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Abstract Monogamy relations characterize the distributions of entanglement in mul-
tipartite systems. We investigate monogamy relations for multiqubit generalized
W -class states. We present new analytical monogamy inequalities for the concur-
rence of assistance, which are shown to be tighter than the existing ones. Furthermore,
analytical monogamy inequalities are obtained for the negativity of assistance.

Keywords Monogamy · W -class states · Concurrence of assistance · Negativity of
assistance

1 Introduction

Quantum entanglement [1–8] is an essential feature of quantum mechanics. As one of
the fundamental differences between quantum entanglement and classical correlations,
a key property of entanglement is that a quantum system entangled with one of other
subsystems limits its entanglement with the remaining ones. The monogamy relations
give rise to the distribution of entanglement in the multipartite setting. Monogamy is
also an essential feature allowing for security in quantum key distribution [9].

For a tripartite system A, B andC , the usual monogamy of an entanglement measure
E implies that [10] the entanglement between A and BC satisfies EA|BC ≥ EAB+EAC .
In Refs. [11,12], the monogamy of entanglement for multiqubit W -class states has
been investigated, and the monogamy relations for tangle and the squared concurrence
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have been proved. It gives the general monogamy relations for the x-power [13] of
concurrence of assistance for generalized multiqubit W -class states.

In this paper, we show that the monogamy inequalities for concurrence of assistance
obtained so far can be made tighter. We establish entanglement monogamy relations
for the x th (x ≥ 2) and yth (y < 0) power of the concurrence of assistance which are
tighter than those in [13], which give rise to finer characterizations of the entanglement
distributions among the multipartite W -class states. Furthermore, we also present the
general monogamy relations for the x-power of negativity of assistance for generalized
multiqubit W -class states.

2 Tighter monogamy relations for concurrence of assistance

We first consider the monogamy inequalities related to concurrence. Let HX denote a
discrete finite-dimensional complex vector space associated with a quantum subsystem
X . For a bipartite pure state |ψ〉AB in vector space HA ⊗ HB , the concurrence is given
by [14–16]

C(|ψ〉AB) =
√

2
[
1 − Tr(ρ2

A)
]
, (1)

where ρA is the reduced density matrix by tracing over the subsystem B, ρA =
TrB(|ψ〉AB〈ψ |). The concurrence for a bipartite mixed state ρAB is defined by the
convex-roof extension

C(ρAB) = min{pi ,|ψi 〉}
∑
i

piC(|ψi 〉),

where the minimum is taken over all possible decompositions of ρAB = ∑
i pi |ψi 〉

〈ψi |, with pi ≥ 0 and
∑

i pi = 1 and |ψi 〉 ∈ HA ⊗ HB .
For a tripartite state |ψ〉ABC , the concurrence of assistance is defined by [17,18]

Ca(|ψ〉ABC ) ≡ Ca(ρAB) = max{pi ,|ψi 〉}
∑
i

piC(|ψi 〉),

where the maximum is taken over all possible decompositions of ρAB = TrC
(|ψ〉ABC 〈ψ |) = ∑

i pi |ψi 〉AB〈ψi |. When ρAB = |ψ〉AB〈ψ | is a pure state, then
one has C(|ψ〉AB) = Ca(ρAB).

For an N -qubit pure state |ψ〉AB1···BN−1 ∈ HA⊗HB1 ⊗· · ·⊗HBN−1 , the concurrence
C(|ψ〉A|B1···BN−1) of the state |ψ〉A|B1···BN−1 , viewed as a bipartite state under the
partition A and B1, B2, . . . , BN−1, satisfies [25]

Cα(ρA|B1,B2··· ,BN−1) ≥ Cα(ρAB1) + Cα(ρAB2) + · · · + Cα(ρABN−1),

for α ≥ 2, where ρABi = TrB1···Bi−1Bi+1···BN−1(|ψ〉AB1···BN−1〈ψ |). It is further
improved that for α ≥ 2, one has [19],
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Cα(ρA|B1B2···BN−1) ≥ Cα(ρAB1) + α

2
Cα(ρAB2) + · · · +

(α

2

)m−1
Cα(ρABm )

+
(α

2

)m+1 (
Cα(ρABm+1) + · · · + Cα(ρABN−2)

) +
(α

2

)m
Cα(ρABN−1) (2)

and

Cα(ρA|B1B2···BN−1) < K
(
Cα(ρAB1) + Cα(ρAB2) + · · · + Cα(ρABN−1)

)
(3)

for all α < 0, where K = 1
N−1 .

Dual to the Coffman–Kundu–Wootters inequality, the generalized monogamy rela-
tion based on the concurrence of assistance does not satisfy the monogamy relation.
But, for an N -qubit generalized W -class states |ψ〉AB1···BN−1 ∈ HA ⊗ HB1 ⊗ · · · ⊗
HBN−1 , the concurrence of assistance Ca(|ψ〉A|B1···BN−1) of the state |ψ〉AB1···BN−1

satisfies the inequality [13],

Cx
a (ρA|B1,B2··· ,BN−1) ≥ Cx

a (ρAB1) + Cx
a (ρAB2) + · · · + Cx

a (ρABN−1), (4)

and
Cy
a (ρA|B1,B2··· ,BN−1) < Cy

a (ρAB1) + Cy
a (ρAB2) + · · · + Cy

a (ρABN−1), (5)

where x ≥ 2, y ≤ 0.
In fact, as the characterization of the entanglement distribution among the subsys-

tems, the monogamy inequalities satisfied by the concurrence of assistance can be
further refined and become tighter.

In the following, we study the monogamy property of the concurrence of assistance
for the N -qubit generalized W -class states |ψ〉 ∈ HA ⊗ HB1 ⊗ · · · ⊗ HBN−1 defined
by

|ψ〉 = a|00 · · · 0〉 + b1|10 · · · 0〉 + · · · + bN |00 · · · 1〉, (6)

with |a|2 +∑N
i=1 |bi |2 = 1. For N -qubit generalized W -class states (6), one has [13],

C(ρABi ) = Ca(ρABi ), i = 1, 2, . . . , N − 1, (7)

where ρABi = TrB1···Bi−1Bi+1···BN−1(|ψ〉〈ψ |).
Theorem 1 For the N-qubit generalized W-class states |ψ〉 ∈ HA ⊗ HB1 ⊗ · · · ⊗
HBN−1 , let ρABj1 ···Bjm−1

denote the m-qubit, 2 ≤ m ≤ N, reduced density matrix
of |ψ〉. If C(ρABji

) ≥ C(ρABji+1 ···Bjm−1
) for i = 1, 2, . . . t , and C(ρABjk

) ≤
C(ρABjk+1 ···Bjm−1

) for k = t + 1, . . . ,m − 2, ∀ 1 ≤ t ≤ m − 3, m ≥ 4, the concur-
rence of assistance satisfies

Cx
a (ρA|Bj1 ···Bjm−1

) ≥ Cx
a (ρABj1

)

+ x

2
Cx
a (ρABj2

) + · · · +
( x

2

)t−1
Cx
a (ρABjt

)

123



2 Page 4 of 14 Z.-X. Jin, S.-M. Fei

+
( x

2

)t+1 (
Cx
a (ρABjt+1

) + · · · + Cx
a (ρABjm−2

)
)

+
( x

2

)t
Cx
a (ρABjm−1

) (8)

for all x ≥ 2.

Proof For the N -qubit generalized W -class states |ψ〉, according to the definitions of
C(ρ) and Ca(ρ), one has Ca(ρA|Bj1 ···Bjm−1

) ≥ C(ρA|Bj1 ···Bjm−1
). When x ≥ 2, we

have

Cx
a (ρA|Bj1 ···Bjm−1

) ≥ Cx (ρA|Bj1 ···Bjm−1
) ≥ Cx (ρABj1

)

+ x

2
Cx (ρABj2

) + · · · +
( x

2

)t−1
Cx (ρABjt

)

+
( x

2

)t+1 (
Cx (ρABjt+1

) + · · · + Cx (ρABjm−2
)
)

+
( x

2

)t
Cx (ρABjm−1

)

= Cx
a (ρABj1

) + x

2
Cx
a (ρABj2

) + · · · +
( x

2

)t−1
Cx
a (ρABjt

)

+
( x

2

)t+1 (
Cx
a (ρABjt+1

) + · · · + Cx
a (ρABjm−2

)
)

+
( x

2

)t
Cx
a (ρABjm−1

), (9)

where we have used in the first inequality the relation ax ≥ bx for a ≥ b ≥ 0, x ≥ 2.
The second inequality is due to (2). The equality is due to (7). 
�

As for x ≥ 2, (x/2)t ≥ 1 for all 1 ≤ t ≤ jm−3, comparing with the monogamy
relations for concurrence of assistance (4), our formula (8) in Theorem 1 gives a
tighter monogamy relation with larger lower bounds. In Theorem 1 we have assumed
that some C(ρABji

) ≥ C(ρABji+1 ···Bjm−1
) and some C(ρABk ) ≤ C(ρABk+1···Bm−1)

for the N -qubit generalized W -class states. If all C(ρABji
) ≥ C(ρABji+1 ···Bjm−1

) for
i = 1, 2, . . . ,m − 2, then we have the following conclusion:

Theorem 2 If C(ρABji
) ≥ C(ρABji+1 ···Bjm−1

) for i = 1, 2, . . . ,m − 2, then we have

Cx
a (ρA|Bj1 ···Bjm−1

) ≥ Cx
a (ρABj1

) + x

2
Cx
a (ρABj2

) + · · · +
( x

2

)m−2
Cx
a (ρABjm−1

)

(10)

for all x ≥ 2.

Example 1 Let us consider the 4-qubit generalized W -class states,

|W 〉AB1B2B3 = 1

2
(|1000〉 + |0100〉 + |0010〉 + |0001〉). (11)
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Fig. 1 y is the value of Ca(|ψ〉A|B1B2B3 ). Solid (red) line is the exact value of Ca(|ψ〉A|B1B2B3 ), dashed
(blue) line is the lower bound of Ca(|ψ〉A|B1B2B3 ) in (8), and dot-dashed (green) line is the lower bound
in [13] for x ≥ 2 (Color figure online)

We haveCx
a (|ψ〉A|B1B2B3) =

(√
3

2

)x
. From our result (8) we haveCx

a (|ψ〉A|B1B2B3) ≥[
1 + x

2 + ( x
2

)2
] ( 1

2

)x
, and from (4) one has Cx

a (|ψ〉A|B1B2B3) ≥ 3
( 1

2

)x
, x ≥ 2. One

can see that our result is better than that in [13] for x ≥ 2, see Fig. 1.

We can also derive a tighter upper bound of Cy
a (ρA|B1···BN−1) for y < 0.

Theorem 3 For the N-qubit generalized W-class states |ψ〉 ∈ HA ⊗ HB1 ⊗ · · · ⊗
HBN−1 , let ρABj1 ···Bjm−1

be the m-qubit, 2 ≤ m ≤ N, reduced density matrix of |ψ〉
with C(ρABji

) = 0 for 1 ≤ i ≤ m − 1, we have

C y
a (ρA|Bj1 ···Bjm−1

) < M̃
(
Cy
a (ρABj1

) + Cy
a (ρABj2

) + · · · + Cy
a (ρABjm−1

)
)

(12)

for all y < 0, where M̃ = 1
m−1 .

Proof For y < 0, we have

Cy
a (ρA|Bj1 ···Bjm−1

) ≤ Cy(ρA|Bj1 ···Bjm−1
)

< M̃
(
Cy(ρABj1

) + Cy(ρABj2
) + · · · + Cy(ρABjm−1

)
)

= M̃
(
Cy
a (ρABj1

) + Cy
a (ρABj2

) + · · · + Cy
a (ρABjm−1

)
)

, (13)

where we have used in the first inequality the relation ax ≤ bx for a ≥ b ≥ 0, x ≤ 0.
The second inequality is due to (3). The equality is due to (7). 
�

As the factor M̃ = 1
m−1 is less than one, inequality (12) is tighter than the one in

[13]. This factor M̃ depends on the number of partite N . Namely, for larger multipartite
systems, inequality (12) gets even tighter than the one in [13].
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Fig. 2 f (y) is the value of Cy
a (|ψ〉A|B1B2B3 ). Solid (red) line is the exact value of Cy

a (|ψ〉A|B1B2B3 ),

dashed (blue) line is the upper bound of Cy
a (|ψ〉A|B1B2B3 ) in (12), and dot-dashed (green) line is the upper

bound in [13] (Color figure online)

Example 2 Let us consider again 4-qubit generalized W -class states (11). We have

Cy
a (|ψ〉A|B1B2B3) =

(√
3

2

)y
. From our result (12) we have Cy

a (|ψ〉A|B1B2B3) ≤ ( 1
2

)y
,

while from (5) one gets Cy
a (|ψ〉A|B1B2B3) ≤ 3

( 1
2

)y
. It can be seen that our result is

better than that in [13] for y < 0, see Fig. 2.

Remark 1 In (12) we have assumed that allC(ρABji
), i = 1, 2, . . . ,m−1, are nonzero.

In fact, if one of them is zero, the inequality still holds by removing this term from the
inequality. Namely, ifC(ρABji

) = 0, then one hasCy
a (ρA|Bj1 ···Bjm−1

) < 1
2C

y
a (ρABj1

)+
· · · + ( 1

2

)i−1
Cy
a (ρABji−1

) + ( 1
2

)i
C y
a (ρABji+1

) + · · · + ( 1
2

)m−3
Cy
a (ρABjm−2

) +
( 1

2

)m−3
Cy
a (ρABjm−1

). By cyclically permuting the subindices in Bj1 · · · Bjm−1 , we

can get a set of inequalities. Summing up these inequalities we haveCy
a (ρA|Bj1 ···Bjm−1

)

< 1
m−1

(
Cy
a (ρABj1

) + · · · + Cy
a (ρABji−1

) + Cy
a (ρABji+1

) + · · · + Cy
a (ρABjm−2

) + Cy
a

(ρABjm−1
)
)

for y < 0.

3 Monogamy relations for negativity of assistance

Another well-known quantifier of bipartite entanglement is the negativity. Given a
bipartite state ρAB in HA ⊗ HB , the negativity is defined by Vidal and Werner [20],

N (ρAB) =
(∣∣∣

∣∣∣ρTA
AB

∣∣∣
∣∣∣ − 1

)
/2, where ρ

TA
AB is the partial transpose with respect to the

subsystem A; ||X || denotes the trace norm of X , i.e., ||X || = Tr
√
XX†. Negativity is

a computable measure of entanglement and is a convex function of ρAB . It vanishes
if and only if ρAB is separable for the 2 ⊗ 2 and 2 ⊗ 3 systems [21]. For the purpose

of discussion, we use the following definition of negativity, N (ρAB) =
∣∣∣
∣∣∣ρTA

AB

∣∣∣
∣∣∣ − 1.
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For any bipartite pure state |ψ〉AB , the negativity N (ρAB) is given by N (|ψ〉AB) =
2

∑
i< j

√
λiλ j = (Tr

√
ρA)2 −1, where λi are the eigenvalues for the reduced density

matrix of |ψ〉AB . For a mixed state ρAB , the convex-roof extended negativity (CREN)
is defined as

Nc(ρAB) = min
∑
i

pi N (|ψi 〉AB), (14)

where the minimum is taken over all possible pure state decompositions {pi , |ψi 〉AB}
of ρAB . CREN gives a perfect discrimination of positive partial transposed bound
entangled states and separable states in any bipartite quantum systems [22,23]. For
a mixed state ρAB , the convex-roof extended negativity of assistance (CRENOA) is
defined as [24]

Na(ρAB) = max
∑
i

pi N (|ψi 〉AB), (15)

where the maximum is taken over all possible pure state decompositions {pi , |ψi 〉AB}
of ρAB .

Let us consider the relation between CREN and concurrence. For any bipartite pure
state |ψ〉AB in a d ⊗ d quantum system with Schmidt rank 2, |ψ〉AB = √

λ0|00〉 +√
λ1|11〉, one has N (|ψ〉AB) =‖ |ψ〉〈ψ |TB ‖ −1 = 2

√
λ0λ1 =

√
2(1 − Trρ2

A) =
C(|ψ〉AB). In other words, negativity is equivalent to concurrence for any pure state
with Schmidt rank 2, and consequently it follows that for any two-qubit mixed state
ρAB = ∑

pi |ψi 〉AB〈ψi |,

Nc(ρAB) = min
∑
i

pi N (|ψi 〉AB) (16)

= min
∑
i

piC(|ψi 〉AB)

= C(ρAB),

Na(ρAB) = max
∑
i

pi N (|ψi 〉AB) (17)

= max
∑
i

piC(|ψi 〉AB)

= Ca(ρAB),

where the minimum and the maximum are taken over all pure state decompositions
{pi , |ψi 〉AB} of ρAB .

Combining (7), (16) and (17), we can get the following lemma.

Lemma 1 For N-qubit generalized W-class states (6), we have

Nc(ρABi ) = Na(ρABi ). (18)
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As is already known, the negativity satisfies the monogamy relation for N-qubit
pure state [24]. In fact, for any N-qubit state, the monogamy relation of the negativity
always holds. Therefore, we can get the following lemma.

Lemma 2 For any N-qubit state ρ ∈ HA ⊗ HB1 ⊗ · · · ⊗ HBN−1 , we have

N x
c (ρA|B1···BN−1) ≥

N−1∑
i=1

Nx
c (ρABi ), x ≥ 2. (19)

Proof From Ref. [24], one has

N 2
c (|ψ〉A|B1···BN−1) ≥

N−1∑
i=1

N 2
c (ρABi ), (20)

for N-qubit pure state. Applying the similar approach in Ref. [25], one can get

Nx
c (|ψ〉A|B1···BN−1) ≥

N−1∑
i=1

Nx
c (ρABi ), (21)

for N-qubit pure state with x ≥ 2.
Let ρ = ∑

i pi |ψi 〉AB1···BN−1〈ψi | be the optimal decomposition of Nc(ρA|B1···BN−1)

for the N-qubit mixed state, we have

Nx
c (ρA|B1···BN−1) =

(∑
i=1

pi Nc(|ψ〉A|B1···BN−1)

)x

(22)

≥
⎛
⎝∑

i=1

pi

√√√√N−1∑
k=1

N 2
c (ρABk )

⎞
⎠

x

≥
⎡
⎣∑

k

(∑
i

pi Nc(ρABk )

)2
⎤
⎦

x
2

≥
N−1∑
i=1

Nx
c (ρABi ),

where the first inequality is due to (20). The second inequality is due to Minkowski

inequality: (
∑

k(
∑

i xik))
1
2 ≤ ∑

i (
∑

k x
2
ik)

1
2 . The last inequality is due to (

∑
i ai )

α ≥∑
i a

α
i for ai ≥ 0, α ≥ 1. 
�

In the following, we can derive a better monogamy relation for CREN.
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Lemma 3 For any N-qubit state ρ ∈ HA ⊗ HB1 ⊗ · · · ⊗ HBN−1 , if Nc(ρABi ) ≥
Nc(ρA|Bi+1···BN−1) for i = 1, 2, . . . ,m, and Nc(ρABj ) ≤ Nc(ρA|Bj+1···BN−1) for j =
m + 1, . . . , N − 2, ∀ 1 ≤ m ≤ N − 3, N ≥ 4, we have

N x
c (ρA|B1B2···BN−1) ≥ Nx

c (ρAB1) (23)

+ x

2
Nx
c (ρAB2) + · · · +

( x
2

)m−1
Nx
c (ρABm )

+
( x

2

)m+1
(Nx

c (ρABm+1) + · · · + Nx
c (ρABN−2))

+
( x

2

)m
Nx
c (ρABN−1)

for all x ≥ 2.

Proof From (19), one has N 2
c (ρA|BC ) ≥ N 2

c (ρAB) + N 2
c (ρAC ). If Nc(ρAB) ≥

Nc(ρAC ), we have

Nx
c (ρA|BC ) ≥ (N 2

c (ρAB) + N 2
c (ρAC ))

x
2 = Nx

c (ρAB)

(
1 + N 2

c (ρAC )

N 2
c (ρAB)

) x
2

(24)

≥ Nx
c (ρAB)

[
1 + x

2

(
N 2
c (ρAC )

N 2
c (ρAB)

) x
2
]

= Nx
c (ρAB) + x

2
Nx
c (ρAC ),

where the second inequality is due to the inequality (1 + t)x ≥ 1 + xt ≥ 1 + xt x for
x ≥ 1, 0 ≤ t ≤ 1.

By using inequality (24) repeatedly, one gets

Nx
c (ρA|B1B2···BN−1) ≥ Nx

c (ρAB1) + x

2
Nx
c (ρA|B2···BN−1) (25)

≥ Nx
c (ρAB1) + x

2
Nx
c (ρAB2) +

( x
2

)2
Nx
c (ρA|B3···BN−1)

≥ · · · ≥ Nx
c (ρAB1) + x

2
Nx
c (ρAB2) + · · · +

( x
2

)m−1
Nx
c (ρABm )

+
( x

2

)m
Nx
c (ρA|Bm+1···BN−1).

As Nc(ρABj ) ≤ Nc(ρA|Bj+1···BN−1) for j = m + 1, . . . , N − 2, by (24) we get

Nx
c (ρA|Bm+1···BN−1) ≥ x

2
Nx
c (ρABm+1) + Nx

c (ρA|Bm+2···BN−1)

≥ x

2
(Nx

c (ρABm+1) + · · · + Nx
c (ρABN−2)) + Nx

c (ρABN−1). (26)

Combining (25) and (26), we have Lemma 3. 
�
We can also derive a bound of Nx

c (ρA|B1B2···BN−1) for x < 0.
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Lemma 4 For any N-qubit state ρ ∈ HA ⊗ HB1 ⊗ · · · ⊗ HBN−1 , we have

N x
c (ρA|B1B2···BN−1) < M ′ (Nx

c (ρAB1) + Nx
c (ρAB2) + · · · + Nx

c (ρABN−1)
)

(27)

for all x < 0, where M ′ = 1
N−1 .

Proof For arbitrary tripartite state, from (19) we have

Nx
c (ρA|B1B2) ≤

(
N 2
c (ρAB1) + N 2

c (ρAB2)
) x

2
(28)

= Nx
c (ρAB1)

(
1 + N 2

c (ρAB2)

N 2
c (ρAB1)

) x
2

< Nx
c (ρAB1),

where the first inequality is due to x < 0 and the second inequality is due to(
1 + N2

c (ρAB2 )

N2
c (ρAB1 )

) x
2

< 1. On the other hand, we have

Nx
c (ρA|B1B2) ≤

(
N 2
c (ρAB1) + N 2

c (ρAB2)
) x

2
(29)

= Nx
c (ρAB2)

(
1 + N 2

c (ρAB1)

N 2
c (ρAB2)

) x
2

< Nx
c (ρAB2).

From (28) and (29) we obtain

Nx
c (ρA|B1B2) <

1

2
(Nx

c (ρAB1) + Nx
c (ρAB2)). (30)

By using inequality (30) repeatedly, one gets

Nx
c (ρA|B1B2···BN−1) <

1

2

(
Nx
c (ρAB1) + Nx

c (ρA|B2···BN−1)
)

(31)

<
1

2
Nx
c (ρAB1) +

(
1

2

)2

Nx
c (ρAB2) +

(
1

2

)2

Nx
c (ρA|B3···BN−1)

< · · · <
1

2
Nx
c (ρAB1) +

(
1

2

)2

Nx
c (ρAB2) + · · ·

+
(

1

2

)N−2

Nx
c (ρABN−2) +

(
1

2

)N−2

Nx
c (ρABN−1).

By cyclically permuting the subindices B1, B2, . . . , BN−1 in (31) we can get a set
of inequalities. Summing up these inequalities we obtain (27). 
�
In the following, we study the monogamy property of the CRENOA for N -qubit
generalized W -class states (6). We can obtain the following theorem.
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Theorem 4 For the N-qubit generalized W-class states |ψ〉 ∈ HA ⊗ HB1 ⊗ · · · ⊗
HBN−1 , with ρABj1 ···Bjm−1

the m-qubit, 2 ≤ m ≤ N, reduced density matrix of
|ψ〉. If Nc(ρABji

) ≥ Nc(ρABji+1 ···Bjm−1
) for i = 1, 2, . . . t , and Nc(ρAB jk ) ≤

Nc(ρABjk+1 ···Bjm−1
) for k = t + 1, . . . ,m − 2, ∀ 1 ≤ t ≤ m − 3, m ≥ 4, then

the CRENOA satisfies

N x
a (ρA|Bj1 ···Bjm−1

) ≥ Nx
a (ρABj1

)

+ x

2
Nx
a (ρABj2

) + · · · +
( x

2

)t−1
Nx
a (ρABjt

)

+
( x

2

)t+1 (
Nx
a (ρABjt+1

) + · · · + Nx
a (ρABjm−2

)
)

+
( x

2

)t
N x
a (ρABjm−1

) (32)

for all x ≥ 2.

Proof For the N -qubit generalized W -class states |ψ〉, according to the definitions of
Nc(ρ) and Na(ρ), one has Na(ρA|Bj1 ···Bjm−1

) ≥ Nc(ρA|Bj1 ···Bjm−1
). When x ≥ 2, we

have

Nx
a (ρA|Bj1 ···Bjm−1

) ≥ Nx
c (ρA|Bj1 ···Bjm−1

) ≥ Nx
c (ρABj1

)

+ x

2
Nx
c (ρABj2

) + · · · +
( x

2

)t−1
Nx
c (ρABjt

)

+
( x

2

)t+1 (
Nx
c (ρABjt+1

) + · · · + Nx
c (ρABjm−2

)
)

+
( x

2

)t
N x
c (ρABjm−1

)

= Nx
a (ρABj1

) + x

2
Nx
a (ρABj2

) + · · · +
( x

2

)t−1
Nx
a (ρABjt

)

+
( x

2

)t+1 (
Nx
a (ρABjt+1

) + · · · + Nx
a (ρABjm−2

)
)

+
( x

2

)t
N x
a (ρABjm−1

), (33)

where we have used in the first inequality the relation ax ≥ bx for a ≥ b ≥ 0, x ≥ 2.
Using the result of Lemma 3, one gets the second inequality. The equality is due to
Lemma 2. 
�

In Theorem 4 we have assumed that some Nc(ρABji
) ≥ Nc(ρABji+1 ···Bjm−1

) and some
Nc(ρABjk

) ≤ Nc(ρABjk+1 ···Bjm−1
) for the N -qubit generalized W -class states. If all

Nc(ρABji
) ≥ Nc(ρABji+1 ···Bjm−1

) for i = 1, 2, . . . ,m − 2, then we have the following
conclusion:
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Theorem 5 If Nc(ρABji
) ≥ Nc(ρABji+1 ···Bjm−1

) for i = 1, 2, . . . ,m − 2, we have

N x
a (ρA|Bj1 ···Bjm−1

) ≥ Nx
a (ρABj1

) + x

2
Nx
a (ρABj2

) + · · · +
( x

2

)m−2
Nx
a (ρABjm−1

)

(34)

for all x ≥ 2.

We can also derive a tighter upper bound of N y
a (ρAB1···BN−1) for y < 0.

Theorem 6 For the N-qubit generalizedW-class states |ψ〉 ∈ HA⊗HB1⊗· · ·⊗HBN−1

with Nc(ρABji
) = 0 for 1 ≤ i ≤ m − 1, we have

N y
a (ρA|Bj1 ···Bjm−1

) < M̃
(
N y
a (ρABj1

) + N y
a (ρABj2

) + · · · + N y
a (ρABjm−1

)
)

(35)

for all y < 0, where M̃ = 1
m−1 .

Proof For y < 0, we have

N y
a (ρA|Bj1 ···Bjm−1

) ≤ N y
c (ρA|Bj1 ···Bjm−1

)

< M̃
(
N y
c (ρABj1

) + N y
c (ρABj2

) + · · · + N y
c (ρABjm−1

)
)

= M̃
(
N y
a (ρABj1

) + N y
a (ρABj2

) + · · · + N y
a (ρABjm−1

)
)

,

(36)

where we have used in the first inequality the relation ax ≤ bx for a ≥ b ≥ 0, x ≤ 0.
The second inequality is based on Lemma 4. The equality is due to the Lemma 2. 
�
Remark 2 In (35) we have assumed that all Nc(ρABji

), i = 1, 2, . . . ,m − 1, are
nonzero. In fact, if one of them is zero, the inequality still holds if one simply
removes this term from the inequality. Namely, if Nc(ρABji

) = 0, then one has

N y
a (ρA|Bj1 ···Bjm−1

) < 1
2 N

y
a (ρABj1

)+· · ·+ ( 1
2

)i−1
N y
a (ρABji−1

)+ ( 1
2

)i
N y
a (ρABji+1

)+
· · · + ( 1

2

)m−3
N y
a (ρABjm−2

) + ( 1
2

)m−3
N y
a (ρABjm−1

). By cyclically permuting the
subindices in Bj1 · · · Bjm−1 , we can get a set of inequalities. Summing up these

inequalities we have N y
a (ρA|Bj1 ···Bjm−1

) < 1
m−1

(
N y
a (ρABj1

) + · · · + N y
a (ρABji−1

)

+N y
a (ρABji+1

) + · · · + N y
a (ρABjm−2

) + N y
a (ρABjm−1

)
)

, for y < 0.

4 Conclusion

Entanglement monogamy is a fundamental property of multipartite entangled states.
We have presented tighter monogamy inequalities for the x-power of concurrence of
assistance Cx

a (ρA|Bj1 ···Bjm−1
) of the m-qubit reduced density matrices, 2 ≤ m ≤ N ,
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for the N -qubit generalized W -class states, when x ≥ 2. A tighter upper bound of y-
power of concurrence of assistance is also derived for y < 0. The monogamy relations
for the x-power of negativity of assistance for the N -qubit generalized W -class states
have been also investigated for x ≥ 2 and x < 0, respectively. These relations give
rise to the restrictions of entanglement distribution among the qubits in generalized
W -class states.
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