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Abstract In this paper, we provide two methods of constructing quantum codes from
linear codes over finite chain rings. The first one is derived from the Calderbank–
Shor–Steane (CSS) construction applied to self-dual codes over finite chain rings. The
second construction is derived from the CSS construction applied to Gray images of
the linear codes over finite chain ring Fp2m +uFp2m . The good parameters of quantum
codes from cyclic codes over finite chain rings are obtained.
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1 Introduction

Quantum codes were introduced to protect quantum information from decoherence and
quantum noise. A main obstacle to complete quantum communication is decoherence
of quantum bits caused by inevitable interaction with environments. Quantum codes
provide an efficient way to overcome decoherence. After the works of Shor [1] and
Steane [2], the theory of quantum codes has been progressed rapidly. Calderbank et
al. [3] provided a systematic mathematical scheme to construct quantum codes from
classical Hermitian dual-containing codes over F4.

Some researches constructed quantum codes by using linear codes over finite rings.
In [4], Qian et al. gave a new method to obtain self-orthogonal codes over F2. Based
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on these results, a lot of quantum codes are obtained from cyclic codes over F2 +uF2,
where u2 = 0. Tang et al. [5] extend the results in [4] over F2m +uF2m +· · ·+ukF2m ,
where u2 = 0, m is a positive integer. In [6], Ashraf and Mohammad constructed
quantum codes from cyclic codes over F3 + vF3, where v2 = v. Following this line,
we consider that quantum codes are derived from finite chain ring .

Hereafter, p is a prime. The purpose of this paper is to consider liner codes over finite
chain rings to obtain good quantum codes. In Sect. 2, we review some concepts and
properties about quantum codes over finite fields. In Sect. 3, we first give the necessary
background materials on finite chain rings. Then a construction for quantum codes
from self-dual codes over finite chain rings is given. In the final section, for special
finite chain ring R = Fp2m + uFp2m , we define a new Gray map � from Rn to F

2n
p2m ,

Gray weights of elements of Rn , Gray distance dG(C) and Hermitian dual C⊥H with
respect to Gray weight and the Hermitian inner product in the linear code C over
R. We prove that �(C⊥H ) = �(C)⊥H and give a method to derive Hermitian dual-
containing codes over Fp2m as Gray images of linear codes over Fp2m + uFp2m . The
parameters of quantum codes are obtained from cyclic codes over R.

2 Review of symmetric quantum codes

In this section, we recall some basic concepts and results of symmetric quantum codes,
necessary for the development of this work. For more details, we refer to [7,8].

Let Fq be the finite field with q = p2m , where p is a prime number and m ≥ 1 is an
integer. Let Vn be the Hilbert space Vn = C

qn = C
q ⊗· · ·⊗C

q . Let | x〉 be the vectors
of an orthonormal basis of C

qn , where the labels x are elements of Fq . Then Vn has
the following orthonormal basis {|c〉 = |c1c2 . . . cn〉 = |c1〉 ⊗ |c2〉 ⊗ · · · ⊗ |cn〉 : c =
(c1, c2, . . . , cn) ∈ F

n
q}.

Consider a, b ∈ Fq , the unitary linear operators X (a) and Z(b) in C
q are defined by

X (a)|x〉 = |x + a〉 and Z(b)|x〉 = wtr(bx)|x〉, respectively, where w = exp(2π i/p)
is a primitive p-th root of unity and tr is the trace map from Fq to Fp.

Let a = (a1, . . . , an) ∈ F
n
q , we write X (a) = X (a1) ⊗ · · · ⊗ X (an) and Z(a) =

Z(a1) ⊗ · · · ⊗ Z(an) for the tensor products of n error operators. The set En =
{X (a)Z(b) : a,b ∈ F

n
q} is an error basis on the complex vector space C

qn and we set
Gn = {wcX (a)Z(b) : a,b ∈ F

n
q , c ∈ Fp} is the error group associated with En .

Definition 2.1 Aq-ary quantum code of lengthn is a subspace Q ofVn with dimension
K > 1. A quantum code Q of dimension K > 2 is called symmetric quantum code
(SQC) with parameters ((n, K , d))q or [[n, k, d]]q ,where k = logq K if Q detect d−1
quantum digits of errors for d ≥ 1. Namely, if for every orthogonal pair |u〉, |v〉 in Q
with < u|v >= 0 and every e ∈ Gn with WQ(e) ≤ d−1, |u〉 and e|v〉 are orthogonal,
i.e.,< u|e|v >= 0. Such a quantum code is called pure if < u|e|v >= 0 for any |u〉
and |v〉 in Q and any e ∈ Gn with 1 ≤ WQ(e) ≤ d − 1. A quantum code Q with
K = 1 is always pure.

Let us recall the SQC construction:
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Theorem 2.2 [8, Lemma 20] Let Ci be a classical linear code with parameters
[n, ki , di ]q and C⊥

i ⊆ C1+(i mod 2)(i = 1, 2). Then there exists an SQCQwith param-
eters [[n, k1 + k2 − n,≥ d]]q that is pure to min{d1, d2}, where d = min{wt (c) : c ∈
(C1\C⊥

2 ) ∪ (C2\C⊥
1 )}.

Corollary 2.3 If C be a classical linear [n, k, d]q code containing its dual C⊥ ⊆ C,
then there exists an SQC Q with parameters [[n, 2k − n,≥ d]]q that is pure to d.

To see that an SQC is good in terms of its parameters, we have to introduce the
quantum Singleton bound ( See [7]).

Theorem 2.4 Let C be an SQC with parameters [[n, k, d]]q . Then k ≤ n − 2d + 2.

If an SQC Q with parameters [[n, k, d]]q attains the quantum Singleton bound
k ≤ n − 2d + 2, then it is called an SQC maximum distance separable (SQCMDS)
code.

Definition 2.5 An SQC Q with parameters [[n, k, d]]q is called a near quantum max-
imum distance separable (SQCNMDS) code if it satisfies 2d ≥ n − k.

Corollary 2.6 Let C be an [n, k, d]q classical code containing its dual, C⊥ ⊆ C.
Then

1. k ≥ 
 n
2 �.

2. If C is an MDS code, then there exists an [[n, 2k − n, d]]q SQCMDS code.

Proof 1. Since C is a k-dimensional subspace of F
n
q , C⊥ is a (n − k)-dimensional

subspace of F
n
q . It follows that n − k ≤ k by C⊥ ⊆ C . Therefore, k ≥ 
 n

2 �.
2. If C is an [n, k, d]q classical MDS codes containing its dual, C⊥ ⊆ C , then

Corollary 2.3 implies the existence of a quantum [[n, 2k − n,≥ d]]q code Q.
Theorem 2.4 shows that the minimum distance of Q is ≤ n−(2k−n)+2

2 = n− k + 1,
so Q is an [[n, 2k − n, d]]q SQCMDS code.

Corollary 2.7 Let C be an [n, k, d]q classical code containing its dual, C⊥ ⊆ C and
d ≥ n − k. Then there exists an [[n, 2k − n,≥ d]]q SQCNMDS code.

Proof If C is an [n, k, d]q classical codes containing its dual, i.e., C⊥ ⊆ C , then
Corollary 2.3 implies the existence of a quantum [[n, 2k − n, d1]]q code Q, where
d1 ≥ d. So Q is an [[n, 2k − n,≥ d]]q SQCNMDS code.

3 SQC from linear codes over finite chain rings

Constructions of quantum codes are exhaustively investigated in the literature. As
mentioned in Sect. 1, some authors have exhibited families of optimal codes. However,
many of these techniques are based on the construction of classical codes over finite
fields.

In this section, we use self-dual codes over finite chain rings to construct SQC.
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We begin with some definitions and properties about finite chain rings (see [9,10]).
Let R be a finite commutative ring with identity. A nonempty subset C ⊆ Rn is called
a linear code of length n over R if it is an R-submodule of Rn . Throughout this section,
all codes are assumed to be linear.

A commutative ring is called a chain ring if the lattice of all its ideals is a chain. It
is well known that if R is a finite chain ring, then R is a principal ideal ring and has a
unique maximal ideal 〈γ 〉 = Rγ = {rγ | r ∈ R}. Its chain of ideals is

R = 〈γ 0〉 ⊃ 〈γ 1〉 ⊃ · · · 〈γ t−1〉 ⊃ 〈γ t 〉 = {0}.

The integer t is called the nilpotency index of γ . Note that the quotient R/〈γ 〉 is a
finite field Fq , where q is a power of a prime p. There is a natural homomorphism
from R onto Fq = R/〈γ 〉, i.e.,

− : R −→ Fq = R/〈γ 〉, r �→ r + 〈γ 〉 = r , for anyr ∈ R.

We need the following lemma (see [10]).

Lemma 3.1 Let R be a finite chain ring with maximal ideal 〈γ 〉. Let V ⊂ R be a set
of representatives for the equivalence classes of R under congruence modulo γ . Then

1. For any v ∈ R there exist unique v0, . . . , vt−1 ∈ V such that v = ∑t−1
i=0 viγ

i .

2. |V | = |R/γ | = |Fq |.
The natural homomorphism from R onto Fq = R/〈γ 〉 can be extended naturally

to a projection from Rn onto F
n
q . For an element c ∈ Rn , let c be its image under this

projection. Given r ∈ R and c ∈ Rn , we denote by rc the usual multiplication of a
vector by a scalar. Let C be a code of length n over R. We define C = {

c | c ∈ C
}

and
(C : r) = {

e ∈ Rn | re ∈ C
}
, where r is an element of R.

Definition 3.2 To any code C over R, we associate the tower of codes

C = (C : γ 0) ⊆ (C : γ ) ⊆ · · · ⊆ (C : γ t−1)

over R and its projection to Fq ,

C = (C : γ 0) ⊆ (C : γ ) ⊆ · · · ⊆ (C : γ t−1).

The following definitions and results can be found in [10].

Definition 3.3 Let C be a linear code over R. A generator matrix G for C is said to
be in standard form if after a suitable permutation of the coordinates,

G =

⎛

⎜
⎜
⎜
⎜
⎝

Ik0 A0,1 A0,2 A0,3 · · · A0,t−1 A0,t

0 γ Ik1 γ A1,2 γ A1,3 · · · γ A1,t−1 γ A1,t

0 0 γ 2 Ik2 γ 2A2,3 · · · γ 2A2,t−1 γ 2A2,t

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · γ t−1 Ikt−1 γ t−1At−1,t

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

A0
γ A1

...

γ t−1At−1

⎞

⎟
⎟
⎟
⎠

.

(3.1)
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We associate with G the matrix

A =

⎛

⎜
⎜
⎜
⎝

A0
A1
...

At−1

⎞

⎟
⎟
⎟
⎠

. (3.2)

For a code C , we define the rank of C , denoted by rank(C), to be the minimum
number of generators of C and the free rank of C , denoted by free rank(C), to be the
maximum of the ranks of free R-submodules of C . Codes where the rank is equal to
the free rank are called free codes.

LetC be a linear code over R. We denote by k(C) the number of rows of a generating
matrix G in standard form for C , and for i = 0, 1, . . . , t − 1 we denote by ki (C) the
number of rows of G that are divisible by γ i but not by γ i+1.

Clearly, rankC = k(C) = ∑t−1
i=0 ki (C).

The Hamming weight WH(x) of a codeword x is the number of nonzero components
in x. The Hamming distance dH(x, y) between two codewords x and y is the Hamming
weight of the codeword x − y. The minimum Hamming distance dH of C is defined
as min{dH(x, y)|x, y ∈ C, x �= y}.

It is well known (see [11]) that for codes C of length n over any alphabet of size m

dH(C) ≤ n − logm(|C |) + 1.

Codes meeting this bound are called maximum distance separable (MDS) codes.
Further if C is linear, then

dH(C) ≤ n − rank(C) + 1.

Codes meeting this bound are called maximum distance with respect to rank (MDR)
codes.

Lemma 3.4 Let C be a linear code over R with a generator matrix G in standard
form and let A be as in (3.2).

1. For 0 ≤ i ≤ t − 1, (C : γ i ) has generator matrix

Gi =
⎛

⎜
⎝

A0
...

Ai

⎞

⎟
⎠

and dim(C : γ i ) = k0(C) + · · · + ki (C).

2. For 0 ≤ i ≤ t − 1, (C⊥ : γ i ) = (C : γ t−1−i )
⊥
. We have k(C⊥) = n −

k0(C), k0(C⊥) = n − k(C) and ki (C⊥) = kt−i (C), for i = 1, . . . , t − 1.
3. dH(C) = dH(C⊥ : γ t−1).
4. If C is an MDR code over R, then (C⊥ : γ t−1) is an MDS code over Fq = R/〈γ 〉.

We have an important observation that proves to be rather useful to construct SQC.
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Lemma 3.5 Let C be a self-dual code of length n over finite chain ring R. Then

(C : γ t−1−i )
⊥ ⊆ (C : γ i+ j ),

where 0 ≤ i ≤ t − 1, 0 ≤ j ≤ t − 1 − i . In particular,

(C : γ t−1)
⊥ ⊆ (C : γ t−1).

Proof For 1 ≤ i ≤ t − 1, 0 ≤ j ≤ t − 1 − i , by Definition 3.2 and Lemma 3.4, we
have

(C : γ t−1−i )
⊥ = (C⊥ : γ i ) = (C : γ i ) ⊆ (C : γ i+ j ).

In case i = 0, obviously, (C : γ t−1)
⊥ ⊆ (C : γ t−1).

Theorem 3.6 Let C be a self-dual code of length n and minimum distance dH(C)

over finite chain ring R with a generator matrix G in standard form. Then

1. There exists a quantum code with parameters [[n, 2k(C)−n,≥ dH(C)]]q . In par-
ticular, if C is an MDR code, then there exists an SQCMDS code with parameters
[[n, 2k(C) − n, dH(C)]]q .

2. There exists a quantum code with parameters [[n, l + 2s − n,≥ d1]]q , where
d1 = min{dH(C : γ t−1−i ), dH(C : γ i+ j )}, s = k0(C) + k1(C) + · · · + ki (C),
l = ki+1(C) + · · · + ki+ j (C) and 0 ≤ i ≤ t − 1, 0 ≤ j ≤ t − 1 − i .

Proof By Lemma 3.4 (1), We know that dim(C : γ t−1) = k(C). Thus, there exists

a [n, k(C), dH(C)]q code with (C : γ t−1)
⊥ ⊆ (C : γ t−1). According Corollary 2.3,

the part (1) is proved.

For (2), by Lemma 3.4 (2), dim(C : γ t−1−i )
⊥ = k0(C)+k1(C)+· · ·+ki (C), and

dim(C : γ i+ j ) = k0(C) + k1(C) + · · · + ki (C) + · · · + ki+ j (C). Using Theorem 2.2
and Lemma 3.5, there exists a quantum code with parameters [[n, l +2s−n,≥ d1]]q ,
which is the required result.

In the rest of this section, we aim to obtain good quantum codes by cyclic codes
over a finite chain ring R̃ with maximal ideal m = R̃γ , where γ is a generator of m
with nilpotency index 2.

The following result is well known (see [12]).

Theorem 3.7 Let C be a cyclic code of length n over finite chain ring R̃ with char-
acteristic pa, where (p, n) = 1. Then

1. C = 〈 f (x)h(x), γ f (x)g(x)〉, where f (x)g(x)h(x) = xn − 1.
2. C⊥ = 〈g∗(x)h∗(x), γ g∗(x) f ∗(x)〉, where g∗(x) = xdegg(x)g( 1

x ), i.e., g∗(x) is
the reciprocal of g(x).

3. C = 〈 f h〉 and (C : γ ) = 〈 f 〉.
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Theorem 3.8 Let C be a cyclic code of length n over finite chain ring R̃ with charac-
teristic pa, where (p, n) = 1. If C = 〈 f (x)h(x), γ f (x)g(x)〉 with f (x)g(x)h(x) =
xn − 1, then C is self-dual if and only if g(x) = ε f ∗(x) and h(x) = εh∗(x), where ε

and ε are units.

Proof The sufficiency is obvious since C⊥ = 〈g∗(x)h∗(x), γ g∗(x) f ∗(x)〉.
Now, if C is self-dual, by Theorem 3.7 (2) we know that 〈 f (x)h(x), γ f (x)g(x)〉 =

〈g∗(x)h∗(x), γ g∗(x) f ∗(x)〉. But these generators are the unique generators of this
form. Hence,

f (x)h(x) = g∗(x)h∗(x).

and

f (x)h(x)g(x) = g∗(x)h∗(x)g(x) = −g∗(x)h∗(x) f ∗(x) = xn − 1.

Since f ∗(x) and g∗(x)h∗(x) are coprime, f ∗(x) | g(x). Similarly, since

f (x)h(x) f ∗(x) = g∗(x)h∗(x) f ∗(x) = − f (x)g(x)h(x).

and g(x) and f (x)h(x) are coprime, g(x) | f ∗(x). That means that g(x) = ε f ∗(x).
Now, f (x)h(x) = g∗(x)h∗(x) = ε f (x)h∗(x)where h∗(x) and f (x) are coprime. This
implies that h(x) | h∗(x). Similarly, since f ∗(x)h∗(x) = g(x)h(x) = ε f ∗(x)h(x)
where h∗(x) and f ∗(x) are coprime, h∗(x) | h(x). Therefore, h(x) = εh∗(x).

Now combining Theorems 3.6 , 3.7 and 3.8, the following result is obtained.

Theorem 3.9 Let C = 〈 f (x)h(x), γ f (x)g(x)〉 be a cyclic self-dual code of length n
over finite chain ring R̃ with characteristic pa, where (p, n) = 1 and f (x)g(x)h(x) =
xn − 1. Then

1. There exists a quantum code with parameters [[n, n−2deg f (x),≥ dH(C : γ ) ]]q .
2. There exists a quantum code with parameters [[n, n − 2deg f (x) − degh(x),≥

dH(C : γ ) ]]q .
Example 1 We list some quantum codes which can be constructed starting from self-
dual cyclic codes over F2 + uF2 in Table 1. Compared the parameters of quantum
codes available in (Refs.[13]), we find that our obtained quantum codes have good
parameters and parts of them are new.

Example 2 Taking some special values of p, we obtain the following new good quan-
tum codes by non-trivial cyclic self-dual codes over the chain ring Zp2 in Table 2.

Remark 3.10 By Theorem 3.9, we obtain some new quantum codes with good param-
eters in Tables 1 and 2, which are compared to known quantum codes in [13]. Note
that in Refs. [4–6], the authors all constructed quantum codes with even length from
finite ring, we propose a new way to construct quantum codes with odd length from
finite ring. Moreover, by Theorem 3.9, the algorithm of finding new quantum codes is
more effective than proposed in Refs.[4–6].
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Table 1 Quantum codes
comparison

New quantum codes Quantum codes from [13]

[[7, 1, ≥ 3]]2 (SQCNMDS) [[7, 1, 2]]2
[[15, 7, ≥ 3]]2 [[15, 7, 3]]2
[[21, 9, ≥ 3]]2 Not

[[31, 21, ≥ 5]]2 (SQCNMDS) [[31, 21, 3]]2

Table 2 Quantum codes
comparison

New quantum codes Quantum codes from [13]

[[13, 7, ≥ 3]]3 [[13, 7, 3]]3
[[11, 1, ≥ 5]]3 [[11, 1, 4]]3
[[19, 1, ≥ 7]]5 [[19, 1, 5]]5
[[31, 25, ≥ 3]]5 [[31, 25, 3]]5
[[6, 4, 2]]7 (SQCMDS) Not

[[37, 19, ≥ 6]]7 [[37, 1, 7]]7

4 SQC from cyclic codes over chain rings F p2m + uF p2m

Throughout this section, p denotes a prime number and Fp2m denotes the finite field
with p2m elements for a positive integer m. We always assume that n is a positive
integer.

The ring R = Fp2m + uFp2m consists of all p2m-ary polynomials of degree 0
and 1 in an indeterminate u, and it is closed under p2m-ary polynomial addition and

multiplication modulo u2. Thus, R = Fp2m [u]
〈u2〉 = {a + ub|a, b ∈ Fp2m } is a local

ring with maximal ideal uFp2m . Therefore, it is a chain ring. The ring R has precisely
p2m(p2m − 1) units, which are of the forms α + uβ and γ , where α, β and γ are
nonzero elements of the field Fp2m .

Let â + ub := â + ub̂, where â = a pm and b̂ = bpm . The Hermitian inner product
over Fp2m + uFp2m is defined as follows:

[x, y]H =
n∑

i=1

xi ŷi .

where x, y ∈ Rn , x = (x1, . . . , xn) and y = (y1, . . . , yn). The Hermitian dual code
C⊥H of C is defined by

C⊥H = {
x ∈ Rn | [x, y]H = 0 for all y ∈ C

}
.

It is evident that C⊥H is linear. We say that a code C is Hermitian dual-containing
code if C⊥H ⊂ C and C �= Rn and Hermitian self-dual if C⊥H = C .
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It is easy to prove that

| C | · | C⊥H |=| R |n . (4.1)

The following lemma can be found in [14].

Lemma 4.1 [14, Corollary 4.2] Assume the notations given above. Then there exist
α ∈ R such that α2 = −1 if and only if p2m ≡ 1 (mod 4).

Remark 4.2 Since α ∈ R, there exist s, t ∈ Fp2m such that α = s + ut. Hence,
computing in R, we have α2 = s2 +2stu = −1, which implies that s2 = −1, 2st = 0.
If p = 2, then take s = 1 ∈ Fp2m , t = 0 we have α2 = −1; if p �= 2, then t = 0 since
2st = 0. Therefore, α = s ∈ Fp2m .

From now on, we always assume that pm ≡ 1 (mod 4), then p2m ≡ 1 (mod 4). So
there exist α ∈ Fp2m such that α2 = −1 in R.

We first give the definition of the Gray map on Rn . The Gray map �1 : R → F
2
p2m

is given by �1(a + bu) = (αb, a + b), where α2 = −1. This map can be extended to
Rn in a natural way:

� : Rn −→ F
2n
p2m

(a1 + ub1, . . . , an + ubn) �−→ (αb1, a1 + b1, . . . , αbn, an + bn).

Next, we define a Gray weight for codes over R as follows.

Definition 4.3 The Gray weight over R is a weight function on R defined as:

wG(a + bu) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if a = 0, b = 0,

1 if a �= 0, b = 0,

1 if b �= 0, a + b ≡ 0 (mod p),
2 if b �= 0, a + b �≡ 0 (mod p).

Define the Gray weight of a codeword c = (c1, . . . , cn) ∈ Rn to be the rational sum of
the Gray weight of its components is, wG(c) = ∑n

i=1 wG(ci ). For any c1, c2 ∈ Rn , the
Gray distance dG is given by dG(c1, c2) = wG(c1 − c2). The minimum Gray distance
of C is the smallest nonzero Gray distance between all pairs of distinct codewords
of C . The minimum Gray weight of C is the smallest nonzero Gray weight among
all codewords of C . If C is linear, then the minimum Gray distance is same as the
minimum Gray weight.

The following proposition is easily checked.

Proposition 4.4 The Gray map � is a distance-preserving map from (Rn, Gray
distance) to (F2n

p2m , Hamming distance), and it is also Fp2m -linear.

Corollary 4.5 If C is a linear code over R of length n, size (p2m)k and minimum
Gray weight dG, then �(C) is a linear code over Fp2m with parameters [2n, k, dG].
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The Hermitian inner product over Fp2m is defined as follows:

[a,b]H = a · b̂ =
n∑

i=1

aib
pm

i ,

where a,b ∈ F
n
p2m , a = (a1, . . . , an),b = (b1, . . . , bn) and · is the usual Euclidean

inner product.
An important connection that we want to investigate is the relation between the

Hermitian dual and the Gray image of a code. We have the following theorem.

Theorem 4.6 Let C be a linear code over R of length n. Then �(C⊥H ) = �(C)⊥H .

Proof To prove the theorem, we first show �(C⊥H ) ⊂ �(C)⊥H , i.e.,

[x, y]H = 0 ⇒ [�(x),�(y)]H = 0 for all x, y ∈ Rn . (4.2)

To this extent, let us assume that x = (a1 + ub1, . . . , an + ubn) and y = (c1 +
ud1, . . . , cn + udn), where ai , bi , ci , di ∈ Fp2m . Then by

[x, y]H =
n∑

i=1

ai ĉi +
n∑

i=1

(bi ĉi + ai d̂i )u,

we see that [x, y]H = 0 if and only if

n∑

i=1

ai ĉi = 0, (4.3)

and

n∑

i=1

(bi ĉi + ai d̂i ) = 0. (4.4)

Note that pm ≡ 1 (mod 4) we can assume that pm = 4k + 1 for some k ∈ N;
hence, pm + 1 = 4k + 2 = 2(2k + 1). According to α2 = −1, we have

α pm+1 = (α2)2k+1 = −1. (4.5)
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Now, since �(x) = (αb1, a1 + b1, . . . , αbn, an + bn) and �(y) = (αd1, c1 +
d1, . . . , αdn, cn + dn), we get

[
�(x),�(y)

]
H =

n∑

i=1

α pm+1bi d̂i +
n∑

i=1

(ai + bi )(ĉi + di )

=
n∑

i=1

α pm+1bi d̂i +
n∑

i=1

(
ai ĉi + ai d̂i + bi ĉi + bi d̂i

)

=
n∑

i=1

(
α pm+1 + 1

)
bi d̂i +

n∑

i=1

ai ĉi +
n∑

i=1

(
bi ĉi + ai d̂i

)
,

by (4.3-4.5) which finishes the of (4.2), i.e.,

�(C⊥H ) ⊂ �(C)⊥H . (4.6)

In light of Corollary 4.5, �(C) is a linear code of length 2n of size |C | over Fp2m .
So, by Corollary 4.5, we know that

|�(C)⊥H | = (p2m)2n

|�(C)| = (p2m)2n

|C | .

Since R is a finite chain ring, i.e., Frobenius ring, we have

|C⊥H | · |C | = |R|n = (p2m)2n .

Hence, this implies that

|�(C⊥H )| = |�(C)⊥H |. (4.7)

Combining (4.6) with (4.7), we get the desired equality.

The following corollary is an immediate result to this:

Corollary 4.7 1. If C is a Hermitian self-dual code of length n over R, then �(C)

is a Hermitian self-dual code of length 2n over Fp2m ;
2. If C is a Hermitian dual-containing code of length n over R, then �(C) is a

Hermitian dual-containing code of length 2n over Fp2m .

In the following, we always assume that n is a positive integer and (n, p) = 1. Let
Rn = R[x]

<xn−1>
. We denote by μ the natural surjective ring morphism from R to Fp2m ,

which can be extended naturally to a surjective ring morphism from R[x] to Fp2m [x].
For a polynomial f (x) of degree k in R[x], its reciprocal polynomial xk f (x−1) is

denoted by f ∗(x). Note that the roots of f ∗(x) are the reciprocal of the corresponding
roots of f (x). Set f (x) = a0 + a1x + · · · + akxk , we define

f̂ (x) = â0 + â1x + · · · + âk x
k .
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The following result is easy to obtain, we omit the proof.

Lemma 4.8 Let f (x) = (t0 +us0)+ (t1 +us1)x +· · ·+ (tn−1 +usn−1)xn−1 ∈ R[x]
and η be a primitive nth root of unity in some extension ring of R. If ηs is a root of
f (x), there f̂ ∗(x) has η−pms as a root.

Let i be an integer such that 0 ≤ i ≤ n − 1, and let l be the smallest posi-
tive integer such that i(p2m)l ≡ i (mod n). Then Ci = {i, i p2m, . . . , i(p2m)l−1} is
the p2m−cyclotomic coset module n containing i . A cyclotomic coset Ci is called
symmetric if n − pmi ∈ Ci and asymmetric otherwise. Let I1 and I2 be sets of
symmetric and asymmetric coset representatives modulo n, respectively. Since p is
coprime with n, the irreducible factors of xn − 1 in Fp2m [x] can be described by the
p2m−cyclotomic cosets. Suppose that ζ be a primitive nth root of unity over some
extension field of Fp2m . Then ζ is also a primitive nth root of unity over some exten-
sion ring of R. Let m j (x) be the minimal polynomial of ζ j with respect to Fp2m .

Then m j (x) = �i∈C j (x − ζ i ), and m̂∗
j (x) = �i∈C−pm j (x − ζ i ) by Lemma 4.8.

Therefore, polynomial xn − 1 factors are uniquely into monic irreducible polyno-
mial in Fp2m [x] as xn − 1 = � j∈I1m j (x)� j∈I2m j (x)m−pm j (x). By Hensel,s lemma
(See [10, Theorem 4.1.1]), xn − (1 + u) has a unique decomposition as a prod-
uct � j∈I1 Mj (x)� j∈I2 Mj (x)M−pm j (x) of pairwise coprime monic basic irreducible
polynomials in R[x] with μ(Mj (x)) = m j (x) for each j ∈ I1 ∪ I2.

The following two lemmas can be found in [15].

Lemma 4.9 [15, Theorem 3.4] Let xn − (1 + u) = � j∈I1∪I2 Mj (x) be the unique
factorization of xn − (1 + u) into a product of monic basic irreducible pairwise
coprime polynomials in R[x]. If C is a cyclic code of length n over R, then C =
〈� j∈I1∪I2 M

k j
j (x)〉, where0 ≤ k j ≤ 2. In this case, | C |= (p2m)

∑
j∈I1∪I2

(2−k j ) deg M j .

Lemma 4.10 [15, Lemma 4.2] Let C = 〈� j∈I1∪I2 M
k j
j (x)〉 be a cyclic code of

length n over R, where the polynomials M j (x) are the pairwise coprime monic basic
irreducible factors of xn − (1 + u) in R[x] and 0 ≤ k j ≤ 2 for each j ∈ I1 ∪ I2. Then

C⊥H = 〈� j∈I1∪I2 M̂
∗
j (x)

2−k j
(x)〉 and | C⊥H |= (p2m)

∑
j∈I1∪I2

k j deg M j .

Theorem 4.11 Let C be a cyclic code of length n over R. If

C =
〈
� j∈I1 M

k j
j (x)� j∈I2 M

i j
j (x)M

l j
−pm j (x)

〉
,

then C⊥H ⊂ C if and only if k j = 0 or k j = 1 for j ∈ I1 and i j + l j ≤ 2 for j ∈ I2.

Proof According to Lemma 4.10, we have

C⊥H =
〈
� j∈I1 M

2−k j
j (x)� j∈I2 M

2−l j
j (x)M

2−i j
−pm j (x)

〉
.

Comparing with C = 〈� j∈I1 M
k j
j (x)� j∈I2 M

i j
j (x)M

l j
−pm j (x)〉, it follows that C⊥H ⊂

C if and only if k j = 0 or k j = 1 for j ∈ I1 and i j + l j ≤ 2 for j ∈ I2. ��
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From now on, we always assume that n = spt − 1. Obviously, (n, p) = 1. In
this case, we give a method to decompose xn − (1 + u) into monic basic irreducible
polynomials in R(x). Let g1(x), g2(x), . . . , gr (x) be monic basic irreducible polyno-
mials in R[x] such that xn − 1 = g1(x)g2(x) . . . gr (x). Note that (1 + u)p = 1 and
(1 + u)sp

t = 1. Let fi (x) = (1 + u)p−deg gi gi ((1 + u)x) for 1 ≤ i ≤ r . Then the
polynomial xn − (1 + u) factor is uniquely into monic basic irreducible polynomials
in R[x] as f1(x) f2(x) . . . fr (x).

For a code C of length n over R, their torsion and residue codes are codes over
Fp2m , defined as follows.

Tor(C) =
{
a ∈ F

n
p2m | ua ∈ C

}
, Res(C) =

{
a ∈ F

n
p2m | ∃b ∈ F

n
p2m : a + ub ∈ C

}
.

It is easy to prove that |C | = |Res(C)||Tor(C)|.
Theorem 4.12 Let C = 〈� j∈I M

k j
j (x)〉 be a cyclic code of length n over R where

xn − (1 + u) = � j∈I1 Mj (x)� j∈I2 Mj (x)M−pm j (x), 0 ≤ k j ≤ 2 and I = I1 ∪ I2.
Then

1. Res(C) = 〈� j∈I [μ(Mj (x))]δ j 〉, where δ j = k j if k j = 1 or 0, and δ j = 1 if
k j = 2;

2. Tor(C) = 〈� j∈I [(μMj (x))]η j 〉, where η j = 0 if k j = 1 or 0, and η j = 1 if
k j = 2.

Proof According to the definition of Res(C), we have Res(C) = 〈� j∈I [(μMj (x))]k j 〉.
Note that if f (x) is a monic irreducible divisor of xn − 1 in Fp2m and g(x) =
xn−1
f (x) , then ( f (x), g(x)) = 1. So there exist a(x), b(x) ∈ Fp2m [x] such that

a(x) f (x) + b(x)g(x) = 1 in Fp2m [x]. Computing in
Fp2m [x]
〈xn−1〉 , we get

a(x) f 2(x) = (1 − b(x)g(x)) f (x) = f (x) − b(x) f (x)g(x) = f (x)

−b(x)(xn − 1) = f (x).

Consequently, 〈 f 2(x)〉 = 〈 f (x)〉. This proves the (1).
For (2), since u� j∈I [(μMj (x))]η j = u� j∈I [Mj (x)]η j = −� j∈I [Mj (x)]η j+1 ∈

C , we have 〈� j∈I [(μMj (x))]η j 〉 ⊂ Tor(C). By Lemma 4.9 and |C | = |Res(C)||Tor
(C)|, we imply

|〈� j∈I [(μMj (x))]η j 〉 |=| Tor(C)|.

Thus, Tor(C) = 〈� j∈I [(μMj (x))]η j 〉.
Theorem 4.13 Let C be a cyclic code of length n over R, and let d1 and d2 be the
minimum Hamming distances of the Res(C) and Tor(C), respectively. Then dG(C) =
min{d1, 2d2}.
Proof For any nonzero codeword c = a(x) + ub(x) ∈ C , if a(x) �= 0, then a(x) ∈
Res(C). Thus, wG(c) ≥ d1. Otherwise, c = ub(x) ∈ uTor(C); hence, wG(c) ≥ 2d2.
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So dG(C) ≥ min{d1, 2d2}. On the other hand, since uTor(C) is contained in C , we
can obtain dG(C) ≤ 2d2. Obviously, Res(C) ⊂ C ; hence, d1 ≥ dG(C). It follows that
min{d1, 2d2} ≥ dG(C). This proves the expected result.

Combining Corollary 2.3, 4.5, 4.7 and Theorem 4.13, we have the following result.

Theorem 4.14 Let C be a Hermitian dual-containing cyclic code over R of length n
size (p2m)k , and let d1 and d2 be the minimum Hamming distances of the Res(C)

and Tor(C).Then there exists a quantum code with parameters [[2n, 2k − 2n,≥
min{d1, 2d2}]]pm .
Example 3 Consider cyclic codes of length 25 over F132 + uF132 . In F132 + uF132 ,

x25 − (1 + u) = M0(X)M1(x)M2(x)M5(x)M10(x),

where

M0(x) = x − (1 − u),

M1(X) = x10 + w30(1 + 8u)x5 + (1 + 3u),

M2(X) = x10 + w54(1 + 8u)x5 + (1 + 3u),

M5(X) = x2 + w30(1 − u)x + (1 − 2u),

M10(X) = x2 + w54(1 − u)x + (1 − 2u).

Let C = 〈M0(x)M1(X)2M10(X)2〉. By Theorem 4.11, C⊥H ⊂ C . Using Theo-
rem 4.13, we find that the Gray distance of C is equal to 4. By Theorem 4.14, a
[[50, 42,≥ 4]]13 quantum code may be obtained from Gray image of this code. This
code is a SQCNMDS code.

Example 4 Consider cyclic codes of length 8 over F34 + uF34 . In F34 + uF34 ,

x8 − (1 + u) = M0(X)M1(x)M2(x)M3(x)M4(x)M5(X)M6(X)M7(X),

where

M0(x) = x − (1 − u),

M1(x) = x + (1 − u)w10,

M2(X) = x + (1 − u)w20,

M3(X) = x + w30(1 − u),

M4(X) = x − (1 − u),

M5(X) = x + w50(1 − u),

M6(X) = x + w60(1 − u),

M7(X) = x + w70(1 − u).

Let C = 〈M0(x)M1(X)2〉. By Theorem 4.11 , C⊥H ⊂ C . Using Theorem 4.13,
we find that the Gray distance of C is equal to 3. By Theorem 4.14, a [[16, 10,≥
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3]]9 quantum code may be obtained from Gray image of this code. This code is a
SQCNMDS code.

5 Conclusion

We give two methods to construct quantum codes from cyclic codes over finite chain
rings. Furthermore, the results show that cyclic codes over finite chain rings are also
a good resource of constructing quantum codes. We believe that more good quantum
codes can be obtained from cyclic codes over finite chain rings. In the future work,
we will use the computer algebra system MAGMA to find more new good quantum
codes.
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