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Abstract We propose a novel scheme for remote preparation of an arbitrary n-qubit
state with the aid of an appropriate local 2n × 2n unitary operation and n maximally
entangled two-qubit states. The analytical expression of local unitary operation, which
is constructed in the form of iterative process, is presented for the preparation of n-
qubit state in detail. We obtain the total successful probabilities of the scheme in the
general and special cases, respectively. The feasibility of our scheme in preparing
remotely multi-qubit states is explicitly demonstrated by theoretical studies and con-
crete examples, and our results show that the novel proposal could enlarge the applied
range of remote state preparation.

Keywords Quantum information · Remote state preparation · Successful probability ·
Arbitrary multi-qubit states

1 Introduction

Remote state preparation (RSP), originally proposed by Lo [1], is the communication
process that transmits quantum states from a sender to a remote receiver using a
prior shared entanglement and some classical information. Compared with the usual
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teleportation [2–9], the sender in RSP knows completely the transmitted state to be
prepared by the receiver, while in the teleportation neither the sender nor the receiver
has knowledge of the transmitted state.

For the sake of that the RSP could be applied to quantum information, the RSP
has acquired lots of attention recently [10–25]. Pati [26] demonstrated that the RSP
is more economical than quantum teleportation and requires only one classical bit
for special states chosen from equatorial or polar great circles on a Bloch sphere,
but for general states, the RSP requires as much classical communication cost as
quantum teleportation does. Dai et al. [27] presented a scheme for probabilistic remote
preparation of an entangled two-qubit state with three parties from a sender to either of
two receivers via one partially entangled state. Wei et al. [28] explored how to realize
the RSP when the information of the partially entangled state is only available for
the sender. Meantime, some RSP schemes have been implemented experimentally via
nuclear magnetic resonance [29] and spontaneous parametric down-conversion [30].
Nevertheless, there are also many important and open subjects to be taken into account
for the RSP. One of them is the preparation of an arbitrary multi-qubit states in the
general and special cases.

The purpose of this paper is to give a new scheme to prepare an arbitrary n-qubit
state by using of an appropriate local 2n × 2n unitary operation, of which the solution
procedure is presented in the form of iterative process. Quantum channel is composed
of n maximally entangled two-qubit states, which can be obtained experimentally with
photons, electrons and so on [31–36]. The total successful probability of the RSP is
considered as one of the most important parameters; we calculated the successful prob-
abilities in the general and particular case, respectively. It is noting that the successful
probability for a general n-qubit state is only equal to 2−n via maximally entangled
two-qubit states. Moreover, when the relative phase parameters of transmitted states
are all zero, the successful probability would be improved to 21−n , twice as much as
the probability for general states. Besides, the successful probability would be equal to
1/2 when the amplitudes of prepared states are

√
2−n . The feasibility of the proposed

scheme is proved by theoretical studies and concrete examples. With our proposal,
one can prepare two-qubit states and three-qubit states in the general and particular
cases, respectively. Our results show that the novel proposal could enlarge the applied
range of remote state preparation.

The rest of this paper are organized as follows: In Sect. 2, a novel scheme for remote
preparation of an arbitrary n-qubit state is presented via an appropriate local 2n × 2n

unitary operation, of which the solution process is given in detail. The total successful
probability of the scheme is obtained, and it is equal to 2−n . In Sect. 3, we discuss
how to realize the RSP of special states. If the factors of transmitted states are all real
number, the successful probability is twice as much as the probability in the general
case, and equals to 21−n . Moreover, the successful probability would be improved
to 1/2 when the amplitude of transmitted states equal to

√
2−n . In Sect. 4, concrete

realization processes for preparing remotely two-qubit and three-qubit states in the
general and special cases are illustrated to demonstrate explicitly the feasibility of our
scheme. The paper concludes with Sect. 5.
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2 RSP of general n-qubit states

Suppose that the sender Alice wants to help the receiver Bob remotely prepare the
follow quantum state

|ψ〉 = c1|0 . . . 00〉 + c2|0 . . . 01〉 + · · · + c2n−1|1 . . . 10〉 + c2n |1 . . . 11〉
= [c1, c2, . . . c2n−1, c2n ] · [|Γ 〉]T (1)

where the real number c1 and complex ones c2, c3, . . . , c2n satisfy
∑2n

i=1 |ci |2 = 1, and
[|Γ 〉] = [|Γ1〉 · · · |Γ2n−1〉, |Γ2n 〉] = [|0 . . . 00〉 · · · |1 . . . 10〉, |1 . . . 11〉]. If and only
if the original state is not entangled, it could be presented as |ψ〉1 ⊗|ψ〉2 ⊗· · ·⊗|ψ〉n ,
here |ψ〉i (i = 1, 2 . . . n) is the state of particle i . The unentangled states would
be transmitted through the n-time processes of preparing an arbitrary single-qubit
state [26]. Quantum channel is composed of n maximally entangled two-qubit states
below

|Ψ 〉 jk = 1√
2
(|00〉 + |11〉) jk j = 1, 3, . . . , 2n − 1; k = j + 1. (2)

Without loss of generality, particle j belongs to the sender Alice, while particle k is
hold by the receiver Bob. Alice need to construct a special 2n × 2n unitary operation
U [Θn

n ] to realize the RSP. Actually, U [Θn
m] (m = 1, 2, . . . , n) takes the form of the

following 2m × 2m matrix

U [Θn
m] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
c∗
d+2 −c∗

d+1
cd+1 cd+2

)

m = 1;
(

U [Θn
m−1]|dm=0 U [Θn

m−1]|dm=1

η̃dmU [Θn
m−1]|dm=0 − η̃dm

−1
U [Θn

m−1]|dm=1

)

m ≥ 2.

(3)

here

Θn
m = (n; m; cd+1, cd+2, . . . , cd+2m ; dn . . . d2d1) (4)

d = 2n−1 · dn + 2n−2 · dn−1 + · · · + 2d2 (5)

ηdm |dm=0 =
√

∑2m−1

i=1 |cd+i |2 |dm=1
√

∑2m−1

i=1 |cd+i |2 |dm=0

(6)

η̃dm = I2m−1 · ηdm |dm=0 (7)

It should be emphasized that the binary number dn · · · d2d1 has initial state
dn = dn−1 = · · · = d1 = 0, and this number would be changed with the development
of the iterative process, given by Eq. (3). Note that U [Θn

n ] can be presented as
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c∗
2 −c∗

1 c∗
4 −c∗

3 · · ·
c1 c2 c3 c4 · · ·

η0
2c

∗
2 −η0

2c
∗
1 −(η0

2)
−1c∗

4 (η0
2)

−1c∗
3 · · ·

η0
2c1 η0

2c2 −(η0
2)

−1c3 −(η0
2)

−1c4 · · ·
...

...
...

...
. . .

∏n
i=2 η0

i c
∗
2 −∏n

i=2 η0
i c

∗
1 −∏n

i=3 η0
i (η0

2)
−1c∗

4

∏n
i=3 η0

i (η0
2)

−1c∗
3 · · ·∏n

i=2 η0
i c1

∏n
i=2 η0

i c2 −∏n
i=3 η0

i (η0
2)

−1c3 −∏n
i=3 η0

i (η0
2)

−1c4 · · ·
c∗

2n −c∗
2n−1

c2n−1 c2n

−(η2n−4
2 )−1c∗

2n (η2n−4
2 )−1c∗

2n−1
−(η2n−4

2 )−1c2n−1 −(η2n−4
2 )−1c2n

...
...

(∏n
i=2 −η2n−2i

i

)−1
c∗

2n −
(∏n

i=2 −η2n−2i
i

)−1
c∗

2n−1
(∏n

i=2 −η2n−2i
i

)−1
c2n−1

(∏n
i=2 −η2n−2i

i

)−1
c2n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(8)

In order to fulfill the RSP, Alice carries out the n-qubit projective measurement
on her particles (1, 3 . . . 2n − 1) in a set of mutually orthonormal basis vectors
{|λ1〉, |λ2〉, . . . , |λ2n 〉}, which are given by

[|λ〉]T = [|λ1〉, |λ2〉 . . . |λ2n 〉]T = U [Θn
n ] [|Γ 〉]T (9)

Meanwhile, the joint state of the whole system, formed by n maximally entangled
states, can be rewritten as

|Ψ 〉12 ⊗ |Ψ 〉34 · · · |Ψ 〉(2n−1)2n

=
(

1√
2

)n

·
2n∑

i=1

|λi 〉13···2n−1 ·
⎛

⎝
2n∑

j=1

U∗[Θn
n ](i, j)|Γ j 〉24···2n

⎞

⎠ (10)

The parameter U∗[Θn
n ](i, j) presents the element in the i-th row and j-th column of

the complex conjugate of the matrix U [Θn
n ]. After performing the measurement given

by Eq. (9), Alice informs Bob of her measurement results via classical channel. If
particles of Alice is |λ1〉 with the probability of 2−n , particles (2, 4 . . . 2n) would be

c2|Γ1〉 − c1|Γ2〉 + c4|Γ3〉 − c3|Γ4〉 + · · · + c2n |Γ2n−1〉 − c2n−1|Γ2n 〉 (11)

Hence, Bob performs σx · σz on particle 2n, and then Bob’s particles would be
on the original state, given by Eq. (1). From Eq. (10), one can find that if Alice
obtains the result |λk〉 (k = 2, 3 . . . 2n), particles (2, 4 . . . 2n) will collapse into
∑2n

j=1 U
∗[Θn

n ](i, j)|Γ j 〉24···2n . Because of that Bob has no information of this param-

eters c∗
i and ηdn , given by Eq. (8), Bob’s particles can not be unitarily converted into

the original state from |λk〉.
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From the above discussions, one can find that the RSP could be realized successfully
when the state of Alice’s particles is |λ1〉 with the probability of 2−n . The results are
in agreement with the probabilities of Refs. [12,13,27,28] when quantum channel is
a maximally entangled state.

3 RSP of special n-qubit states

In this sequel, the successful probability of the preparation for special n-qubit states,
in which ci = c∗

i (i = 2, . . . , 2n) or |ci | = √
2−n , would be calculated based on the

analyses in Sect. 2.
For the states shown as Eq. (10), it can be found that if Alice’s measurement outcome

is |λ2〉 and ci are all real, i.e., |ci | = c∗
i , particles (2, 4, . . . , 2n) should be prepared

remotely to

c1|Γ1〉 + c∗
2 |Γ2〉 + · · · + c∗

2n |Γ2n 〉 = c1|Γ1〉 + c2|Γ2〉 + · · · + c2n |Γ2n 〉

The above state is just equal to the original multi-qubit state without any unitary
operations. Because of that |λ1〉 and |λ2〉 are both advisable for the RSP when ci = c∗

i ,
the successful probability of RSP would be twice as much as the one of the general
case, and equals 21−n .

On the other hands, if |c j | = √
2−n , the parameters given by Eq. (6) would always

be ηdm = 1, and the unitary transformation U [Θn
n ] could be reduced to

U [Θn
n ]||c j |=√

2−n =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c∗
2 −c1 c∗

4 −c∗
3 · · · c∗

2n −c∗
2n−1

c1 c2 c3 c4 · · · c2n−1 c2n

c∗
2 −c1 −c∗

4 c∗
3 · · · −c∗

2n c∗
2n−1

c1 c2 −c3 −c4 · · · −c2n−1 −c2n

...
...

...
...

. . .
...

...

c∗
2 −c1 −c∗

4 c∗
3 · · · (−1)n−1c∗

2n (−1)nc∗
2n−1

c1 c2 −c3 −c4 · · · (−1)n−1c2n−1 (−1)n−1c2n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

From Eq. (10), one can find that

|λ2l−1〉13···2n−1 → U∗[Θn
n ]||c j |=√

2−n (2l − 1, j)|Γ j 〉24···2n (12)

Furthermore, for l ∈ {Z+ | 2l − 1 ≤ 2n}, the elements in the (2l − 1)-th row of
U∗[Θn

n ]||c2l−1|=
√

2−n would belong to {c j }. Hence, the RSP could be realized success-
fully when the measurement result of Alice’s particles belongs to {|λ2l−1〉} with the
probability of 1/2.
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4 Examples of RSP

To illustrate the above scheme explicitly, we will demonstrate how to prepare two-
qubit states and three-qubit states, which are elementary and important resources for
quantum information.

4.1 Two-qubit states

Suppose that one wants to prepare the follow two-qubit state

|ψ〉 = c1|00〉 + c2|01〉 + c3|10〉 + c4|11〉 (13)

From Eq. (6), one can find that U [Θ2
2 ] can be expressed as

U [Θ2
2 ] =

⎛

⎜
⎜
⎝

c∗
2 −c∗

1 c∗
4 −c∗

3
c1 c2 c3 c4

η0
2c

∗
2 −η0

2c1 −(η0
2)

−1
c∗

4 (η0
2)

−1
c∗

3

η0
2c1 η0

2c2 −(η0
2)

−1
c3 −(η0

2)
−1

c4

⎞

⎟
⎟
⎠ (14)

Quantum channel is composed of two maximally entangled states below

|Ψ 〉12 =
√

2

2
(|00〉 + |11〉)12 |Ψ 〉34 =

√
2

2
(|00〉 + |11〉)34 (15)

The whole particles can be rewritten as

|Ψ 〉12 ⊗ |Ψ 〉34 = 1

2

4∑

i=1

(|λi 〉13|	i 〉24) (16)

where

|λ1〉 = c∗
2 |00〉 − c1|01〉 + c∗

4 |10〉 − c∗
3 |11〉 (17)

|λ2〉 = c1|00〉 + c2|01〉 + c3|10〉 + c4|11〉 (18)

|λ3〉 = η0
2c

∗
2 |00〉 − η0

2c1|01〉 − (η0
2)

−1
c∗

4 |10〉 + (η0
2)

−1
c∗

3 |11〉 (19)

|λ4〉 = η0
2c1|00〉 + η0

2c2|01〉 − (η0
2)

−1
c3|10〉 + (η0

2)
−1

c411〉 (20)

|	1〉 = c2|00〉 − c1|01〉 + c4|10〉 − c3|11〉 (21)

|	2〉 = c1|00〉 + c∗
2 |01〉 + c∗

3 |10〉 + c∗
4 |11〉 (22)

|	3〉 = η0
2c2|00〉 − η0

2c1|01〉 − (η0
2)

−1
c4|10〉 + (η0

2)
−1

c3|11〉 (23)

|	4〉 = η0
2c1|00〉 + η0

2c
∗
2 |01〉 − (η0

2)
−1

c∗
3 |10〉 − (η0

2)
−1

c∗
4 |11〉 (24)

η0
2 =

√

(|c3|2 + |c4|2)/(|c1|2 + |c2|2) (25)
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After the two-qubit projective measurements {|λi 〉 | i = 1, 2, 3, 4} on the qubit pair
(1, 3), the sender Alice informs the receiver Bob of her measurement results via
classical channel. As we see, if the measurement result is |λ1〉, the particles of Bob
would be |	1〉 in Eq. (21). Hence, by performing σx · σz on particles 4, Bob can
reconstruct the original state on particles (2, 4). Note that the successful probability
of RSP is 1/4.

Furthermore, if c j ( j = 2, 3, 4) are real numbers, and Alice’s measurement out-
come is |λ2〉, particles (2, 4) would be on the original state, shown as Eq. (1). The
RSP can be realized successfully for the measurement results {|λ1〉, |λ2〉}, and then
the whole probability would be improved to 1/2. By the way, when |c j | = 1/2 ( j =
1, 2, . . . , n), the parameter η0

2 is equal to 1, and |	3〉24 shown as Eq. (23) would be
rewritten as

|	3〉24 = (c2|00〉 − c1|01〉 − c4|10〉 + c3|11〉)24

Hence, Bob can reconstruct the original state on particles (2, 4) by performing σz on
particle 2 and σx · σz on particle 4, respectively. Note that the successful probability
of RSP in this case is 1/2.

4.2 Three-qubit states

Suppose that the receiver Bob wants to prepare the follow three-qubit state

|ψ〉 = [c1, c2, c3, c4, c5, c6, c7, c8] [|Γ 〉]T

where [|Γ 〉] = [|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉]. Note that
U [Θ3

3 ] can be described by

U [Θ3
3 ] =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

c∗
2 −c1 c∗

4 −c∗
3 c∗

6
c1 c2 c3 c4 c5

η0
2c

∗
2 − η0

2c1 −(η0
2)

−1c∗
4 (η0

2)
−1c∗

3 η2
2c

∗
6

η0
2c1 η0

2c2 − (η0
2)

−1c3 − (η0
2)

−1c4 η2
2c5

η0
3c

∗
2 −η0

3c1 η0
3c

∗
4 −η0

3c
∗
3 −(η0

3)
−1c∗

6
η0

3c1 η0
3c2 η0

3c3 η0
3c4 −(η0

3)
−1c5

η0
3η

0
2c

∗
2 − η0

3η
0
2c1 − η0

3(η
0
2)

−1c∗
4 η0

3(η
0
2)

−1c∗
3 − (η0

3)
−1η2

2c
∗
6

η0
3η

0
2c1 η0

3η
0
2c2 − η0

3(η
0
2)

−1c3 − η0
3(η

0
2)

−1c4 − (η0
3)

−1η2
2c5

−c∗
5 c∗

8 −c∗
7

c6 c7 c8

− η2
2c

∗
5 − (η2

2)
−1c∗

8 (η2
2)

−1c∗
7

η2
2c6 − (η2

2)
−1c7 − (η2

2)
−1c8

(η0
3)

−1c∗
5 −(η0

3)
−1c∗

8 (η0
3)

−1c∗
7

−(η0
3)

−1c6 −(η0
3)

−1c7 −(η0
3)

−1c8

(η0
3)

−1η2
2c

∗
5 (η0

3η
2
2)

−1c∗
8 − (η0

3η
2
2)

−1c∗
7

− (η0
3)

−1η2
2c6 (η0

3η
2
2)

−1c7 (η0
3η

2
2)

−1c8

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(26)
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Quantum channel is composed of three maximally entangled states below

|Ψ 〉 jk =
√

2

2
(|00〉 + |11〉) jk j = 1, 3, 5; k = j + 1. (27)

Thus, the whole particles could be rewritten as

|Ψ 〉12 ⊗ |Ψ 〉34 ⊗ |Ψ 〉56 = 1

2
√

2

8∑

i=1

(|λi 〉135|	i 〉246) (28)

where

|λ1〉 = [
c∗

2, − c1, c∗
4, − c∗

3, c∗
6, − c∗

5, c∗
8, − c∗

7

] · [|Γ 〉]T (29)

|λ2〉 = [c1, c2, c3, c4, c5, c6, c7, c8] · [|Γ 〉]T (30)

|λ3〉 =
[
η0

2c
∗
2, − η0

2c1, − (η2
2)

−1c∗
4, (η2

2)
−1c∗

3,

− η2
2c

∗
6, η2

2c
∗
5, − (η2

2)
−1c∗

8, (η2
2)

−1c∗
7

]
· [|Γ 〉]T (31)

|λ4〉 =
[
η0

2c1, − η0
2c2, − (η2

2)
−1c3, (η2

2)
−1c4,

− η2
2c5, η2

2c6, − (η2
2)

−1c7, (η2
2)

−1c8

]
· [|Γ 〉]T (32)

|λ5〉 =
[
η0

3c
∗
2, − η0

3c1, η0
3c

∗
4, − η0

3c
∗
3,

− (η0
3)

−1c∗
6, (η0

3)
−1c∗

5, − (η0
3)

−1c∗
8, (η0

3)
−1c∗

7

]
· [|Γ 〉]T (33)

|λ6〉 =
[
η0

3c1, − η0
3c2, η0

3c3, − η0
3c4,

− (η0
3)

−1c5, − (η0
3)

−1c6, − (η0
3)

−1c7, − (η0
3)

−1c8

]
· [|Γ 〉]T (34)

|λ7〉 =
[
η0

3η
0
2c

∗
2, − η0

3η
0
2c1, − η0

3(η
2
2)

−1c∗
4, η0

3(η
2
2)

−1c∗
3,

− (η0
3)

−1η2
2c

∗
6, (η0

3)
−1η2

2c
∗
5, (η0

3η
2
2)

−1c∗
8, − (η0

3η
2
2)

−1c∗
7

]
· [|Γ 〉]T

(35)

|λ8〉 =
[
η0

3η
0
2c1, − η0

3η
0
2c2, − η0

3(η
2
2)

−1c3, η0
3(η

2
2)

−1c4,

(η0
3)

−1η2
2c5, − (η0

3)
−1η2

2c6, (η0
3η

2
2)

−1c7, (η0
3η

2
2)

−1c8

]
· [|Γ 〉]T (36)

|	1〉 = [c2, − c1, c4, − c3, c6, − c5, c8, − c7] · [|Γ 〉]T (37)

|	2〉 = [
c1, c∗

2, c∗
3, c∗

4, c∗
5, c∗

6, c∗
7, c∗

8

] · [|Γ 〉]T (38)

|	3〉 =
[
η0

2c2, − η0
2c1, − (η2

2)
−1c4, (η2

2)
−1c3,

− η2
2c6, η2

2c5, − (η2
2)

−1c8, (η2
2)

−1c7

]
· [|Γ 〉]T (39)
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|	4〉 =
[
η0

2c1, − η0
2c

∗
2, − (η2

2)
−1c∗

3, (η2
2)

−1c∗
4,

− η2
2c

∗
5, η2

2c
∗
6, − (η2

2)
−1c∗

7, (η2
2)

−1c∗
8

]
· [|Γ 〉]T (40)

|	5〉 =
[
η0

3c2, − η0
3c1, η0

3c4, − η0
3c3,

− (η0
3)

−1c6, (η0
3)

−1c5, − (η0
3)

−1c8, (η0
3)

−1c7

]
· [|Γ 〉]T (41)

|	6〉 =
[
η0

3c1, − η0
3c

∗
2, η0

3c
∗
3, − η0

3c
∗
4,

− (η0
3)

−1c∗
5, − (η0

3)
−1c∗

6, − (η0
3)

−1c∗
7, − (η0

3)
−1c∗

8

]
· [|Γ 〉]T (42)

|	7〉 =
[
η0

3η
0
2c2, − η0

3η
0
2c1, − η0

3(η
2
2)

−1c4, η0
3(η

2
2)

−1c3,

− (η0
3)

−1η2
2c6, (η0

3)
−1η2

2c5, (η0
3η

2
2)

−1c8, − (η0
3η

2
2)

−1c7

]
· [|Γ 〉]T

(43)

|	8〉 =
[
η0

3η
0
2c1, − η0

3η
0
2c

∗
2, − η0

3(η
2
2)

−1c∗
3, η0

3(η
2
2)

−1c∗
4,

(η0
3)

−1η2
2c

∗
5, − (η0

3)
−1η2

2c
∗
6, (η0

3η
2
2)

−1c∗
7, (η0

3η
2
2)

−1c∗
8

]
· [|Γ 〉]T (44)

η0
2 =

√

(|c3|2 + |c4|2)/(|c1|2 + |c2|2) (45)

η2
2 =

√

(|c7|2 + |c8|2)/(|c5|2 + |c6|2) (46)

η0
3 =

√
(
8

j=5|c j |2)/(
4
i=1|ci |2) (47)

For arbitrary three-qubit states, when the measurement result is |λ1〉135, Bob can
construct the original state from |	1〉246 by performing σx · σz on particle 6. The
successful probability of RSP in the general case is 1/8.

Furthermore, we would like to point out that one can convert |	2〉246 to the original
state when c j ( j = 2, 3, . . . , 8) are real numbers. The RSP can be realized successfully
for the measurement results {|λ1〉, |λ2〉}, and then the successful probability would be
improved to 1/4. Others, if |c j | = 1

2
√

2
( j = 1, 2, . . . , 8), i.e., η0

2 = η2
2 = η0

3 = 1,

Bob can reconstruct |	k〉 (k = 1, 3, 5, 7) to the original state on particles (2, 4, 6).
The total successful probability of RSP is 1/2. For example, if the measurement result
is |λ7〉135,

|	7〉 = [c2, − c1, − c4, c3, − c6, c5, c8, − c7] · [|Γ 〉]T

the original state can be reconstructed from |	7〉 on particles (2, 4, 6) by performing
σz on particle (2, 4) and σx · σz on particle 6, respectively.

Actually, the real-parameter states (ci = c∗
i , i = 2, . . . , 2n) and the equatorial

states (|ci | = √
2−n) have some special properties that make them interesting for

quantum information processing [37–40]. Since they contain less information com-
pared to general states, it should be easier to prepare special states than arbitrary states.
Jiang and Dong [37] presented a two-phase general protocol for deterministic remote
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preparation of the real-parameter states. Moreover, Li and Ghose [38] presented a
scheme for optimal joint RSP of n-qubit equatorial states with the 100% success prob-
ability. It is noting that one can use the similar procedures of these two proposals
to perform the RSP of special states in a deterministic manner, even though these
proposals are not available for preparing general states, which could be realized by
using of our scheme. Hence, the method in this paper and the former two proposals
complement each other.

5 Discussions and conclusions

In summary, we put forward an efficient scheme to prepare an arbitrary n-qubit state
with the aid of n maximally entangled two-qubit states and appropriate local 2n × 2n

unitary operation, which is described by the form of iterative process. The total suc-
cessful probabilities of the RSP in the general and particular cases are calculated,
respectively. The feasibility of this proposal is proved by theoretical studies and con-
crete examples. In contrast to the preceding schemes [10–25], our method has the
following advantages. First, this scheme can in principle be applied to prepare any
arbitrary multi-qubit states including the real-parameter states and the equatorial states
in a reliable way. Second, quantum channel for our proposal is composed of n maxi-
mally two-qubit entangled states. The creation for entangled two-qubit states has been
widely discussed and realized; it is relatively easier for us to obtain this resource.
Third, this method can be generalized to the controlled RSP scheme by substituting
the GHZ state for one of maximally two-qubit entangled states. In this case, only
one qubit would be added to decide whether the RSP is successful or not. Forth, our
method can be simply changed to the RSP protocol with n remote receivers when
particles (2, 4, . . . , 2n) belong to each receiver, respectively. Thus, the original state
could be prepared in the particles of separate receivers. This makes our iterative pro-
tocol promising for wide applications. From the point of the potential applications of
the RSP, we believe that our scheme will play an important role in expanding the field
of quantum information processing.
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