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Abstract Recently, entanglement-assisted quantum codes have been constructed
from cyclic codes by some scholars. However, how to determine the number of shared
pairs required to construct entanglement-assisted quantum codes is not an easy work.
In this paper, we propose a decomposition of the defining set of negacyclic codes.
Based on this method, four families of entanglement-assisted quantum codes con-
structed in this paper satisfy the entanglement-assisted quantum Singleton bound,
where the minimum distance satisfies q + 1 ≤ d ≤ n+2

2 . Furthermore, we construct
two families of entanglement-assisted quantum codes with maximal entanglement.

Keywords Entanglement-assisted quantum codes · Negacyclic codes · Maximum
distance separable (MDS) codes

1 Introduction

Construction of good quantum error-correcting codes (quantum codes for short) is an
important subject for quantum information and quantum computing [1–7]. The theory
of entanglement-assisted quantum codes is an important discovery in the area of quan-
tum error-correction. Brun et al. proposed a entanglement-assisted stabilizer formalism
in [8]. They showed that if the sender and the receiver shared a certain amount of pre-
existing entanglement, some entanglement-assisted quantum codes can be constructed
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without dual-containing classical quaternary codes. An entanglement-assisted quan-
tum code can be denoted as [[n, k, d; c]]q , which encodes k information qubits into n
channel qubits with the help of c pairs of maximally entangled states and corrects up to⌊ d−1

2

⌋
errors, where d is the minimum distance of the code [9]. If n− k = c, the code

is called an entanglement-assisted quantum code with maximal entanglement. In the
scheme of entanglement-assisted quantum stabilizer code, it is assumed that halves of
maximally entangled states of the receiver are perfect. Many scholars have constructed
some entanglement-assisted quantum codes with good parameters in [8,10–18]. Li
et al. [19] proposed the concept about a decomposition of the defining set of BCH
cyclic codes, and they used this method to construct some entanglement-assisted
quantum codes having good parameters. Lü and Li [20]constructed some families of
entanglement-assisted quantum codes by using primitive quaternary BCH codes. Qian
and Zhang [21] constructed some families of entanglement-assisted quantum codes by
using arbitrary binary linear codes and showed the existence of asymptotically good
entanglement-assisted quantum codes. Brun et al. [8] proposed the entanglement-
assisted Singleton bound for entanglement-assisted quantum codes, which can be
called entanglement-assisted quantum maximum distance separable (MDS) codes. A
construction of entanglement-assisted quantum MDS codes with a small number of
preshared entangled states was provided by Fan et al. [22]. Guenda et al. introduced
the hull of classical codes and constructed some families of entanglement-assisted
quantum MDS codes in [23]. In [24], if d ≤ (n + 2)/2, then k ≤ n + c − 2d + 2
for an [[n, k, d; c]]q entanglement-assisted quantum code. The result holds for any
d whenever entanglement-assisted quantum codes are degenerate or nondegenerate.
The authors assumed that d ≤ (n + 2)/2 in [25] is reasonable for quantum codes
because of the no-cloning theorem [26]. However, Grassl proposed a construction
of entanglement-assisted stabilizer codes whose distance satisfies d ≥ (n + 2)/2 in
[27]. In fact, entanglement can increase the error-correcting ability of quantum codes.
These codes that Grassl found are constructed in a quite different way, by transform-
ing the quantum teleportation protocol into an entanglement-assisted quantum code.
Lai and Ashikhmin [24] utilized the linear programming bound to provide a refined
entanglement-assisted quantum Singleton bound for general case.

In recent years, negacyclic codes have been applied to construct quantum MDS
codes. Kai et al. [28] constructed two families of quantum MDS codes by using
the negacyclic codes. Kai et al. [29] extended the result in [28] and obtained two
families of quantum codes with good parameters and a family of quantum MDS
codes. La Guardia [30] used the negacyclic codes to construct two families of quantum
MDS-convolutional codes. In [31], the negacyclic codes were applied to construct two
families of asymmetric quantum MDS codes. In [32], we used the negacyclic codes in
[29] to construct some families of quantum convolutional codes. In [33], some families
of asymmetric quantum codes and quantum convolutional codes were constructed and
they satisfied the quantum Singleton bound. In general, the parameters of quantum
codes constructed from negacyclic codes are more general and better compared with
the ones constructed from classical cyclic codes.

In this work, we mainly focus on discussing the constructions of entanglement-
assisted quantum codes with distance q + 1 ≤ d ≤ (n + 2)/2. We first define a
decomposition of the defining set of negacyclic codes, which is convenient for us to
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obtain the number of shared pairs required, and then we use q2-cyclotomic cosets
of the defining set of negacyclic codes to construct entanglement-assisted quantum
MDS codes with d ≤ (n + 2)/2, the minimum distance of these ones is greater
than q + 1. Moreover, we use the method of decomposition of the defining set to
construct another two families of entanglement-assisted quantum codes with maximal
entanglement. Although these two families of entanglement-assisted quantum codes
do not satisfy the entanglement-assisted quantum Singleton bound, it will give us some
help in understanding the construction of entanglement-assisted quantum codes.

In this paper, we obtain four families of entanglement-assisted quantum MDS codes
as follows:

(1) [[q2 + 1, q2 + 5 − 2q − 4t, q + 2t + 1; 4]]q , where 2 ≤ t ≤ q−1
2 , q is an odd

prime power with q ≥ 5 and q ≡ 1 mod 4.

(2) [[ q2+1
2 ,

q2+1
2 − 2q − 4t + 5, q + 2t + 1; 5]]q , where 2 ≤ t ≤ q−1

2 , q is an odd
prime power with q > 7.

(3) [[λ(q+1), λ(q+1)−2λ−2t−q+5,
q+1

2 + t+λ; 4]]q , where q is an odd prime

power with q ≥ 7, λ is an odd divisor of q−1 with λ ≥ 3 and q+3
2 ≤ t ≤ q−1

2 +λ.

(4) [[2λ(q + 1), 2λ(q + 1) − 4λ − 2t − q + 5,
q+1

2 + t + 2λ; 4]]q , where q is an
odd prime power with q ≥ 13, q ≡ 1 mod 4, λ is an odd divisor of q − 1 with
λ ≥ 3 and q+3

2 ≤ t ≤ q−1
2 + 2λ.

We also obtain two families of maximal-entanglement entanglement-assisted quantum
codes as follows:

(1) [[ q2+1
2 ,

q2+1
2 − 5, d ≥ 3; 5]]q , where q is an odd prime power with q > 3.

(2) [[q2 + 1, q2 − 3, d ≥ 3; 4]]q , where q is an odd prime power with q ≥ 5 and
q ≡ 1 mod 4.

The main organization of this paper is as follows. In Sect. 2, we present some defini-
tions and basic results of negacyclic codes. In Sect. 3, we state some basic concepts and
results of entanglement-assisted quantum codes. In Sect. 4, we construct four families
of entanglement-assisted quantum MDS codes and two families of entanglement-
assisted quantum codes with maximal entanglement by using a decomposition of the
defining set of negacyclic codes.

2 Review of negacyclic codes

In this section, we recall some basic results about negacyclic codes in [28,29,33–38].
Throughout this paper, let Fq2 be the finite field with q2 elements, where q is a

power of p and p is an odd prime number. Let aq = (aq0 , aq1 , . . . , aqn−1) denote the
conjugation of the vector a = (a0, a1, . . . , an−1). For u = (u0, u1, . . . , un−1), v =
(v0, v1, . . . , vn−1) ∈ Fn

q2 , the Hermitian inner product can be defined as

〈u, v〉h = uq0v0 + uq1v1 + · · · + uqn−1vn−1.

If C is a k-dimensional subspace of Fn
q2 , then C is said to be an [n, k]-linear code.

The number of nonzero components of c ∈ C is said to be the weight wt (c) of the
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codeword c. The minimum nonzero weight d of all codewords in C is said to be the
minimum weight of C. A linear code C of length n over Fq2 is said to be negacyclic if
for any codeword (c0, c1, . . . , cn−1) ∈ C we have that (−cn−1, c0, c1, . . . , cn−2) ∈ C.
We can see that xc(x) corresponds to a negacyclic shift of c(x) in the quotient ring
Fq2 [x]/〈xn +1〉, where c(x) = c0 +c1x +· · ·+cn−1xn−1. Then, a q2-ary negacyclic
code C of length n is an ideal of Fq2 [x]/〈xn + 1〉 and C can be generated by a monic
polynomial g(x) of xn + 1.

Let gcd(n, q) = 1. Then, xn + 1 does not have multiple roots. Let m be the
multiplicative order of q2 modulo 2n. Assume that α is a primitive 2n-th root of unity
in F∗

q2m and β = α2 ∈ Fq2m . Then, β is a primitive n-th root of unity. Hence,

xn + 1 = �n−1
i=0

(
x − αβ i

)
= �n−1

i=0

(
x − α2i+1

)
.

The q2-cyclotomic coset module 2n containing i is defined by Ci ,

Ci =
{
i, iq2, iq4, . . . , iq2(mi−1)

}
,

where mi is the smallest positive integer such that iq2mi ≡ i mod 2n.

For a q2-ary linear code C of length n, the Hermitian dual code of C can be defined
as C⊥h = {u ∈ Fn

q2 | 〈u, v〉h = 0 for all v ∈ C}. We can see that a q2-ary linear code

C of length n is called Hermitian self-orthogonal if C ⊆ C⊥h . Let O2n be the set of all
odd integers from 1 to 2n. The defining set of a negacyclic code C = 〈g(x)〉 of length
n is the set Z = {i ∈ O2n | αi is a root of g(x)}. Let C be an [n, k] negacyclic code
over Fq2 with defining set Z . Then, the Hermitian dual C⊥h is also negacyclic and has
defining set Z⊥h = {z ∈ O2n| − qz(mod 2n) /∈ Z}.
Proposition 1 [28,29] (The BCH bound for negacyclic codes) Let C be a q2-ary
negacyclic code of length n. If the generator polynomial g(x) of C has the elements
{α1+2i | 0 ≤ i ≤ d − 2} as the roots where α is a primitive 2n-th root of unity, then
the minimum distance of C is at least d.

3 Review of entanglement-assisted quantum codes

Now, let us recall some basic notions and results of entanglement-assisted quantum
codes in [11,23].

Let H be an (n − k) × n parity check matrix of C over Fq2 . Then, C⊥h has an
n × (n − k) generator matrix H†, where H† is the conjugate transpose matrix of H
over Fq2 .

The following proposition is about the Singleton bound of classical linear codes.

Proposition 2 [39] (Singleton bound) If an [n, k, d] linear code C over Fq exists,
then

k ≤ n − d + 1.
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If k = n − d + 1, then C is called an MDS code.

Now, we recall some results of entanglement-assisted quantum codes in [8,19,20,
27].

Theorem 1 [19,20] If C is a classical code and H is its parity check matrix over Fq2 ,
then there exist entanglement-assisted codes with parameters [[n, 2k − n+ c, d; c]]q ,
where c = rank(HH†).

Proposition 3 [8,27] Assume that C is an entanglement-assisted quantum code with
parameters [[n, k, d; c]]q , if d ≤ (n+2)/2, then C satisfies the entanglement-assisted
Singleton bound n+ c− k ≥ 2(d − 1). If C satisfies the equality n+ c− k = 2(d − 1)

for d ≤ (n + 2)/2, then it is called an entanglement-assisted quantum MDS code.

4 Constructions of entanglement-assisted quantum MDS codes

In [19,20], the authors gave a definition for decomposition of the defining set of cyclic
codes. Here, we define a decomposition of the defining set of negacyclic codes.

Definition 1 Let C be a negacyclic code of length n with defining set Z . Assume
that Z1 = Z ∩ (−qZ) and Z2 = Z\Z1, where −qZ = {n − qx |x ∈ Z}. Then,
Z = Z1 ∪ Z2 is called a decomposition of the defining set of C.

Lemma 1 Let C be a negacyclic code with length n over Fq2 , where gcd(n, q) = 1.

Suppose that Z is the defining set of the negacyclic code C and Z = Z1 ∪ Z2 is a
decomposition of Z . Then, the number of entangled states required is c = |Z1|.
Proof From Definition 1, we can assume that the defining sets of negacyclic codes C1
and C2 are Z1 and Z2, respectively. The parity check matrix of C1 and C2 are H1 and
H2, respectively. Let H be the parity check matrix of C. Therefore,

H =
(
H1
H2

)
,

and

HH† =
(
H1H

†
1 H1H

†
2

H2H
†
1 H2H

†
2

)

.

From the definition of negacyclic codes and Definition 1, we have H2H
†
2 = 0,

H1H
†
2 = 0 (because of C⊥h

1 ⊆ C2), and H2H
†
1 = 0. Then,

HH† =
(
H1H

†
1 0

0 0

)
.

We can see that c = rank(HH†) = rank(H1H
†
1 ). Since H1 is a full rank matrix, then

we have c = rank(H1) = |Z1|.
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Lemma 2 [28] Let n = q2 + 1, s = n/2, and q ≡ 1 (mod 4). Then, we have the
following properties:

(1) The q2-cyclotomic cosets modulo 2n containing some integers from 1 to 2n are
Cs = {s}, C3s = {3s}, and Cs−2i = {s − 2i, s + 2i} for 1 ≤ i ≤ s − 1;

(2) IfC is a q2-ary negacyclic codeof length n with defining set Z = ∪δ
i=0Cs−2i ,where

0 ≤ δ ≤ (q − 1)/2, then C⊥h ⊆ C.

Theorem 2 Let n = q2 + 1 and s = n/2, where q is an odd prime power with
q ≥ 5 and q ≡ 1(mod 4). If C is a q2-ary negacyclic code of length n with defining

set Z = ∪
q−1

2 +t
i=0 Cs−2i , then there exist entanglement-assisted quantum codes with

parameters [[q2 + 1, q2 + 5 − 2q − 4t, q + 2t + 1; 4]]q , where 2 ≤ t ≤ q−1
2 .

Proof From Lemma 2, we can assume that the defining set of negacyclic code C is

Z = ∪
q−1

2 +t
i=0 Cs−2i , then C is a negacyclic code with parameters [q2 + 1, q2 + 1 −q −

2t, q + 2t + 1]q2 from Propositions 1 and 2. Therefore, we have the following result.

Z1 = Z ∩ (−qZ)

=
((

∪
q−1

2
i=0Cs−2i

)
∪

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

))

∩
(

−q

(
∪

q−1
2

i=0Cs−2i

)
∪ −q

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

))

=
((

∪
q−1

2
i=0Cs−2i

)
∩ −q

(
∪

q−1
2

i=0Cs−2i

))

∪
((

∪
q−1

2
i=0Cs−2i

)
∩ −q

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

))

∪
((

∪
q−1

2 +t

i= q+1
2

Cs−2i

)
∩ −q

(
∪

q−1
2

i=0Cs−2i

))

∪
((

∪
q−1

2 +t

i= q+1
2

Cs−2i

)
∩ −q

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

))

= Cs−q−1 ∪ Cs−q+1. (∗)

From Lemma 2, we have

(
∪

q−1
2

i=0Cs−2i

)
∩ −q

(
∪

q−1
2

i=0Cs−2i

)
= ∅.

In order to get the result of equation (∗), we have to show that

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
∩ −q

(
∪

q−1
2

i=0Cs−2i

)
= Cs−q−1,

(
∪

q−1
2

i=0Cs−2i

)
∩ −q

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
= Cs−q+1,
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and

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
∩ −q

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
= ∅

as follows.
Firstly, we show that

(
∪

q−1
2 +t

i= q−1
2 +1

Cs−2i

)
∩ −q

(
∪

q−1
2

i=0Cs−2i

)
= Cs−q−1.

It is easy to show that −qCs−q−1 = Cs−q+1. Therefore, we have

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
∩ −q

(
∪

q−1
2

i=0Cs−2i

)

=
(
Cs−q−1 ∪

(
∪

q−1
2 +t

i= q+3
2

Cs−2i

))
∩ −q

(
∪

q−1
2

i=0Cs−2i

)

=
(
Cs−q−1 ∩ −q

(
∪

q−1
2

i=0Cs−2i

))

∪
((

∪
q−1

2 +t

i= q+3
2

Cs−2i

)
∩ −q

(
∪

q−1
2

i=0Cs−2i

))

= Cs−q−1.

In fact,

Cs−q−1 ∩ −q

(
∪

q−1
2

i=0Cs−2i

)
= Cs−q−1

from Lemma 2 and

(
∪

q−1
2 +t

i= q+3
2

Cs−2i

)
∩ −q

(
∪

q−1
2

i=0Cs−2i

)
= ∅

for 2 ≤ t ≤ q−1
2 .

If

(
∪

q−1
2 +t

i= q+3
2

Cs−2i

)
∩ −q

(
∪

q−1
2

i=0Cs−2i

)
�= ∅ for 2 ≤ t ≤ q−1

2 , i.e.,

(
∪t
i=2Cs−2

(
i+ q−1

2

)
)

∩ −q

(
∪

q−1
2

i=0Cs−2i

)
�= ∅

for 2 ≤ t ≤ q−1
2 , then there exist two integers l and j , where 2 ≤ l ≤ q−1

2 and

0 ≤ j ≤ q−1
2 , such that s−2(l+ q−1

2 ) ≡ −q(s−2 j)q2k mod 2n for some k ∈ {0, 1}.
We can seek a contradiction as follows.
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(i) When k = 0, we have s−2(l+ q−1
2 ) ≡ −q(s−2 j) mod 2n. Since −q(s−2 j) ≡

−s + 2 jq mod 2n, it follows that s − 2(l + q−1
2 ) ≡ −s + 2q j mod 2n, i.e.,

s ≡ l + q−1
2 + q j mod n. If 0 ≤ j ≤ q−3

2 and 2 ≤ l ≤ q−1
2 , then we have

q+3
2 ≤ l + q−1

2 + q j ≤ q−1
2 + q−1

2 + q q−3
2 = q2−q−2

2 < s, which is in

contradiction with s = q2+1
2 . If j = q−1

2 and 2 ≤ l ≤ q−1
2 , then we have

s ≡ l + q−1
2 + q q−1

2 mod n, it is equivalent to 1 ≡ l mod n, which is in

contradiction with 2 ≤ l ≤ q−1
2 .

(ii) When k = 1, s − 2(l + q−1
2 ) ≡ −(s − 2 j)q3 ≡ −s + 2 jq(q2 + 1) − 2 jq ≡

−s−2 jq mod 2n, i.e., s+ jq ≡ l+ q−1
2 mod n. We have q+3

2 ≤ l+ q−1
2 ≤ q−1

from assumption, while s ≤ s + jq ≤ s + q q−1
2 = 2q2−q+1

2 < n. This yields a
contradiction.

From the above discussions, we can see

(
∪

q−1
2 +t

i= q−1
2 +1

Cs−2i

)
∩ −q

(
∪

q−1
2

i=0Cs−2i

)
= Cs−q−1

for 2 ≤ t ≤ q−1
2 .

Secondly, we show that

(
∪

q−1
2

i=0Cs−2i

)
∩ −q

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
= Cs−q+1.

Since

−q

((
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
∩ −q

(
∪

q−1
2

i=0Cs−2i

))
= −qCs−q−1 = Cs−q+1,

it follows that

(
∪

q−1
2

i=0Cs−2i

)
∩ −q

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
= Cs−q+1.

Finally, we show that

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
∩ −q

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
= ∅.

If

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
∩ −q

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
�= ∅ for 2 ≤ t ≤ q−1

2 , i.e.,

(
∪t
i=1Cs−2

(
i+ q−1

2

)
)

∩ −q

(
∪t
i=1Cs−2

(
i+ q−1

2

)
)

�= ∅
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for 2 ≤ t ≤ q−1
2 , then there exist integers l and j , where 2 ≤ l, j ≤ q−1

2 , such that

s − 2(l + q−1
2 ) ≡ −q(s − 2( j + q−1

2 ))q2k mod 2n for some k ∈ {0, 1}. We can seek
a contradiction as follows.

(i) When k = 0, s − 2(l + q−1
2 ) ≡ −q(s − 2( j + q−1

2 )) mod 2n. Since −q(s −
2( j + q−1

2 )) ≡ −s + 2q( j + q−1
2 ) mod 2n, it follows that s − 2(l + q−1

2 ) ≡
−s + 2q( j + q−1

2 ) mod 2n, i.e., s ≡ l + q−1
2 + q( j + q−1

2 ) mod n. Hence,

s ≡ l + q j + q2−1
2 mod n, which is equivalent to 1 ≡ l + q j mod n. This

congruence is in contradiction with 2+2q ≤ l+q j ≤ q−1
2 +q q−1

2 = q2−1
2 < n.

(ii) When k = 1, s−2(l+ q−1
2 ) ≡ −q3(s−2( j+ q−1

2 )) mod 2n. Since −q3(s−2( j+
q−1

2 )) ≡ −s+2q(q2 +1)( j+ q−1
2 )−2q( j+ q−1

2 ) ≡ −s−2q( j+ q−1
2 ) mod 2n,

it follows that s+q( j + q−1
2 ) ≡ l + q−1

2 mod n. The congruence is equivalent to

( j −1)q ≡ l mod n. Since q ≤ ( j −1)q ≤ q2−3q
2 , which is in contradiction with

2 ≤ l ≤ q−1
2 , it follows that

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
∩ −q

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
= ∅. From

Lemma 1, we have c = 4. From Theorem 1, there exist entanglement-assisted
quantum codes with parameters [[q2 + 1, q2 + 5 − 2q − 4t, q + 2t + 1; 4]]q ,
where 2 ≤ t ≤ q−1

2 .

Lemma 3 [28] Let n = q2+1
2 , where q is an odd prime power. If C is a q2-ary

negacyclic code of length n with defining set Z = ∪δ
i=1C2i−1, where C2i−1 = {2i −

1, 1 − 2i} and 1 ≤ δ ≤ q−1
2 , then C⊥h ⊆ C.

Now, we use Lemma 4 to express Lemma 3 and show it for complementary.

Lemma 4 Let n = q2+1
2 , s = n and r = 2. Then, we have the following properties:

(1) The q2-cyclotomic cosets modulo 2n containing some integers from 1 to 2n are
Cs = {s} and Cs−2 j = {s − 2 j, s + 2 j} for 1 ≤ j ≤ s−1

2 ;
(2) IfC is aq2-ary negacyclic codeof lengthn with defining set Z = ∪δ

j=1Cs−2 j ,where

1 ≤ δ ≤ q−1
2 , then C⊥h ⊆ C.

Proof (1) It is easy to see that Cs = {s}. Now we only need to show that Cs−2 j =
{s − 2 j, s + 2 j} for 1 ≤ j ≤ s−1

2 . Since (s − 2 j)q2 = sq2 − 2 j (q2 + 1) + 2 j ≡
s + 2 j mod 2n, it follows that Cs−2 j = {s − 2 j, s + 2 j} for 1 ≤ j ≤ s−1

2 . Now we
show that Cs−2 j are disjoint. If there exist two integers l and j , 1 ≤ l �= j ≤ s−1

2
such that Cs−2 j = Cs−2l , then we have s − 2l ≡ (s − 2 j)q2k ≡ s − 2 jq2k mod 2n
for k ∈ {0, 1}.When k = 0, s − 2l ≡ s − 2 j mod 2n, i.e., 2l ≡ 2 j mod 2n, which
is in contradiction with l �= j . When k = 1, we have 0 ≡ l + j mod n. Since
2 ≤ l + j ≤ s − 1, which is in contradiction with 0 ≡ l + j mod n. Therefore,
Cs−2 j = {s − 2 j, s + 2 j} for 1 ≤ j ≤ s−1

2 are disjoint.
(2) We only need to show that Z−q ∩ Z = ∅. If we have Z−q ∩ Z �= ∅, then there

exist two integers l and j , 1 ≤ l, j ≤ q−1
2 such that s−2l ≡ −(s−2 j)q2k+1 mod 2n

for some k ∈ {0, 1}. Since −sq ≡ s mod 2n and −sq3 ≡ s mod 2n, it follows that
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s − 2l ≡ −(s − 2 j)q2k+1 mod 2n, which is equivalent to 0 ≡ l + jq2k+1 mod n. We
seek a contradiction by considering the following cases.

(i) For k = 0, we have 1 + q ≤ l + jq ≤ q−1
2 + q−1

2 q = q2−1
2 < n, which is in

contradiction with 0 ≡ l + jq mod n.
(ii) For k = 1, we have 0 ≡ l + jq3 mod n. Since jq3 = j (q3 + q − q) =

jq(q2 + 1) − q j ≡ −q j mod n, it follows that 0 ≡ l − jq mod n. In fact,

1 ≤ l ≤ q−1
2 and q ≤ jq ≤ q2−q

2 , which is in contradiction with the congruence
0 ≡ l − jq mod n. Therefore, we have C⊥h ⊆ C.

Theorem 3 Let n = q2+1
2 , where q is an odd prime power with q > 7. If C is

a q2-ary negacyclic code of length n with defining set Z = ∪
q−1

2 +t
i=0 Cs−2i for 2 ≤

t ≤ q−1
2 , then there exist entanglement-assisted quantum codes with parameters

[[ q2+1
2 ,

q2+1
2 − 2q − 4t + 5, q + 2t + 1; 5]]q , where 2 ≤ t ≤ q−1

2 .

Proof From Lemma 4, let the defining set of negacyclic code C be Z = ∪
q−1

2 +t
i=0 Cs−2i .

We can see that C is a negacyclic code with parameters
[ q2+1

2 ,
q2+1

2 − q − 2t, q +
2t + 1

]
q2 from Propositions 1 and 2. Then, we have the following result.

Z1 = Z ∩ (−qZ)

=
((

∪
q−1

2
i=0Cs−2i

)
∪

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

))

∩
(

−q

(
∪

q−1
2

i=0Cs−2i

)
∪ −q

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

))

=
((

∪
q−1

2
i=0Cs−2i

)
∩ −q

(
∪

q−1
2

i=0Cs−2i

))

∪
(

∪
q−1

2
i=0Cs−2i ∩ −q

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

))

∪
((

∪
q−1

2 +t

i= q+1
2

Cs−2i

)
∩ −q

(
∪

q−1
2

i=0Cs−2i

))

∪
((

∪
q−1

2 +t

i= q+1
2

Cs−2i

)
∩ −q

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

))

= Cs ∪ Cs−q−1 ∪ Cs−q+1. (∗∗)

From Lemma 4, we have

(
∪

q−1
2

i=1Cs−2i

)
∩ −q

(
∪

q−1
2

i=1Cs−2i

)
= ∅.

Since −qCs = Cs and

(
∪

q−1
2

i=0Cs−2i

)
∩ −q

(
∪

q−1
2

i=0Cs−2i

)
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=
(
Cs ∪

(
∪

q−1
2

i=1Cs−2i

))
∩

(
−qCs ∪ −q

(
∪

q−1
2

i=1Cs−2i

))

= Cs ∪
((

∪
q−1

2
i=1Cs−2i

)
∩ −q

(
∪

q−1
2

i=1Cs−2i

))
,

it follows that

(
∪

q−1
2

i=0Cs−2i

)
∩ −q

(
∪

q−1
2

i=0Cs−2i

)
= Cs .

In order to get the result of equation (∗∗), we have to show that

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
∩ −q

(
∪

q−1
2

i=0Cs−2i

)
= Cs−q−1,

(
∪

q−1
2

i=0Cs−2i

)
∩ −q

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
= Cs−q+1

and

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
∩ −q

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
= ∅

as follows.
Firstly, we show that

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
∩ −q

(
∪

q−1
2

i=0Cs−2i

)
= Cs−q−1.

From −qCs−q+1 = Cs−q−1 and −qCs = Cs , we have

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
∩ −q

(
∪

q−1
2

i=0Cs−2i

)

=
(
Cs−q−1 ∪

(
∪

q−1
2 +t

i= q+3
2

Cs−2i

))
∩ −q

(
∪

q−1
2

i=0Cs−2i

)

=
(
Cs−q−1 ∩ −q

(
∪

q−1
2

i=0Cs−2i

))

∩
((

∪
q−1

2 +t

i= q+3
2

Cs−2i

)
∩ −q

(
∪

q−1
2

i=0Cs−2i

))

= Cs−q−1.

In fact,

∪
q−1

2 +t

i= q+3
2

Cs−2i ∩ −q

(
∪

q−1
2

i=0Cs−2i

)
= ∅
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for 2 ≤ t ≤ q−1
2 . If

(
∪

q−1
2 +t

i= q+3
2

Cs−2i

)
∩ −q

(
∪

q−1
2

i=0Cs−2i

)
�= ∅ for 2 ≤ t ≤ q−1

2 , i.e.,

(
∪t
i=2Cs−2

(
i+ q−1

2

)
)

∩ −q

(
∪

q−1
2

i=0Cs−2i

)
�= ∅

for 2 ≤ t ≤ q−1
2 , then there exist integers l and j , where 2 ≤ l ≤ q−1

2 and 0 ≤ j ≤
q−1

2 , such that s − 2(l + q−1
2 ) ≡ −q(s − 2 j)q2k mod 2n for some k ∈ {0, 1}. We can

seek a contradiction as follows.

(i) When k = 0, we have s − 2(l + q−1
2 ) ≡ −q(s − 2 j) mod 2n. Since −q(s −

2 j) ≡ s + 2 jq mod 2n, we have s − 2(l + q−1
2 ) ≡ s + 2q j mod 2n, i.e.,

0 ≡ l + q−1
2 + q j mod n. If 0 ≤ j ≤ q−3

2 and 2 ≤ l ≤ q−1
2 , then we have

q+3
2 ≤ l + q−1

2 + q j ≤ q−1
2 + q−1

2 + q q−3
2 = q2−q−2

2 < n, which is in

contradiction with 0 ≡ l + q−1
2 + q j mod n. If 2 ≤ l ≤ q−1

2 and j = q−1
2 , then

we have 0 ≡ l + q−1
2 + q q−1

2 mod n that is equal to 0 ≡ l − 1 mod n, which is

in contradiction with 1 ≤ l − 1 ≤ q−3
2 .

(ii) When k = 1, we have s − 2(l + q−1
2 ) ≡ −(s − 2 j)q3 ≡ −s + 2 jq(q2 + 1) −

2 jq ≡ −s − 2 jq mod 2n, i.e., jq ≡ l + q−1
2 mod n. When j = 0, we have

0 ≡ l+ q−1
2 mod n, which is in contradiction with q+3

2 ≤ l+ q−1
2 ≤ q−1. When

1 ≤ j ≤ q−1
2 , we have q ≤ jq ≤ q q−1

2 = q2−q
2 < n, which is in contradiction

with q+3
2 ≤ l + q−1

2 ≤ q − 1.

From the above discussions, we can see that the result follows.
Secondly, we show that

(
∪

q−1
2

i=0Cs−2i

)
∩ −q

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
= Cs−q+1.

From

−q

((
∪

q−1
2 +t

i= q−1
2 +1

Cs−2i

)
∩ −q

(
∪

q−1
2

i=0Cs−2i

))
= −qCs−q−1 = Cs−q+1,

we have
(

∪
q−1

2
i=0Cs−2i

)
∩ −q

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
= Cs−q+1.

Finally, we show that

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
∩ −q

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
= ∅.

If

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
∩ −q

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
�= ∅ for 2 ≤ t ≤ q−1

2 , i.e.,

(
∪t
i=1Cs−2

(
i+ q−1

2

)
)

∩ −q

(
∪t
i=1Cs−2

(
i+ q−1

2

)
)

�= ∅
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for 2 ≤ t ≤ q−1
2 , then there exist integers l and j , where 2 ≤ l, j ≤ q−1

2 , such that

s − 2(l + q−1
2 ) ≡ −q(s − 2( j + q−1

2 ))q2k mod 2n for some k ∈ {0, 1}. We can seek
a contradiction as follows.

(i) When k = 0, s − 2(l + q−1
2 ) ≡ −q(s − 2( j + q−1

2 )) mod 2n. Since −q(s −
2( j + q−1

2 )) ≡ −s + 2q( j + q−1
2 ) mod 2n, it follows that s − 2(l + q−1

2 ) ≡
−s + 2q( j + q−1

2 ) mod 2n, i.e., 0 ≡ l + q−1
2 + q( j + q−1

2 ) mod n. Hence,

0 ≡ l + q j + q2−1
2 mod n, which is equivalent to 1 ≡ l + q j mod n. This

congruence is in contradiction with 2+2q ≤ l+q j ≤ q−1
2 +q q−1

2 = q2−1
2 < n.

(ii) When k = 1, s−2(l+ q−1
2 ) ≡ −q3(s−2( j+ q−1

2 )) mod 2n. Since −q3(s−2( j+
q−1

2 ) ≡ −s+2q(q2 +1)( j + q−1
2 )−2q( j + q−1

2 ) ≡ −s−2q( j + q−1
2 ) mod 2n,

it follows that q( j + q−1
2 ) ≡ l + q−1

2 mod n. The congruence is equivalent to

( j − 1)q ≡ l mod n. Since q ≤ ( j − 1)q ≤ q2−3q
2 < n, which is in contradiction

with 2 ≤ l ≤ q−1
2 , then we have

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
∩ −q

(
∪

q−1
2 +t

i= q+1
2

Cs−2i

)
= ∅.

From Lemma 1, we have c = 5. From Theorem 1, there exist entanglement-assisted

quantum codes with parameters [[ q2+1
2 ,

q2+1
2 − 2q − 4t + 5, q + 2t + 1; 5]]q , where

2 ≤ t ≤ q−1
2 .

Lemma 5 [36] Let n = λ(q + 1), where q is an odd prime power, λ is an odd divisor
of q − 1. Then, we have the following properties:

(1) The q2-cyclotomic cosets modulo 2n containing some integers from 1 to 2n are
C2i−1 = {2i − 1} for 1 ≤ i ≤ n;

(2) If C is a q2-ary negacyclic code with length 2n and the defining set is Z =
∪δ
i=1C2i−1, where C2i−1 = {2i − 1} for 1 ≤ δ ≤ q−1

2 + λ,then C⊥h ⊆ C.

Theorem 4 Let n = λ(q + 1), where q is an odd prime power with q ≥ 7, λ is an
odd divisor of q − 1 with λ ≥ 3. If C is a q2-ary negacyclic code of length n with

defining set Z = ∪
q−1

2 +λ+t
i=1 C2i−1. Then there exist entanglement-assisted quantum

codes with parameters [[λ(q + 1), λ(q + 1) − 2λ − 2t − q + 5,
q+1

2 + λ + t; 4]]q for
q+3

2 ≤ t ≤ q−1
2 + λ.

Proof From Lemma 5, let the defining set of negacyclic code C be Z =
∪

q−1
2 +λ+t

i=1 C2i−1, C is a negacyclic code with parameters [λ(q+1), λ(q+1)− (
q−1

2 +
λ + t), q+1

2 + λ + t]q2 from Propositions 1 and 2. Then, we have the following result.
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Z1 = Z ∩ (−qZ)

=
((

∪
q−1

2 +λ

i=1 C2i−1

)
∪

(
∪

q−1
2 +λ+t

i= q+1
2 +λ

C2i−1

))

∩
(

−q

(
∪

q−1
2 +λ

i=1 C2i−1

)
∪ −q

(
∪

q−1
2 +λ+t

i= q+1
2 +λ

C2i−1

))

=
((

∪
q−1

2 +λ

i=1 C2i−1

)
∩ −q

(
∪

q−1
2 +λ

i=1 C2i−1

))

∪
((

∪
q−1

2 +λ

i=1 C2i−1

)
∩ −q

(
∪

q−1
2 +λ+t

i= q+1
2 +λ

C2i−1

))

∪
((

∪
q−1

2 +λ+t

i= q+1
2 +λ

C2i−1

)
∩ −q

(
∪

q−1
2 +λ

i=1 C2i−1

))

∪
((

∪
q−1

2 +λ+t

i= q+1
2 +λ

C2i−1) ∩ −q(∪
q−1

2 +λ+t

i= q+1
2 +λ

C2i−1

))

= C
2
(
q+1

2 +λ
)
−1

∪ C2λ−1 ∪ C
2
(
q−1

2 +λ
)
−1

∪ C2(λ+q)−1. (∗ ∗ ∗)

From Lemma 5, we have

(
∪

q−1
2 +λ

i=1 C2i−1

)
∩ −q

(
∪

q−1
2 +λ

i=1 C2i−1

)
= ∅. In order to

get the result of equation (∗ ∗ ∗), we have to show that

(
∪

q−1
2 +λ+t

i= q+1
2 +λ

C2i−1

)
∩ −q

(
∪

q−1
2 +λ

i=1 C2i−1

)
= C

2
(
q+1

2 +λ
)
−1

∪ C2(λ+q)−1,

(
∪

q−1
2 +λ

i=1 C2i−1

)
∩ −q

(
∪

q−1
2 +λ+t

i= q+1
2 +λ

C2i−1

)
= C2λ−1 ∪ C

2
(
q−1

2 +λ
)
−1

and

(
∪

q−1
2 +λ+t

i= q+1
2 +λ

C2i−1

)
∩ −q

(
∪

q−1
2 +λ+t

i= q+1
2 +λ

C2i−1

)
= ∅

as follows.
Firstly, we show that

(
∪

q−1
2 +λ+t

i= q+1
2 +λ

C2i−1

)
∩ −q

(
∪

q−1
2 +λ

i=1 C2i−1

)
= C

2
(
q+1

2 +λ
)
−1

∪ C2(λ+q)−1.

Since −qC2(
q+1

2 +λ)−1 = C2λ−1 and −qC2(
q−1

2 +λ)−1 = C2(λ+q)−1 from Lemma 5,

we have

(
∪

q−1
2 +λ+t

i= q+1
2 +λ

C2i−1

)
∩ −q

(
∪

q−1
2 +λ

i=1 C2i−1

)

=
(
C

2
(
q+1

2 +λ
)
−1

∪
(

∪
q−1

2 +λ+t

i= q+3
2 +λ

C2i−1

))
∩ −q

(
∪

q−1
2 +λ

i=1 C2i−1

)
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=
(
C

2
(
q+1

2 +λ
)
−1

∩ −q

(
∪

q−1
2 +λ

i=1 C2i−1

))

∪
((

∪λ+q−1

i= q+3
2 +λ

C2i−1

)
∩ −q

(
∪

q−1
2 +λ

i=1 C2i−1

))

∪
(
C2(λ+q)−1 ∩ −q

(
∪

q−1
2 +λ

i=1 C2i−1

))

∪
((

∪
q−1

2 +λ+t
i=λ+q+1C2i−1

)
∩ −q

(
∪

q−1
2 +λ

i=1 C2i−1

))

= C
2
(
q+1

2 +λ
)
−1

∪ C2(λ+q)−1.

In fact,

(
∪λ+q−1

i= q+3
2 +λ

C2i−1

)
∩ −q

(
∪

q−1
2 +λ

i=1 C2i−1

)
= ∅

and
(

∪
q−1

2 +λ+t
i=λ+q+1C2i−1

)
∩ −q

(
∪

q−1
2 +λ

i=1 C2i−1

)
= ∅

for q+3
2 ≤ t ≤ q−1

2 + λ. It can be divided into two parts to discuss as follows.

(i) Since

(
∪λ+q−1

i= q+3
2 +λ

C2i−1

)
∩ −q

(
∪

q−1
2 +λ

i=1 C2i−1

)
= ∅ can be expressed by

(
∪λ+q−1

i= q+3
2 +λ

C2i−1

)
∩ −q

(
∪

q−1
2 +λ

i=1 C2i−1

)

=
(

∪λ+q−1

i= q+3
2 +λ

C2i−1

)
∩ −q

(
∪

q−3
2 +λ

i=1 C2i−1 ∪ C
2
(
q−1

2 +λ
)
−1

)

=
[(

∪λ+q−1

i= q+3
2 +λ

C2i−1

)
∩ −q

(
∪

q−3
2 +λ

i=1 C2i−1

)]

∪
[
∪λ+q−1

i= q+3
2 +λ

C2i−1 ∩ C2(q+λ)−1

]
= ∅.

From Lemma 5, we can see that ∪λ+q−1

i= q+3
2 +λ

C2i−1 ∩ C2(q+λ)−1 = ∅. Now, we have to

show

(
∪λ+q−1

i= q+3
2 +λ

C2i−1

)
∩ −q

(
∪

q−3
2 +λ

i=1 C2i−1

)
= ∅. If

(
∪λ+q−1

i= q+3
2 +λ

C2i−1

)
∩ −q

(
∪

q−3
2 +λ

i=1 C2i−1

)
�= ∅.

This case is equivalent to

(
∪

q−3
2

i=1C2(
q+1

2 +λ+i)−1

)
∩ −q

(
∪

q−3
2 +λ

i=1 C2i−1

)
�= ∅. Then

there exist integers l and j , where 1 ≤ l ≤ q−3
2 and 1 ≤ j ≤ q−3

2 + λ, such that
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2(
q+1

2 + λ + l) − 1 ≡ −q(2 j − 1) mod 2n. If 1 ≤ l ≤ q−3
2 and 1 ≤ j ≤ q−3

2 + λ,

then we have 2(
q+1

2 + λ + l) − 1 ≡ −q(2 j − 1) mod 2n, i.e., l + λ + q j ≡ 0 mod n.
Let q −1 = 2λε with some integer ε. Then, 1 ≤ j ≤ (ε+1)λ−1, j can be expressed
by the form j = uλ + v, where 0 ≤ u ≤ ε and 1 ≤ v ≤ λ − 1. Therefore, we have
l + λ + q(uλ + v) = l + λ(qu + u) + qv − λu + λ ≡ l + qv − λu + λ ≡ 0 mod n.
Since 1+q−ελ+λ ≤ l+qv−λu+λ ≤ q−3

2 +q(λ−1)+λ = λ(q+1)− q+3
2 < n,

which is in contradiction with l + qv − λu + λ ≡ 0 mod n.

(ii) Since

(
∪

q−1
2 +λ+t

i=λ+q+1C2i−1

)
∩ −q

(
∪

q−1
2 +λ

i=1 C2i−1

)
= ∅ can be expressed by

(
∪

q−1
2 +λ+t

i=λ+q+1C2i−1

)
∩ −q

(
∪

q−1
2 +λ

i=1 C2i−1

)

=
(

∪
q−1

2 +λ+t
i=λ+q+1C2i−1

)
∩ −q

(
∪

q−3
2 +λ

i=1 C2i−1 ∪ C
2
(
q−1

2 +λ
)
−1

)

=
[(

∪
q−1

2 +λ+t
i=λ+q+1C2i−1

)
∩ −q

(
∪

q−3
2 +λ

i=1 C2i−1

)]

∪
[
(∪

q−1
2 +λ+t

i=λ+q+1C2i−1 ∩ C2(q+λ)−1

]
= ∅.

If

(
∪

q−1
2 +λ+t

i=λ+q+1C2i−1

)
∩ −q

(
∪

q−3
2 +λ

i=1 C2i−1

)
�= ∅ for q+3

2 ≤ t ≤ q−1
2 + λ, i.e.,

(
∪t− q+1

2
i=1 C2(i+q+λ)−1

)
∩ −q

(
∪

q−3
2 +λ

i=1 C2i−1

)
�= ∅

for 1 ≤ t − q+1
2 ≤ λ − 1. Then there exist integers l and j , where 1 ≤ l ≤ λ − 1

and 1 ≤ j ≤ q−3
2 + λ, such that 2(l + q + λ) − 1 ≡ −q(2 j − 1) mod 2n, i.e.,

0 ≡ l + q j + q−1
2 + λ mod n.

Let q − 1 = 2λε with some integer ε. Then, 1 ≤ j ≤ (ε + 1)λ − 1. j can be
expressed by the form j = uλ + v, where 0 ≤ u ≤ ε and 1 ≤ v ≤ λ − 1. Therefore,
we have l + λ + q(uλ + v) + q−1

2 = l + λ(qu + u) + qv − λu + λ + q−1
2 ≡

l + qv − λu + λ + q−1
2 ≡ 0 mod n. If 0 ≤ u ≤ ε and 1 ≤ v ≤ λ − 1, then

1 + q − ελ + λ + q−1
2 ≤ l + qv − λu + λ + q−1

2 ≤ q−3
2 + q(λ − 1) + λ + q−1

2 =
λ(q +1)−2 < n, which is in contradiction with l+qv −λu+λ++ q−1

2 ≡ 0 mod n.
Secondly, we show that

(
∪

q−1
2 +λ

i=1 C2i−1

)
∩ −q

(
∪

q−1
2 +λ+t

i= q+1
2 +λ

C2i−1

)
= C2λ−1 ∪ C

2
(
q−1

2 +λ
)
−1

.

Since

(
∪

q−1
2 +λ+t

i= q+1
2 +λ

C2i−1

)
∩ −q

(
∪

q−1
2 +λ

i=1 C2i−1

)
= C2(

q+1
2 +λ)−1 ∪ C2(λ+q)−1,

it follows that −q

(
∪

q−1
2 +λ+t

i= q+1
2 +λ

C2i−1

)
∩

(
∪

q−1
2 +λ

i=1 C2i−1

)
= −qC2(

q+1
2 +λ)−1 ∪

−qC2(λ+q)−1 = C2λ−1 ∪ C2(
q−1

2 +λ)−1.
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Finally, we show that

(
∪

q−1
2 +λ+t

i= q+1
2 +λ

C2i−1

)
∩ −q

(
∪

q−1
2 +λ+t

i= q+1
2 +λ

C2i−1

)
= ∅ for q+3

2 ≤
t ≤ q−1

2 + λ.

If

(
∪

q−1
2 +λ+t

i= q+1
2 +λ

C2i−1

)
∩−q

(
∪

q−1
2 +λ+t

i= q+1
2 +λ

C2i−1

)
�= ∅ for q+3

2 ≤ t ≤ q−1
2 +λ, which

is equivalent to
(
∪t
i=1C2(

q−1
2 +λ+i)−1

)
∩ −q

(
∪t
i=1C2(

q−1
2 +λ+i)−1

)
�= ∅. Then there

exist integers l and j , where q+3
2 ≤ l, j ≤ q−1

2 + λ, such that 2(
q−1

2 + λ + l) − 1 ≡
−q(2(

q−1
2 + λ + j) − 1) mod 2n, i.e., q+1

2 ≡ l + q j mod n. Since (q + 1)
q+3

2 ≤
l + q j ≤ (q + 1)(

q−1
2 + λ), we have 2q + 2 ≤ l + q j − n ≤ q2−1

2 , which is in

contradiction with q+1
2 ≡ i + q j mod n. Therefore, the result follows.

From Lemma 1, we have c = 4. From Theorem 1, there exist entanglement-assisted
quantum codes with parameters [[λ(q+1), λ(q+1)−2λ−2t−q+5,

q+1
2 +λ+t; 4]]q

for q+3
2 ≤ t ≤ q−1

2 + λ.

Lemma 6 [36] Let n = 2λ(q +1), where q is an odd prime power with q ≡ 1 mod 4,
λ is an odd divisor of q − 1.

(1) The q2-cyclotomic cosets modulo 2n containing some integers from 1 to 2n are
C2i−1 = {2i − 1} for 1 ≤ i ≤ n;

(2) If C is q2-ary negacyclic code with length 2n and the defining set is Z =
∪δ
i=1C2i−1, where C2i−1 = {2i − 1} for 1 ≤ δ ≤ q−1

2 + 2λ,then C⊥h ⊆ C.

We can obtain a similar result by using the method of Theorem 4 in the following
theorem.

Theorem 5 Let n = 2λ(q+1), whereq ≥ 13 is anoddprimepowerwithq ≡ 1 mod 4,
λ ≥ 3 is an odd divisor of q − 1. If C is a q2-ary negacyclic code of length n with

defining set Z = ∪
q−1

2 +2λ+t
i=1 C2i−1. Then there exist entanglement-assisted quantum

codes with parameters [[2λ(q + 1), 2λ(q + 1) − 4λ − 2t − q + 5,
q+1

2 + 2λ + t; 4]]q
for q+3

2 ≤ t ≤ q−1
2 + 2λ with q ≡ 1 mod 4.

Remark 1 From Proposition 3, we can see that these entanglement-assisted quantum
codes constructed from Theorems 2, 3, 4 and 5 are quantum MDS codes. There are
some entanglement-assisted quantum MDS codes with different lengths are listed in
Tables 1, 2, 3, and 4. The distance of these quantum MDS codes is greater than q + 1.
The readers can also construct some other families of entanglement-assisted quantum
MDS codes by using Lemma 1 to obtain entangled states.

In the above part of this section, we have discussed four families of entanglement-
assisted quantum MDS codes constructed from negacyclic codes. In the following part
of this section, we will find that there exist entanglement-assisted quantum codes with
maximal entanglement.
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Table 1 Sample parameters of
entanglement-assisted quantum
MDS codes constructed from
Theorem 2

q n [[q2 + 1, q2 + 5 − 2q − 4t, q + 2t + 1; 4]]q
5 26 [[26, 12, 10; 4]]5
9 82 [[82, 60, 14; 4]]9
9 82 [[82, 56, 16; 4]]9
9 82 [[82, 52, 18; 4]]9
13 170 [[170, 140, 18; 4]]13

13 170 [[170, 136, 20; 4]]13

13 170 [[170, 132, 22; 4]]13

13 170 [[170, 128, 24; 4]]13

13 170 [[170, 124, 26; 4]]13

17 290 [[290, 252, 22; 4]]17

17 290 [[290, 248, 24; 4]]17

17 290 [[290, 244, 26; 4]]17

17 290 [[290, 240, 28; 4]]17

17 290 [[290, 236, 30; 4]]17

17 290 [[290, 232, 32; 4]]17

17 290 [[290, 228, 34; 4]]17

Table 2 Sample parameters of optimal entanglement-assisted quantum MDS codes constructed from The-
orem 3

q n

[[
q2+1

2 ,
q2+1

2 − 2q − 4t + 5, q + 2t + 1; 5

]]

q

9 41 [[41, 20, 14; 5]]9
9 41 [[41, 16, 16; 5]]9
9 41 [[41, 12, 18; 5]]9
11 61 [[61, 36, 16; 5]]11

11 61 [[61, 32, 18; 5]]11

11 61 [[61, 28, 20; 5]]11

11 61 [[61, 24, 22; 5]]11

13 85 [[85, 56, 18; 5]]13

13 85 [[85, 52, 20; 5]]13

13 85 [[85, 48, 22; 5]]13

13 85 [[85, 44, 24; 5]]13

13 85 [[85, 40, 26; 5]]13

17 145 [[145, 108, 22; 5]]17

17 145 [[145, 104, 24; 5]]17

17 145 [[145, 100, 26; 5]]17

17 145 [[145, 96, 28; 5]]17

17 145 [[145, 92, 30; 5]]17

17 145 [[145, 88, 32; 5]]17

17 145 [[145, 84, 34; 5]]17
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Table 3 Sample parameters of entanglement-assisted quantum MDS codes constructed from Theorem 4

q λ [[λ(q + 1), λ(q + 1) − 2λ − 2t − q + 5,
q+1

2 + λ + t; 4]]q
7 3 [[24, 6, 12; 4]]7
7 3 [[24, 4, 13; 4]]7
11 5 [[60, 30, 18; 4]]11

11 5 [[60, 28, 19; 4]]11

11 5 [[60, 26, 20; 4]]11

11 5 [[60, 24, 21; 4]]11

13 3 [[42, 12, 18; 4]]13

13 3 [[42, 10, 19; 4]]13

19 3 [[60, 18, 24; 4]]19

19 3 [[60, 16, 25; 4]]19

Table 4 Sample parameters of entanglement-assisted quantum MDS codes constructed from Theorem 5

q λ [[2λ(q + 1), 2λ(q + 1) − 4λ − 2t − q + 5,
q+1

2 + 2λ + t; 4]]q
13 3 [[84, 48, 21; 4]]13

13 3 [[84, 46, 22; 4]]13

13 3 [[84, 44, 23; 4]]13

13 3 [[84, 42, 24; 4]]13

13 3 [[84, 40, 25; 4]]13

25 3 [[156, 96, 33; 4]]25

25 3 [[156, 94, 34; 4]]25

25 3 [[156, 92, 35; 4]]25

25 3 [[156, 90, 36; 4]]25

25 3 [[156, 88, 37; 4]]25

Theorem 6 Let n = q2 + 1 and s = n/2, where q ≥ 5 is an odd prime power
with q ≡ 1(mod 4). If C is a q2-ary negacyclic code of length n with defining set
Z = Cs−q+1 ∪Cs−q−1, then there exist maximal-entanglement entanglement-assisted
quantum codes with parameters [[q2 + 1, q2 − 3, d ≥ 3; 4]]q .
Proof Let the defining set of negacyclic code C be Z = Cs−q+1 ∪ Cs−q−1. From
Lemma 2, we can see that C is a negacyclic code with parameters [q2 +1, q2 −3, d ≥
3]q2 . Since Z ∩−qZ = Cs−q+1 ∪Cs−q−1, it follows that c = 4 from Lemma 1. From
Theorem 1, there exist maximal-entanglement entanglement-assisted quantum codes
with parameters [[q2 + 1, q2 − 3, d ≥ 3; 4]]q .
Theorem 7 Let n = q2+1

2 and s = n, where q is an odd prime power with q > 3. If C
is a q2-ary negacyclic code of length n with defining set Z = Cs−q+1 ∪Cs−q−1 ∪Cs,
then there exist maximal-entanglement entanglement-assisted quantum codes with

parameters
[[

q2+1
2 ,

q2+1
2 − 5, d ≥ 3; 5

]]

q
.
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Proof Let the defining set of negacyclic code C be Z = Cs−q+1 ∪ Cs−q−1 ∪
Cs . From Lemma 4, we can see that C is a negacyclic code with parameters[
q2+1

2 ,
q2+1

2 − 5, d ≥ 3
]

q2
. Since Z ∩ −qZ = Cs−q+1 ∪ Cs−q−1 ∪ Cs ,it follows

that c = 5 from Lemma 1. From Theorem 1, there exist maximal-entanglement

entanglement-assisted quantum codes with parameters
[[

q2+1
2 ,

q2+1
2 − 5, d≥3; 5

]]

q
.

Remark 2 In Theorems 6 and 7, it is not easy for us to obtain maximal-entanglement
entanglement-assisted quantum MDS codes under Hermitian construction, because
we have to ensure not only that the elements of q2-ary cyclotomic cosets of Z ∩ −qZ
are continuous, but also that Z ∩ −qZ = Z . In the future work, we will optimize the
algebraic structure of q2-ary cyclotomic cosets to harmonize the conflict.

5 Summary

In this paper, four families of entanglement-assisted quantum codes that satisfy the
entanglement-assisted quantum Singleton bound with q + 1 ≤ d ≤ (n + 2)/2
are constructed. Moreover, we also construct two families of maximal-entanglement
entanglement-assisted quantum codes. These quantum codes constructed in this paper
are different from the ones in the literature. In [22], the authors constructed some
families of entanglement-assisted quantum codes as follows:

(1) [[q2 + 1, q2 − 2d + 4, d; 1]]q , where q is a prime power, 2 ≤ d ≤ 2q is an even
integer.

(2) [[ q2−1
2 ,

q2−1
2 − 2d + 4, d; 2]]q , where q is an odd prime power, q+1

2 + 2 ≤ d ≤
3q
2 − 1

2 .
In this paper, we can transform the parameters of Theorems 2,3,4, and 5 into the
following forms.

(i) [[q2 + 1, q2 + 7 − 2d, d; 4]]q , where q + 5 ≤ d ≤ 2q, q is an odd prime power
with q ≥ 5 and q ≡ 1 mod 4.

(ii) [[ q2+1
2 ,

q2+1
2 − 2d + 7, d; 5]]q , where q + 5 ≤ d ≤ 2q and q is an odd prime

power with q > 7.
(iii) [[λ(q + 1), λ(q + 1) − 2d + 6, d; 4]]q , where q is a prime power with q ≥ 7, λ

is an odd divisor of q − 1 with λ ≥ 3 and q + 2 + λ ≤ d ≤ q + 2λ.
(iv) [[2λ(q+1), 2λ(q+1)−2d+6, d; 4]]q , where q is a prime power with q ≥ 13, λ

is an odd divisor of q−1 with λ ≥ 3, q ≡ 1 mod 4 and q+2+2λ ≤ d ≤ q+4λ.

The performance of an entanglement-assisted quantum code can be measured by
net rate ( k−c

n ). Brun et al. [8] showed that it was possible to obtain catalytic codes
when the net rate of an entanglement-assisted quantum code was positive. Qian and
Zhang [21] used net rate to study the performance of entanglement-assisted quantum
codes constructed from linear binary codes. Here, we compare [[q2 + 1, q2 + 7 −
2d, d; 4]]q with [[q2 +1, q2 −2d+4, d; 1]]q of [22] by using net rate, we can find that
entanglement-assisted quantum codes from Theorem 2 have greater distance. When

λ = q−1
2 or λ = q−1

4 , we can obtain [[ q2−1
2 ,

q2−1
2 − 2d + 6, d; 4]]q and compare

it with [[ q2−1
2 ,

q2−1
2 − 2d + 4, d; 2]]q of [22] by using net rate, which implies that
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entanglement-assisted quantum MDS codes constructed from Theorems 4 and 5 have
better distance. We can also search for entangled states c by using Lemma 1 to obtain
more entanglement-assisted quantum MDS codes. The more entangled states c can
increase the error-correcting ability of quantum codes.

In addition, we also construct two families of entanglement-assisted quantum codes
with maximal entanglement as follows.

(i) [[ q2+1
2 ,

q2+1
2 − 5, d ≥ 3; 5]]q , where q is an odd prime power with q > 3.

(ii) [[q2 + 1, q2 − 3, d ≥ 3; 4]]q , where q is an odd prime power with q ≥ 5 and
q ≡ 1 mod 4.

From Lemma 1, in order to obtain maximal-entanglement entanglement-assisted quan-
tum codes, the defining set of Z should satisfy Z∩−qZ = Z ; however, it is a necessary
condition. If we want to obtain maximal-entanglement entanglement-assisted quan-
tum MDS codes, we have to ensure the defining set Z of negacyclic codes can generate
an MDS code however, it is difficult for us to acquire the defining set Z in this manner.

In the future work, we will use other negacyclic codes even constacyclic codes
to construct some other entanglement-assisted quantum MDS codes with minimum
distance greater than q + 1. Moreover, how to construct maximal-entanglement
entanglement-assisted MDS codes from negacyclic codes or other methods is also
an interesting topic.
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