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Abstract In this paper, we define a class of special two-party private summation
(S2PPS) problems and present a common quantum solution to S2PPS problems. Com-
pared to related classical solutions, our solution has advantages of higher security and
lower communication complexity, and especially it can ensure the fairness of two
parties without the help of a third party. Furthermore, we investigate the practical
applications of our proposed S2PPS protocol in many privacy-preserving settings
with big data sets, including private similarity decision, anonymous authentication,
social networks, secure trade negotiation, secure data mining.

Keywords Quantum cryptography · Quantum computation · Secure multi-party
quantum computation · Privacy-preserving

1 Introduction

Secure multi-party computation (SMC) allows a number of mutually distrustful parties
to compute a joint function of their inputs without leaking any information about their
respective private inputs. Due to its important military and business values, SMC has
raised widespread concerns and has been extensively researched in the cryptographic
community, since it was first introduced by Yao [1] and extended by Goldreich et
al. [2].

The general SMC problem is well known to be solvable, in theory, using circuit
evaluation protocols [3,4]. However, the communication complexity of these protocols
depends on the size of the circuit that expresses the functionality to be computed [5].

B Run-Hua Shi
hfsrh@sina.com

1 School of Computer Science and Technology, Anhui University, 230601 Hefei City, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-017-1676-x&domain=pdf


225 Page 2 of 9 R.-H. Shi, S. Zhang

As Goldreich pointed out [6], using the general solution to solve specific problems can
be impractical; problem-specific solutions should be developed, for efficiency reasons.

Subsequently, solutions for some specific SMC problems [7–12] have appeared
that use well-known primitive protocols as important building blocks, such as obliv-
ious transfer [13], homomorphic encryption [14], Yao’s millionaire problem [1], and
zero-knowledge proof [15]. Compared with general circuit evaluation protocols, these
specific protocols have reduced complexity, especially communication complexity.
However, for many applications with big data sets, these existing protocols are still
not efficient enough due to their linear communication complexities, which is relative
to the size of data sets. Furthermore, it is also difficult for these protocols to guarantee
the fairness to all participants without the help of a third party. In addition, the security
of most existing SMC protocols is based on unproven difficulty assumptions, which
are vulnerable to attack by the quantum computer.

As we know, with the advent of fast quantum algorithms [16,17], classical cryp-
tosystems, including symmetric and asymmetric (i.e., public key) cryptosystems, are
facing enormous threat and challenges. On the other hand, quantum cryptography
opens a new era. The security of quantum cryptography is based on the physical prin-
ciples of quantum mechanics, so it can provide unconditional security in theory. Since
Bennett and Brassard presented the first quantum key distribution protocol [18], quan-
tum cryptography has been widely studied and rapidly developed. Nowadays, many
results have been reported, such as quantum encryption [19], quantum secret sharing
[20], quantum secure direct communication [21], and quantum signature [22]. Further-
more, SMC is also studied extensively in quantum cryptography [23–25]. Especially,
another more practical kind of quantum SMC protocol, called Quantum Private Query
[26–30], has drawn attention recently. However, unfortunately, Lo [31], Colbeck [32]
and Buhrman et al. [33] independently pointed out that unconditionally secure non-
relativistic two-party computations are impossible. Later results further show that
although there is not a perfectly secure two-party computation, quantum protocols,
such as quantum bit commitment [34] and quantum coin tossing [18], can still provide
a reasonable security improvement over corresponding classical protocols.

In this paper, we focus on a specific class of SMC problems, involving two partic-
ipants, conventionally called Alice and Bob, in which Alice and Bob have a private
vector (x1, x2, . . . , xN ) and (y1, y2, . . . , yN ), respectively, for which they want to
jointly compute the summation

∑N
i=1 f (xi , yi ) without revealing any private infor-

mation, where f (xi , yi ) ∈ {0, 1}. Hereafter, we call these special two-party private
summation problems S2PPS problems.

To our knowledge, no quantum protocol currently exists for this kind of two-party
private summation problem. Furthermore, we are deeply inspired by some novel quan-
tum protocols [35–38], which achieve an exponential reduction in communication
complexity compared to classical solutions. Since unconditionally secure two-party
quantum protocols require the help of a third party, we seek practically secure quan-
tum protocol for S2PPS problems. In this paper, we present a cheat-sensitive quantum
solution to S2PPS problems, in which a dishonest party cannot perform a cheat strat-
egy without risking detection by the honest party. Compared with classical related
solutions [7–12], the proposed solution has the advantages of higher security, lower
communication complexity, and perfect fairness.
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The paper is organized as follows. In next section, we present a cheat-sensitive
quantum solution to S2PPS problems, and in Sect. 3 give a security analysis and
performance comparisons. In addition, we discuss practical applications in Sect. 4.
We conclude in Sect. 5.

2 Proposed protocol

We first give an informal definition of special two-party private summation (S2PPS).

Definition 1 (S2PPS problem). Two parties, Alice and Bob, have a private vector
(x1, x2, . . . , xN ) and (y1, y2, . . . , yN ), respectively, and they want to jointly compute
the summation

∑N
i=1 f (xi , yi ) without revealing any other private information except

the summation
∑N

i=1 f (xi , yi ), where f (xi , yi ) ∈ {0, 1}.

Definition 2 (S2PPS protocol). Alice and Bob input a private vector (x1, x2, . . . , xN )

and (y1, y2, . . . , yN ), respectively. After executing this protocol, both Alice and Bob
output the result of

∑N
i=1 f (xi , yi ), where f (xi , yi ) ∈ {0, 1}. In addition, this protocol

should meet the following requirements:

Correctness Two honest parties get the right result for
∑N

i=1 f (xi , yi ).
Alice’s Privacy Bob cannot learn any secret information about Alice’s xi except

possible information deduced from the result
∑N

i=1 f (xi , yi ) and his private vector
(y1, y2, . . . , yN ).

Bob’s Privacy Alice cannot get any secret information about Bob’s yi except possi-
ble information inferred from

∑N
i=1 f (xi , yi ) and her private vector (x1, x2, . . . , xN ).

Fairness Two parties are perfect peer entities, and they can get the result∑N
i=1 f (xi , yi ) with equal opportunities. In addition, the probabilities of two parties’

successfully cheating are exactly equal.
In the following protocol, suppose that Alice’s private vector is (x0, x1, . . . , xN−1)

and Bob’s private vector (y0, y1, . . . , yN−1). For simplicity, furthermore, we assume
that all components of the two vectors lie in ZN , where ZN = {0, 1, 2, . . . , N − 1}
and N = 2n . The proposed protocol consists of 5 steps, which are described in detail
as follows.

3 Analysis

3.1 The correctness

By the definition in Step 3 of the proposed protocol, t is the number of i ∈
{0, 1, 2, . . . , N − 1} such that f (xi , yi ) = 1 on the resultant state 1√

N

∑N−1
i=0 |

i〉 | xi 〉 | yi 〉 | f (xi , yi )〉. Obviously, t is equal to
∑N

i=1 f (xi , yi ) because of
f (xi , yi ) ∈ {0, 1}. Furthermore, in the next step, two parties count t using quan-
tum counting algorithm, respectively. So the correctness of the proposed protocol is
guaranteed by quantum counting algorithm.
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Quantum S2PPS protocol
1 Alice and Bob prepare an initial state | ψ0〉 = 1√

N

∑N−1
i=0 | i〉⊗ | 0〉, respectively. Fur-

thermore, Alice applies an oracle operator UA to her initial state | ψ0〉, which implements
1√
N

∑N−1
i=0 | i〉 ⊗ | 0〉 → 1√

N

∑N−1
i=0 | i〉 | xi 〉. At the same time, Bob performs an ora-

cle operator UB on his initial state | ψ0〉, which implements 1√
N

∑N−1
i=0 | i〉⊗ | 0〉 →

1√
N

∑N−1
i=0 | i〉 | yi 〉. Let | ψA〉 = 1√

N

∑N−1
i=0 | i〉 | xi 〉 and | ψB 〉 = 1√

N

∑N−1
i=0 | i〉 | yi 〉.

Then, Alice sends the state | ψA〉 to Bob through the quantum channel and Bob sends the state
| ψB 〉 to Alice through the quantum channel.

2 After receiving the other party’s quantum state | ψB 〉 or | ψA〉, Alice and Bob further generate
the state | ψAB 〉 = 1√

N

∑N−1
i=0 | i〉 | xi 〉 | yi 〉 by the similar oracle operators as described

above, respectively. That is, Alice with all xi s applies the oracle operator UA to her received
state | ψB 〉 = 1√

N

∑N−1
i=0 | i〉 | yi 〉 and an auxiliary state | 0〉 and then obtains the state

| ψAB 〉 = 1√
N

∑N−1
i=0 | i〉 | xi 〉 | yi 〉. Similarly, Bob with all yi s applies the oracle operator

UB to his received state | ψA〉 = 1√
N

∑N−1
i=0 | i〉 | xi 〉 and an auxiliary state | 0〉 and then gets

the state | ψAB 〉 = 1√
N

∑N−1
i=0 | i〉 | xi 〉 | yi 〉. Furthermore, two parties apply another oracle

operator U f to their respective quantum state | ψAB 〉, which implements | ψAB 〉⊗ | 0〉 →
1√
N

∑N−1
i=0 | i〉 | xi 〉 | yi 〉 | f (xi , yi )〉. Call the resultant state | ψ̃AB 〉.

3 Alice and Bob execute quantum counting algorithm [39–41] to count t , respectively, where t
is the number of i ∈ {0, 1, 2, . . . , N − 1} such that f (xi , yi ) = 1 on | ψAB 〉. After execut-
ing quantum counting algorithm, Alice and Bob get t̃A and t̃B , the quantum estimator of t ,
respectively.

4 Two parties exchange t̃A and t̃B by using quantum bit string commitment protocol [42] as
follows: (1) Alice commits the bit string t̃A to Bob, and Bob commits the bit string t̃B to Alice;
(2) Alice opens her bit string commitment, t̃A , and Bob opens his string commitment, t̃B ; (3)
Alice and Bob verify the validness of the other’s bit string commitment.

5 After verifying the validness of the other’s counting result, Alice and Bob compare two counting
results. If the difference of two counting results is more than 2ε(i.e., |t̃A − t̃B | > 2ε), where ε

is error of estimation in quantum counting algorithm, she (or he) will find the cheating of the
other party. Otherwise she (or he) will believe that the other party is honest.

3.2 Alice’s privacy

In our proposed protocol, before exchanging the quantum counting results, Alice
only sends the state | ψA〉 to Bob without any classical information, where | ψA〉 =

1√
N

∑N−1
i=0 | i〉 | xi 〉. Although all classical information about Alice’s private vector

is embedded into the state | ψA〉, anyone cannot extract all this information only from
| ψA〉.

On the one hand, a dishonest Bob can make a projective measurement on the state
| ψA〉 (i.e., 1√

N

∑N−1
i=0 | i〉 | xi 〉). Accordingly, he will get |i〉| xi 〉 for any i with

the probability of 1
N . So the system A sent by Alice can be characterized by the

quantum ensemble ε ≡ {pi , ρAl(i)}, where pi = 1
N is Bob’s probability of getting

the component xi (Assuming that initially Bob does not have any prior information
on Alice’s private vector), and

ρA (i) = |i〉| xi 〉〈xi |〈i | . (1)
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Furthermore, Holevo’s theorem [43] tells us that the accessible information available
to Bob by any measurement on ρA is bounded by the entropy

I ≤ X (ε) = S (ρA) − 1

N

N−1∑

i=0

S (ρA (i))

= S (ρA) , (2)

where ρA = ∑N−1
i=0 ρA(i)/N is the average state of A. So I ≤ S(ρA) = n. That

is, Bob can extract at most a component xi (n bits) of Alice’s private vector by any
possible measurement.

On the other hand, if Bob extracts the partial private information about Alice’s
private vector, where the maximum amount is just equal to that of a component of
Alice’s private vector (i.e., one-N th of Alice private information), he will certainly lose
the chance to further get t̃B , which is an estimation of t , due to No-cloning Theorem
which forbids the creation of identical copies of an arbitrary unknown quantum state.
However, in order to complete the honest test of Alice in Step 5, Bob can try to steal
as much information as possible from Alice’s quantum commitment. By the results of
Ref. [42], the information about the n ≈ Cn′ bit string accessible to Bob is at most
logn′ bits, where C is a positive constant. Furthermore, his probability of identifying
all n bits (i.e., t̃A) is at most ε = 2−(n−logn′)). That is, the successful probability of
his cheating is at most ε. Therefore, if Bob extracts Alice’s partial private information
from the state | ψA〉, he will be detected in later honest test performed by Alice with
the probability of (1 − ε) at least, where ε = 2−(n−logn′).

3.3 Bob’s privacy

Similarly, a dishonest Alice can get one component of Bob’s private vector by her local
measurement. However, her dishonesty will be detected by Bob with the probability
of (1 − ε) at least, where ε = 2−(n−logn′).

3.4 Fairness

In the S2PPS protocol proposed above, we see that the two parties, Alice and Bob,
execute the same prescribed procedures, which include exchanging two initial quantum
states, running the quantum counting algorithm, exchanging the counting results by a
quantum bit string commitment protocol, and finally comparing the counting results.
From this point of view, two parties are perfect peer entities.

In addition, by the analysis above, the successful probabilities of two parties’ cheat-
ing are exactly equal, i.e., ε = 2−(n−logn′).

To sum up, Alice and Bob in our proposed protocol are perfect peer entities and
each obtains the result of

∑N−1
i=0 f (xi , yi ) with the equal opportunity. Therefore, our

proposed protocol ensures perfect fairness for the two parties. By contrast, in the
corresponding classical protocols, either the help of a third party is needed, or one
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party first gets the final results and then tells the other party. (But the one can cheat,
so it is difficult to ensure the fairness).

3.5 Efficiency

Here, we mainly analyze the communication costs of the proposed protocol. From Step
1 to Step 3 of this protocol, we can easily see that Alice and Bob only exchange two
quantum messages (i.e., | ψA〉 and | ψB〉), where the size of each quantum message is
2n qubits (n = logN ). In addition, the quantum cost of quantum bit string commitment
protocol is 2n qubits. Finally, two parties open (i.e., exchange) two classical messages
(i.e.,t̃A and t̃B), where the bit length of the classical messages is n bits. Therefore, the
communication complexity of our proposed protocol is O (logN ) (i.e., transmitting
O (logN ) qubits/bits). Obviously, our proposed protocol achieves a significant reduc-
tion in communication complexity, compared to the classical related protocols with
the linear communication complexity (i.e., transmitting O (N ) messages, each with
logN bits).

4 Applications

In this section, we further investigate practical applications of proposed quantum
S2PPS protocol in many privacy-preserving settings.

4.1 The Hamming distance problem

Definition 3 (Hamming distance). For any X , Y ∈ {0, 1}N , the Hamming weight
of X , denoted by |X |, is the number of 1’s in X , and the Hamming distance of X and
Y is |X ⊕ Y |, with “⊕” being bit-wise XOR. Furthermore, if X = (x1, x2, . . . , xN )

and Y = (y1, y2, . . . , yN ), then |X ⊕ Y | = ∑N
i=1 xi ⊕ yi .

In S2PPS problem, let the Boolean function f (xi , yi ) = xi
⊕

yi , where xi , yi ∈
{0, 1} and ⊕ denotes bit-wise XOR. It is equivalent to privately compute the value
of

∑N
i=1 xi ⊕ yi , which is the Hamming distance between two private vectors X and

Y . Then S2PPS problem will become the Hamming distance problem, in which two
parties have a private 0/1 vector, respectively, and they want to jointly compute the
Hamming distance between two private vectors (i.e.,

∑N
i=1 xi ⊕ yi ) without revealing

their respective private information.
Obviously, the smaller the Hamming distance is, the more similar the two vectors

are; if the Hamming distance is equal to 0, two vectors are identical. So, the Hamming
distance problem can be widely applied to privately determine the similarity in fields,
such as biological information, medical care and e-commerce. In addition, based on
the Hamming distance problem, we can also solve the socialist millionaires’ problem
by introducing a secure hash function, in which two parties want to decide whether
their private secrets a and b are equal or not. Obviously, if a = b, then the Hamming
distance between the bit strings of h(a) and h(b) is 0.
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4.2 Private set intersection/union cardinality

Definition 4 (Private Set Intersection/Union Cardinality problem). There are two
parties, similarly called Alice and Bob. Alice and Bob have a private set A and B,
respectively, and they want to jointly compute the cardinality of the intersection/union
of their respective sets, i.e., |A ∩ B| /

∣
∣A

⋃
B

∣
∣ without revealing their respective private

information.

Without loss of generality, suppose that all components of two sets belong to ZN .
Furthermore, Alice and Bob transform their respective private set to an N -dimensional
0/1 vector in the following encoding method: the i th component of the vector is
equal to 1 if i belongs to her/his set, and 0 otherwise. In addition, let the Boolean
function f (xi , yi ) = xi ∧ yi / f (xi , yi ) = xi ∨ yi in our S2PPS problem, where
xi , yi ∈ {0, 1}, and ∧, ∨ denote the Boolean operator AND, OR, respectively. It is
equivalent to privately compute the value of

∑N
i=1 xi ∧ yi/

∑N
i=1 xi ∨ yi with two

private N -dimensional 0/1 vectors, which represent two private sets. Then S2PPS
problem will become Private Set Intersection/Union Cardinality problem.

There are many important applications of Private Set Intersection/Union Cardinality
problem in the real world. For instance, Private Set Intersection Cardinality (PSI-CA)
can be used in anonymous authentication, authenticating a remote user without reveal-
ing his/her identity, e.g., when a remote user requests the server to authenticate his/her
legality, the server asks the user to jointly execute a quantum PSI-CA (i.e., S2PPS)
protocol and further verifies whether the intersection cardinality of their respective pri-
vate sets is equal to a constant, which is assigned by a trusted third party in advance.
Moreover, Private Set Union Cardinality (PSU-CA) problem is useful in social net-
works, e.g., when two parties want to privately determine the number of all connections
in order to decide whether it exceeds a threshold value, it only needs to jointly run
a quantum PSU-CA (i.e., S2PPS) protocol, where each element of their respective
private sets represents a connection.

4.3 Secure trade negotiation

In the S2PPS problem, let the Boolean function f (xi , yi ) = (xi > yi ), i.e., f (xi , yi ) =
1 if xi > yi , and 0 otherwise. Equivalently, we may jointly compute the value of∑N

i=1(xi > yi ) with two private data sets. Similarly, this S2PPS problem can be
applied in some complicated cryptographic tasks, e.g., in a trade negotiation, one
party has N products, each with a minimum price, and hopes to sell more at the highest
possible prices. The other party wants to buy these products, but he is not willing to
buy one over a maximum price. Before starting the negotiation, two parties want to
determine whether the number of the products which can be traded (i.e., satisfying the
traded property that the maximum price of the buyer is bigger than the minimum price
of the seller) is over a threshold value, and otherwise they will cancel this negotiation.
In order to fulfil the task, they only need to jointly run a quantum S2PPS protocol,
where each element of their respective private sets represents a minimum / maximum
price.
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5 Conclusion

We defined and investigated a class of special two-party private summation (S2PPS)
problems. Inspired by quantum fast algorithms, we focused on a quantum solution to
the S2PPS problem and presented a cheat-sensitive quantum S2PPS protocol, in which
the dishonest party’s cheating can be detected by the other party with high probability
(i.e., 1 − ε at least, where ε = 2−(n−logn′)). The proposed S2PPS protocol makes
ingenious use of a quantum counting algorithm and a quantum bit string commitment
protocol, where the former greatly improves the efficiency and the latter ensures perfect
fairness. In addition, we studied its practical applications for different cryptographic
tasks, such as private similarity decision, anonymous authentication, social networks,
secure trade negotiations, and privacy-preserving data mining.

At present, we only give an approximate quantum solution to S2PPS problems in
theory, i.e., the proposed protocol only obtains an approximate value of the summation,
so our future work seeks a precise quantum approach to solve S2PPS problems.
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