize a (t, n) threshold QSS based on phase shift operation on single qubit. That
is, other classical (t, n)-SS schemes such as linear code-based (t, n)-SS [26,27],
geometry-based (t, n)-SS [2] and Chinese remainder theorem-based (t, n)-SS [28,29]
can also be used to construct (t, n)-QSS schemes based on unitary phase operation on
qubit, which have the same properties as our scheme.

Note that each secret in the above classical (t, n)-SS schemes, i.e., the private
value s in our (t, n)-QSS, can be uniformly expressed as s = ∑m

i=1 ci mod M =∑m
i=1 ai si mod M , where ci is the participant Bob′

i s component evaluated from the
share and some parameter ai , m (m ≥ t) is the number of participants and M is a mod-
ulus. In this case, to share the initial state of a qubit sequence as the secret, the dealer
Alice first performs the phase shift operation U (ψ0), ψ0 = −2πs/M on each qubit;
every participant Bobi then takes phase shift operation U (ψi ), ψi = −2πci/M, i =
1, 2, . . . ,m, on the qubit one by one and participant Bobm can reconstruct initial state
of the qubit. As a result, the secret (i.e., initial state of the qubit sequence) can be finally
reconstructed. Similarly, to share classical information as the secret, one can follow
the same way in Classical Information Sharing. Consequently, a (t, n)-QSS scheme,
capable of sharing both classical information and quantum states, can be constructed
easily.

7 Conclusion

The paper proposes a (t, n) threshold quantum secret sharing scheme, and it employs
Shamir’s (t, n)-SS in association with phase shift operation on single qubit to embed
and reconstruct initial states to share a secret. In the scheme, the dealer first performs the
unitary operation on each qubit using the phase values to encode the secret; then, any
t or more than t participants perform unitary operation one by one on each qubit using
their private shares. As a result, initial quantum states are recovered and the secret
is shared among participants. Analyses show that the scheme is resistant to typical
intercept-and-resend attack, entangle-and-measure attack and participant attack such
as entanglement swapping attack.

In conclusion, the proposed scheme allows any t or more than t participants to
repeatedly use their private shares to share a bit string or quantum states as the secret.
Compared with related schemes, the scheme is easier to realize and more practical in
applications.
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