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Abstract Channels composed by Einstein–Podolsky–Rosen (EPR) pairs are capa-
ble of teleporting arbitrary multipartite states. The question arises whether EPR
channels are also optimal against imperfections. In particular, the teleportation of
Greenberger–Horne–Zeilinger states (GHZ) requires three EPR states as the channel
and full measurements in the Bell basis. We show that, by using two GHZ states
as the channel, it is possible to transport any unknown three-qubit state of the form
c0|000〉+c1|111〉. The teleportation is made through measurements in the GHZ basis,
and, to obtain deterministic results, in most of the investigated scenarios, four out of
the eight elements of the basis need to be unambiguously distinguished. Most impor-
tantly, we show that when both systematic errors and noise are considered, the fidelity
of the teleportation protocol is higher when a GHZ channel is used in comparison with
that of a channel composed by EPR pairs.

Keywords Teleportation · Entanglement · Noise

1 Introduction

Some findings have such a high degree of simplicity and relevance that become
paradigms overnight. This is certainly the case of the quantum teleportation of an arbi-
trary, unknown qubit for the field of quantum information [1–3]. Of course, between
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the proof of possibility in principle [1] and an actual teleportation in the laboratory [2],
there are several fundamental and practical difficulties. For example, in the original
scheme, full measurements in a maximally entangled basis are required to obtain suc-
cess in every run. This task, however, cannot be executed via linear one-qubit elements
only, e. g., phase shifters and beam splitters [4,5]. Because of this, the first experimen-
tal implementation was conditional, requiring post-selection [2] (for unconditional
implementations see, e. g., [6,7]). Even when complete measurements can be carried
out, the channels and the measurement basis always present, to some extent, systematic
(deviations from maximal entanglement) and random (environmental) imperfections.

A way to circumvent the difficulties related to the presence of noise is to resort to
redundancy. In classical communications, it is usual to encode a single bit, say 0, as
000, so that error correction codes can recover the message with a prescribed success
rate (note that an odd number of bits is required to avoid undecidable situations).
Analogously, it is safer to encode the information contained in a single qubit c0|0〉 +
c1|1〉 in the larger state c0|000〉 + c1|111〉 [8]. In fact, more than three qubits would
be necessary to enable the correction of an arbitrary single-qubit error [8,9].

Another important use of Greenberger–Horne–Zeilinger (GHZ) states is as heralded
Einstein–Podolsky–Rosen (EPR) pairs, since |000〉 + |111〉 = |+〉|Φ+〉 + |−〉|Φ−〉,
with |±〉 = (|0〉 ± |1〉)/√2 and |Φ±〉 = (|00〉 ± |11〉)/√2, so that a +(−) detection
in one of the parties heralds the existence of EPR entanglement |Φ+〉(|Φ−〉) between
the other two parties. In addition, several tasks in quantum computation demand more
complex forms of entanglement, as for example, one-way quantum computing [10],
for which graph states are needed.

It is, therefore, of evident interest to investigate efficient ways to teleport multiqubit
entangled states. The most usual procedure is to employ as the channel a sufficient
number of pairs of maximally entangled qubits, that is, EPR states. This is justifiable
since bipartite entanglement is easier to prepare and serve as a universal resource for
the teleportation of arbitrary states [11]. Particularly, the teleportation of three-particle
states has been shown to be possible in several ways, being deterministic, for an ideal
GHZ state via ideal EPR pairs [12], and, probabilistic for arbitrary three-particle states
through a channel composed by non-maximally entangled EPR-like pairs [13]. The
general problem of teleporting n-partite states with n EPR pairs has been addressed
in [11,14] and carried out experimentally for the case of two qubits in [15].

There are, however, works where instead of EPR pairs, more complex states are
used as quantum channels. One-qubit teleportation protocols are presented in [16]
and [17], where GHZ states are employed, while in [18] a maximally entangled six-
qubit state is used to teleport an arbitrary three-qubit state (see [19] for a scheme of
controlled teleportation). In all these cases, the swapping operations that materialize
the teleportation correspond to Bell measurements, that is, measurements in a bipartite
entangled basis.

The question arises on what is the effect of systematically employing a channel of
tripartite states and tripartite swapping operations in the teleportation of an unknown
GHZ-like state. What are the final fidelities in comparison with a protocol that uses
EPR pairs and measurements? In this work, we survey on the transport of GHZ-like
states, c0|000〉 + c1|111〉, with c0 and c1 unknown.
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As a starting point, we develop a compact notation that encompass quite general
protocols. We address the teleportation of three partite states through two different
types of channels: (i) three EPR-type states and (ii) two GHZ-type states (in a particular
geometric configuration). In addition, in scenario (i) the swapping is done using three
Bell measurements, while in scenario (ii) two GHZ measurements are required. We
refer to the first scheme as “3-EPR” and to the second one as “2 GHZ.” We show
that in a totally ideal scenario (perfect channel and measurements without noise) the
3-EPR and 2-GHZ scheme lead to a fidelity of 100%, although the latter does not
require complete GHZ measurements. We then proceed to investigate the individual
and combined effects of systematic deviations from maximal entanglement, both in
the channels and in the measurements, and of common types of noise.

Throughout this work, there will be nine qubits involved in each teleportation event.
Six of these qubits (labeled 1 to 6) are close together, while the remaining three qubits
(7, 8, and 9) are in a distant location. The GHZ-like state to be teleported is encoded
in the odd-labeled qubits 1-3-5 and may be written as:

|φ〉 =
∑

j=0,1

c j | j j j〉. (1)

Since this state is spatially localized and no part of it need to be physically moved
in a preliminary stage, we will assume hereafter that it is protected from noise. For
the other six qubits, forming the quantum channel, the entanglement is distributed
among distant parties. In the final part of this work, we consider that the channels
are not perfectly isolated from the environment, at least in some preparatory stage.
In this weak noise regime, where the probability of an error occurring in one of the
qubits is small, we find that the 2-GHZ scheme has a better performance. It is worth
mentioning that, only recently a comprehensive account of the effects of practically
relevant environmental disturbances was provided in the simplest case of the teleport
of a qubit through an EPR channel [20].

2 Quantum teleportation

Let us briefly revisit the standard teleportation protocol to set our notation. It involves
two distant parties, Alice and Bob, sharing a quantum channel consisting of a pair of
entangled qubits in the state ρ̂ch . Alice intends to send an unknown quantum state |φ〉
to Bob. She carries out a joint measurement in an orthonormal basis {|ΦK 〉} on her
part of the channel and on the qubit to be sent. She classically informs Bob about her
outcome. Finally, Bob applies a local unitary operation ÛK on his qubit. After each
run, up to normalization, the state of Bob’s qubit is given by:

ρ̂K = ÛKTrA
{(

P̂K ⊗ 1̂B

)
|φ〉 〈φ| ⊗ ρ̂ch

}
Û †

K , (2)

where P̂K is the projector |ΦK 〉 〈ΦK | and TrA denotes the partial trace over Alice’s
system. Since, usually, the deviations from ideality are unknown, the unitary transfor-
mations ÛK refer to the ideal case of maximally entangled channels and measurements.
The fidelity of the teleported state with respect to |φ〉 reads
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F =
∑

K

Tr
{|φ〉 〈φ| ρ̂K

}
. (3)

In general, F depends on the parameters that characterize the input state; thus, in
order to get a state-independent figure of merit, we uniformly average over all possible
input states:

〈F〉 = 1

V

∫
dV F, (4)

here, dV is the volume element on the space of quantum states and V is the total
volume.

3 Fidelity of three-partite entanglement teleportation

In this section, we present details of the teleportation protocols and general fidelity
expressions for both schemes proposed in this work: 3-EPR and 2-GHZ.

3.1 3-EPR scheme

We consider that each of the qubits 2, 4, and 6 is a half of an entangled pair, the other
parties being qubits 7, 8, and 9, respectively, as summarized in Fig. 1. The density
operator of each pair of the channel is represented by:

ρ̂ab =
∑

klmn=0,1

γ
(ab)
klmn|kl〉 〈mn| , (5)

where the coefficient γ
(ab)
klmn already includes the information on deviations from ide-

ality.
The measurement basis is not assumed to be ideal in the sense that its four kets

may not be maximally entangled, although always orthonormal. In this case, we
use the EPR-like basis {|Ψ μ

λ 〉} (see the supplementary material) to represent the
measurements on pairs of qubits. Any element of this basis may be expressed as:
|Ψ μ

λ 〉 = ∑
j=0,1(−1)μj bμ⊕ j | j, j ⊕ λ〉, where b0 = cos φ, b1 = sin φ, and ⊕ stands

for sum modulo 2. Note that for φ = π/4, it corresponds to the Bell basis. Taking into
account the three required measurements, the projector P̂K is

P̂K = |Ψ μ
λ 〉 〈Ψ μ

λ |12 ⊗ |Ψ ν
ω 〉 〈Ψ ν

ω |34 ⊗ |Ψ ε
τ 〉 〈Ψ ε

τ |56 . (6)

For each output, after the appropriate exchange of classical information, local
unitary transformations on the qubits 7, 8, and 9 must be executed. The necessary
transformations can be compactly expressed as:

ÛK =
∑

klm=0,1

akμa
l
νa

m
ε |k, l,m〉 〈k ⊕ λ, l ⊕ ω,m ⊕ τ | , (7)

with the coefficients akμ defined in such a way that: a j1 j2··· jn
μ1μ2···μm ≡ (−1)( j1+ j2+···+ jn)

(μ1+μ2+···+μm )
.
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Fig. 1 Teleportation of an unknown state
∑

j=0,1 c j | j j j〉135 through a channel composed by three EPR

states. The dotted ovals represent complete measurements in the EPR basis {|Ψ μ
λ 〉} and the dashed lines,

entanglement between the involved qubits

The local character of the unitaries is made explicit via the equivalent, separable
expression

ÛK = σ̂ μ
z σ̂ λ

x ⊗ σ̂ ν
z σ̂ ω

x ⊗ σ̂ ε
z σ̂ τ

x , (8)

where the standard notation for the Pauli matrices has been employed. After some
algebra, the fidelity reads:

F =
∑

klmnμν
ελωτ=0,1

ckc
∗
l cnc

∗
ma

klmn
μνε

3∏

j=1

b∗
μ j⊕kbμ j⊕lγ

(a j b j )

k⊕λ j ,m⊕λ j ,l⊕λ j ,n⊕λ j
, (9)

where the index j is related to the channel qubits and measurements; thus, in order
to get a compact expression, we wrote: {λ1, λ2, λ3} = {λ, ω, τ } and {μ1, μ2, μ3} =
{μ, ν, ε}.

This expression will be used later to calculate fidelity of the 3-EPR teleportation
protocol for several specific cases.

3.2 2-GHZ scheme

In what follows we closely follow the previous procedure, this time, replacing the
3-EPR with the 2-GHZ scheme. The properties of this kind of tripartite state working
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Fig. 2 Teleportation of an unknown state
∑

j=0,1 c j | j j j〉135 through a channel composed by two GHZ

states. Measurements in the GHZ-like basis {|Ψ μ
λω〉} are represented by dotted and dot-dashed lines, while

entanglement between qubits by dashed lines

as a part of a channel have been investigated in different contexts. GHZ channels have
been shown to be capable of transporting a single qubit [16,17], and, in reference [21],
e. g., it is shown that a bipartite entangled state, shared by two distant parties, A and
C can be fully transported to other two distant parties, B1 and B2, whenever A, B1,
and B2 share a GHZ state. Here, as in the previous section, we deal with the teleport
of a GHZ-like state.

Of course, in order to make comparisons the input state, qubits 1–5, is exactly the
same as before, Eq. (1). Furthermore, the channel corresponds to two tripartite states,
which brings an important difference between the 3-EPR and 2-GHZ setups. In the
first case qubits 2, 4, and 6 are completely equivalent, the same holding for qubits 7, 8,
and 9. This is not possible in distributing these six qubits between two tripartite states.
The only configuration that keeps the original distribution is the alternate geometry
shown in Fig. 2. In this situation, qubits 2 and 6 are not equivalent to qubit 4, the same
being valid for qubits 7 and 9 with respect to qubit 8. Analogously to the previous
case, we express the density operator associated with the part of the channel involving
the qubits a, b, and c as:

ρ̂abc =
∑

klmn
pq=0,1

γ
(abc)
klmnpq |klm〉 〈npq| . (10)
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In this case, we consider the non-maximally entangled GHZ-like measurement basis
for N = 3 {|Ψ μ

λω〉}, whose elements are given by (see the supplementary material):
|Ψ μ

λω〉 = ∑
j=0,1(−1)μj bμ⊕ j | j, j ⊕ λ, j ⊕ ω〉, and the coefficient bμ⊕ j defined in

the same way as in the previous case. The projector related to the two necessary
measurements reads:

P̂K = |Ψ μ
λω〉 〈Ψ μ

λω|145 ⊗ |Ψ ν
τε〉 〈Ψ ν

τε |236 . (11)

In principle, there would be 8 × 8 = 64 possible combinations of results (the
same number as in the EPR case). However, there are four individual outputs that
never occur. These zero-probability results are those with ω 	= 0. Therefore, there are
4 × 8 = 25 = 32 possible results, corresponding to 5 bits of classical information
and as we will show in the following sections, in several cases there is an additional
constraint (ε = 0) which reduces to 16 the number of possible outputs and 4 bits of
classical communication. This means that full measurements in the GHZ-like basis
are not necessary, as it happens in the 3-EPR scheme.

After some algebra, we find the local unitary transformations required on the qubits
7, 8, 9:

ÛK =
∑

klm=0,1

akμa
l⊕τ
ν |k, l,m〉 〈k ⊕ λ, l ⊕ τ,m ⊕ λ| ,

which is equivalent to:
ÛK = σ̂ μ

z σ̂ λ
x ⊗ σ̂ τ

x σ̂ ν
z ⊗ σ̂ τ

x . (12)

Thus, the fidelity of the teleportation protocol under the 2-GHZ scheme may be
calculated. It reads:

F =
∑

klmnμ
ντελ=0,1

ck′c∗
l ′cn′c∗

m′aklmn
μν b∗

μ⊕k′bμ⊕l ′bν⊕lb
∗
ν⊕kγ

(268)
k,k⊕ε,m,l,l⊕ε,n

γ
(479)

k′⊕λ,m′⊕λ,m′⊕λ,l ′⊕λ,n′⊕λ,n′⊕λ
, (13)

where the primed indexes j ′ stand for j ⊕ τ .

4 Non-maximally entangled channels and measurements

In this section, we assume that the systems in consideration are isolated and that
any deviation from ideality comes from imperfections in measurements and in the
preparation of the channel states.

4.1 3-EPR scheme

The channel of the 3-EPR scheme is composed by three pairs of qubits, which will be
assumed to present some systematic deviation from maximal entanglement. We denote

123



254 Page 8 of 18 M. M. Cunha et al.

the state of each pair composing the channel as |ψ〉 = ∑
j=0,1 β j | j j〉, with β0 = cos θ

and β1 = sin θ , which, by inspection of Eq. (5), leads to γ
(ab)
klmn = βkβmδklδmn . By

replacing these ingredients in the general expression (9), we get:

F = |c0|4 + |c1|4 + 128|c0|2|c1|2 (b0b1β0β1)
3 . (14)

In order to calculate the average fidelity, the input state can be parametrized as
(c0, c1) = (cos θ0, eiϕ sin θ0), with 0 < θ0 < π/2 and 0 < ϕ < 2π . The associ-
ated volume element is dV = sin θ0 cos θ0dθ0dϕ, and the total volume is V = π . The
average fidelity of the 3-EPR teleportation scheme under non-maximally entangled
channels and measurements takes the form:

〈FEPR〉 = 2

3
+ 1

3
sin3(2θ) sin3(2φ). (15)

If one assumes that the systematic errors are small, θ = π/4 + δθ and φ = π/4 + δφ,
then, since the first non-vanishing correction is quadratic in the deviations [〈FEPR〉 ≈
1−2(δθ2 + δφ2)], the fidelity remains close to 1. As a numeric example, consider the
deviations δθ = δφ = 5◦, which lead to 〈FEPR〉 = 0.969. We postpone the analysis of
random (non-systematic) errors to the final part of this work where several common
types of noise will be considered.

4.2 2-GHZ scheme

Following the same approach as in the previous case, the channel is composed of two
initially prepared GHZ-like states |ψ〉 = ∑

j=0,1 β j | j j j〉; thus, the γ coefficients

become γ
(abc)
klmnpq = βkβnδklδlmδnpδpq . Substituting into the expression for the fidelity,

Eq. (13) and after some calculations, we have:

F = |c0|4 + |c1|4 + 32|c0|2|c1|2 (b0b1β0β1)
2 . (16)

In addition, due to the configuration of the channel and measurements, the prob-
ability of the output corresponding to ε 	= 0 is null, which reduces the number of
possible outputs to 16.

In the same way as before, we calculated the average fidelity of the 2-GHZ telepor-
tation scheme under non-maximally entangled channels and measurements. It reads:

〈FGHZ〉 = 2

3
+ 1

3
sin2(2θ) sin2(2φ), (17)

which is larger than 〈FEPR〉, for equal values of θ and φ. For small deviations from
ideality, θ = π/4 + δθ and φ = π/4 + δφ, we get 〈FGHZ〉 ≈ 1 − 4

3 (δθ2 + δφ2).
Taking, as in the previous case, δθ = δφ = 5◦, we obtain 〈FGHZ〉 = 0.979, which
presents a slight improvement with respect to the EPR channel.
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Fig. 3 Difference of average
fidelities, �F [Eq. (18)],
produced by non-maximally
entangled channels and
measurements, as a function of θ

and φ. The maximal difference
�F = 4/81 is attained for
sin(2θ) sin(2φ) = 2/3
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To have a more comprehensive picture, let us define the difference

�F = 〈FGHZ〉 − 〈FEPR〉, (18)

which is nonnegative, showing that the GHZ channel has a better performance in com-
parison with the usual EPR channel (see Fig. 3). The difference attains its maximum
value whenever channels and measurement bases satisfy sin(2θ) sin(2φ) = 2/3. In
this situation, �F = 4/81 ≈ 0.049. In the next section, we will see that �F may
reach even larger values if noise is present.

5 Weak noise regime

We now address the more realistic situation where, in addition to the systematic errors
in the channels and in the swapping operations, random errors may appear. Here we
will assume that the probabilities of occurrence of these errors in each of the six qubits
composing a channel are statistically independent. We denote this probability by p.
In addition, we will limit our analysis to situations where p is small enough so that
one can safely disregard the possibility of more than a single error per channel. More
precisely, the probability that no error occurs in a six-qubit channel is P0 = (1 − p)6,
while the chance that a single error occurs isP1 = 6p(1− p)5. We focus on the regime
where this probability is much larger than that of two errors per set of six qubits, which
is P2 = 15p2(1 − p)4, where we assumed that if the two errors happen in the same
qubit, the overall effect is null (valid for bit flip and phase flip). Also we are not taking
into account higher order events. Therefore a rough estimate for an upper bound for
the usefulness of the next results is p < pmax = 2/7 (≈ 0.29).

In the numeric example we provide in the end of this section, we consider a proba-
bility of error per qubit of 7% (p = 0.07) which leads to P1 ≈ 0.3 and P2 ≈ 0.05. In
this scenario, there are only two typical occurrences. Either the channel is free from
noise, or a random change happens to a single qubit. In what follows we address this
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Table 1 Types of noise considered in the present work

Noise Action Kraus operators

Bit flip |0〉 → |1〉 , |1〉 → |0〉 Â0 = √
1 − p 1̂, Â1 = √

p σ̂x

Phase flip |0〉 → |0〉 , |1〉 → − |1〉 Â0 = √
1 − p 1̂, Â1 = √

p σ̂z

Bit-phase flip |0〉 → i |1〉 , |1〉 → −i |0〉 Â0 = √
1 − p 1̂, Â1 = √

p σ̂y

Depolarizing Combined action of noises above Â0 = √
1 − p 1̂, Â j =

√
p
3 σ̂ j ( j = x, y, z)

Amplitude damping Energy dissipation Â0 =
(

1 0
0

√
1 − p

)
, Â1 =

(
0

√
p

0 0

)

problem by employing the Kraus-operator formalism to consider that the channels
are not completely isolated from the environment. We will take into account the five
common types of noise listed in Table 1.

The channels are initially prepared in non-maximally entangled states as in the
previous section, and the action of noise through the Kraus operators on the state
of the channels is introduced directly in the γ coefficients as we will show in each
particular case.

5.1 Noisy EPR channel

We are in a position to turn our attention back to the 3-EPR channel subjected to
random errors. In all cases, we start by considering that qubit 2 is the one affected by
noise. Due to the equivalence between the three EPR states, the results must be the
same for qubits 4 and 6 (see Fig. 1). For the EPR channel, it turns out that the effect
of noise is also the same for the distant qubits 7, 8, and 9.

5.1.1 Bit flip

We start by considering a bit-flip error in qubit 2, the corresponding γ coefficient
reads:

γ
(27)
klmn = βlβn

{
(1 − p)δklδmn + pδk,l⊕1δm,n⊕1

}
. (19)

It is then easy to obtain 〈F〉(2) as a function of p, θ , and φ and to show that the
result remains unchanged when the error happens in any of the other five qubits of the
channel. The final expression reads:

〈FB
EPR〉 = (1 − p)

{
2

3
+ 1

3
sin3(2θ) sin3(2φ)

}
, (20)

where “B” stands for bit flip. Therefore, the fidelity is globally affected by this type
of noise.
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5.1.2 Phase flip

Let us consider that the qubit 2 is probabilistically subjected to a phase flip, the γ

coefficient is
γ

(27)
klmn = βlβnδklδmn

{
1 − p + p(−1)k⊕m

}
. (21)

Again, the result is the same for all six qubits of the channel, and the final result is

〈FP
EPR〉 = 2

3
+ 1

3
(1 − 2p) sin3(2θ) sin3(2φ). (22)

Note that the classical part of this fidelity is not affected by the amount of noise,
which is expected, since classical bits have no phase whatsoever.

5.1.3 Bit-phase flip

In this case, the γ coefficient is equal to:

γ
(27)
klmn = βkβm

{
(1 − p)δklδmn + p(−1)k⊕mδk,l⊕1δm,n⊕1

}
. (23)

It leads to a fidelity:

〈FBP
EPR〉 = (1 − p)

{
2

3
+ 1

3
sin3(2θ) sin3(2φ)

}
, (24)

which is equal to the fidelity of teleportation under bit flip noise.

5.1.4 Depolarizing

The γ coefficient under depolarizing noise is:

γ
(27)
klmn = βlβn

{ (
1 − p + p

3
(−1)k⊕m

)
δklδmn + p

3

(
1 + (−1)k⊕m

)
δk,l⊕1δm,n⊕1

}
.

(25)
The total fidelity amounts to:

〈FD
EPR〉 = 4

9
p +

(
1 − 4

3
p

) (
2

3
+ 1

3
sin3(2θ) sin3(2φ)

)
. (26)

5.1.5 Amplitude damping

When amplitude damping noise affects the qubit 2, we have:

γ
(27)
klmn = βlβn

{
αlαnδk,lδm,n + p δl,k⊕1δn,m⊕1δl,1δn,1

}
, (27)
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where α0 = 1 and α1 = √
1 − p. The fidelity is:

〈FA
EPR〉 = 2

3

(
cos2 θ + (1 − p) sin2 θ

)
+

√
1 − p

3
sin3(2θ) sin3(2φ). (28)

In summary, the fidelity is globally compromised when either bit flip or bit-phase-
flip noise is present, while only its quantum part is affected by phase flips, as expected.
Depolarizing and amplitude damping noises present intermediate results. We recall
that, in all situations, the particular channel qubit on which the error occurs is imma-
terial.

5.2 Noisy GHZ channel

Here we address the same types of noise, this time, acting upon a channel composed by
two GHZ states. As we will see, the results may be quite different, both qualitatively
and quantitatively. Here we initially consider that the qubit 6 may suffer random mod-
ifications. However, now, due to the distinct geometric distribution of entanglement,
it is evident that qubit 6 and qubit 4, for instance, are inequivalent.

5.2.1 Bit flip

Consider the GHZ-like state of qubits 268 (see Fig. 2), with a possible flip in qubit 6.
In this case, the channel coefficient reads:

γ
(268)
klmnpq = βkβnδkmδnq

{
(1 − p)δklδnp + pδl,k⊕1δp,n⊕1

}
. (29)

After measurements, classical communication and unitary operations we get a quite
remarkable result:

〈F〉(6) = 2

3
+ 1

3
sin2(2θ) sin2(2φ), (30)

which means that qubit 6 is fully protected from bit-flip noise. In contrast, when the
same kind of noise is considered for the other five qubits, one obtains the ordinary
result 〈F〉( j) = (1 − p)〈F〉(6), where j = 2, 4, 7, 8, 9. The final fidelity is given by
[〈F〉(6) + 5〈F〉(2)]/6, that is:

〈FB
GHZ〉 =

(
1 − 5

6
p

) {
2

3
+ 1

3
sin2(2θ) sin2(2φ)

}
. (31)

5.2.2 Phase flip

In the case of phase-flip noise, all six qubits in the channel become equivalent. Partic-
ularly, if qubit 2 is subject to phase-flip noise, we have:

γ
(268)
klmnpq = βkβnδklδlmδnpδpq

{
1 − p + p(−1)l⊕p

}
. (32)
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The final result is, in what concerns noise, analogous to that of the 3-EPR scheme:

〈FP
GHZ〉 = 2

3
+ 1

3
(1 − 2p) sin2(2θ) sin2(2φ). (33)

The difference between 〈FP
GHZ〉 and 〈FP

EPR〉 comes exclusively from systematic
errors.

5.2.3 Bit-phase flip

Since bit-phase flip is a combination of bit flip and phase-flip noises, the qubit 6
presents a different result from the other five, for this the channel coefficient reads:

γ
(268)
klmnpq = βkβmδkmδnq

{
(1 − p)δklδnp + p(−1)l⊕pδl,k⊕1δp,n⊕1

}
. (34)

The corresponding fidelity is

〈F〉(6) = 2

3
+ 1

3
(1 − 2p) sin2(2θ) sin2(2φ). (35)

For the other five qubits, the fidelity holds:

〈F〉( j) = (1 − p)

(
2

3
+ 1

3
sin2(2θ) sin2(2φ)

)
. (36)

The final fidelity is:

〈FBP
GHZ〉 =

(
2

3
− 10

27
p

)
+

(
1

3
− 8

27
p

)
sin2(2θ) sin2(2φ). (37)

5.2.4 Depolarizing

As in the previous case, due to the Kraus operators that describe the depolarizing noise,
the qubit 6 presents a different result from the other. The γ coefficient is:

γ
(268)
klmnpq=βkβnδkmδnq

{ [
1−p+ p

3
(−1)l⊕p

]
δklδnp + p

3

[
1 + (−1)l⊕p

]
δl,k⊕1δp,n⊕1

}
,

(38)
leading to a fidelity:

〈F〉(6) = 2

3
+ 1

3

(
1 − 4

3
p

)
sin2(2θ) sin2(2φ), (39)

while, for the other five:

〈F〉( j) = 2

3

(
1 − 2

3
p

)
+ 1

3

(
1 − 4

3
p

)
sin2(2θ) sin2(2φ), (40)
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The final expression for fidelity reads:

〈FD
GHZ〉 = 2

3

(
1 − 5

9
p

)
+ 1

3

(
1 − 4

3
p

)
sin2(2θ) sin2(2φ). (41)

5.2.5 Amplitude damping

Finally, when amplitude damping noise affects qubit 6, the γ coefficient is:

γ
(268)
klmnpq = βkβn

(
αkαnδklδlmδnpδpq

+p δkmδnqδk,1δn,1δl⊕1,kδp⊕1,n

)
. (42)

The corresponding fidelity is

〈F〉(6) = 2

3
+

√
1 − p

3
sin2(2θ) sin2(2φ). (43)

For the others qubits, we have:

〈F〉( j) = 2

3

{
cos2 θ + (1 − p) sin2 θ

}
+

√
1 − p

3
sin2(2θ) sin2(2φ). (44)

The total fidelity is

〈FA
GHZ〉 = 2

3

(
1 − 5

6
p sin2 θ

)
+

√
1 − p

3
sin2(2θ) sin2(2φ). (45)

5.3 Noisy GHZ channel using post-selection

In the scheme presented in the previous part, it is evident from the required unitary
transformation (Eq. 12) that Alice needs to determine the values of μ, λ, ν and τ (ω = 0
and ε is irrelevant), i.e., she only needs to discern among 4 out of the 8 elements of
the GHZ basis in each measurement, and thus, 4 bits of classical communication are
needed. However, we can improve the efficiency of the protocol if we note that in
the presence of some classes of noise either on qubit 2 or 6, outputs corresponding to
ε = 1 come to appear and the state obtained in the Bob’s part of the system cannot be
properly corrected by the unitary (Eq. 12). Then, in each step Alice may additionally
inform Bob the value of ε, and he only uses the part of the ensemble corresponding
to ε = 0.

The general expression for the fidelity of teleportation is modified when post-
selection is taken into account, after some calculations it becomes:

F = 1

1 − ∑
Γ pm

∑

K
(K /∈Γ )

Tr
{|φ〉 〈φ| ρ̂K

}
, (46)
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where Γ is the set of outcomes to be rejected and pm is the probability of occurrence
of the m-th output.

We calculated pε=1 for all the kinds of noise considered in the present work on
qubits 2 and 6; from this, we obtained expressions for average fidelity. Below we
summarize the main results:

For bit-flip noise, we have p(2)
ε=1 = p(6)

ε=1 = p, and:

〈FB−PS
GHZ 〉 =

(
1 − 2

3
p

) (
2

3
+ 1

3
sin2(2θ) sin2(2φ)

)
. (47)

When bit-phase-flip noise is present, we get p(2)
ε=1 = p(6)

ε=1 = p, the fidelity holds:

〈FBP−PS
GHZ 〉 =

(
1 − 2

3
p

)(
2

3
+ 1

3
sin2(2θ) sin2(2φ)

)
. (48)

If depolarizing noise affects qubits 2 and 6, then p(2)
ε=1 = p(6)

ε=1 = 2p
3 , and:

〈FD−PS
GHZ 〉 = 2

3
− 8

27
p + 1

(9 − 6p)

{(
3 − 8

3
p

)
u2 − 8

3
p + 16

9
p2u2

}
, (49)

where u = sin(2θ) sin(2φ).
Finally, in the presence of amplitude damping noise, the probabilities show a depen-

dence on the degree of entanglement of the channel, say: p(2)
ε=1 = p(6)

ε=1 = p sin2 θ . In
this case the average fidelity reads:

〈FA−PS
GHZ 〉 =

(
1 − 2

3
p sin2 θ

){
2

3
+ 1

3

√
1 − p sin2(2θ) sin2(2φ)

1 − p sin2 θ

}
. (50)

In the case of phase-flip noise on any qubit, the fidelity does not suffer modifications
when compared with the scheme which makes no use of post-selection due to the fact
that p(2)

ε=1 = p(6)
ε=1 = 0. Even with no null probabilities, a similar situation happens

when bit-phase-flip noise is present, in this, no increase in the average fidelity is
observed because of the combined action of both kinds of noise. For the other classes
of errors, we found a remarkable improvement in the efficiency, as it can be seen in
Table 2 for the specific case of maximally entangled channels and measurements.

6 Discussion and conclusion

Let us now summarize our results. In the absence of noise and with ideal (maximally
entangled) channels and measurements, the two kinds of structures (3-EPR and 2-
GHZ) lead to a fidelity of 100%. Still, while the 3-EPR scheme requires complete
measurements in each run, the 2-GHZ scheme demands partial measurements.

As soon as systematic errors appear, in the form of non-maximally entangled chan-
nels and measurements, the fidelity obtained with the 2-GHZ setup is consistently
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Table 2 Overall fidelity delivered by ideal 3-EPR, 2-GHZ and 2-GHZ-PS schemes, with ideal measure-
ments and noise

Noise 3-EPR 2-GHZ 2-GHZ-PS

Bit flip 1 − p 1 − 5
6 p 1 − 2

3 p

Phase flip 1 − 2
3 p 1 − 2

3 p 1 − 2
3 p

Depolarizing 1 − 8
9 p 1 − 22

27 p 2
3 − 8

27 p + 3− 16
3 p+ 16

9 p2

9−6p

Bit-phase flip 1 − p 1 − 2
3 p 1 − 2

3 p

A. damping 2
3 − 1

3

(
p − √

1 − p
)

2
3 − 1

3

(
5
6 p − √

1 − p
) (

1 − p
3
) (

2
3 + 1

3

√
1−p

1− p
2

)

higher than that of the 3-EPR setup, see Eqs. (15–18) and Fig. 3. These results con-
sider that all involved qubits are fully protected from environmental disturbances.
Also, in this case no full measurements in the GHZ basis are required.

The opposite limiting situation is to consider ideal, maximally entangled measure-
ments and channels (θ = φ = π/4), with noise afflicting the latter. These results
are shown in Table 2 where, again, the 2-GHZ scheme presents better performances
for bit-flip and depolarizing noises. Particularly remarkable is the fact that for any
extent of bit-flip noise, due to the 2-GHZ structure of entanglement distribution and
measurements, qubit 6 remains fully protected. For phase flips, the two structures lead
to the same fidelity.

When all these imperfections are considered together, the 2-GHZ scheme is consis-
tently more efficient than the 3-EPR one, as it can be seen by comparing the expressions
for average fidelity in each particular case. The difference between the two schemes
is more pronounced for non-ideal entanglement and bit-flip noise (see Fig. 4). In this
case, it is easy to show that

�FB =
〈
FB−PS

GHZ

〉
−

〈
FB

EPR

〉
, (51)

reaches its maximum for:

sin(2θ∗) sin(2φ∗) = 2
(
1 − 2

3 p
)

3(1 − p)
. (52)

For p = 0.1, we have �FB ≈ 0.07.
The protocol is applicable to larger states of GHZ type, being scalable, in principle.

In order to teleport a n-qubit GHZ state (GHZn), we may employ two GHZn states as
the channel. It is possible to apply the measurement basis described in the Electronic
Supplementary Material. For a GHZ with 4 particles, for example, a possible scheme
is briefly described below. In this case, the initial state of the system is given by

ρ̂0 = ρ̂1256 ⊗ ρ̂348(10) ⊗ ρ̂48(11)(12). (53)
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Fig. 4 Plot of the difference of
overall fidelities, �FB [Eq.
(51)], produced by 2-GHZ and
3-EPR channels, as a function of
θ and φ for p = 0.07. Here, as
in Fig. 3, black corresponds to
�Fbf = 0. The lighter colors
present in this plot indicate that
the difference between the two
setups is more pronounced when
noise is present
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We can make measurements by using the basis {|Φμ
λ 〉}:

|Φμ
λ 〉 =

1∑

j=0

(−1)μj bμ⊕λ | j, j ⊕ λ1, j ⊕ λ2, j ⊕ λ3〉 . (54)

The measurements are made on the 1-2-3-4 and 5-6-7-8, after which the state in Bob’s
side, up to normalization, is

ρ̂K = TrA
{(

P̂K ⊗ 1̂B

)
ρ̂0

}
, (55)

where
P̂K = |Ψ μ

λ 〉 〈Ψ μ
λ |1234 ⊗ |Ψ ν

τ 〉 〈Ψ ν
τ |5678 . (56)

Analogously, it is possible to make a protocol with 5 particles and so on. Thus, it is
possible to extend this idea to larger states.

Our general conclusion is that although EPR channels are extremely versatile in a
wide variety of tasks, channels with more complex entanglement may be more resilient
against systematic imperfections and noise in specific tasks.
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