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Abstract Recently, Sun et al. (Quantum Inf Process 15(5):2101–2111, 2016) pro-
posed an efficient multiparty quantum key agreement protocol based on commutative
encryption. The aim of this protocol is to negotiate a secret shared key among mul-
tiple parties with high qubit efficiency as well as security against inside and outside
attackers. The shared key is the exclusive-OR of all participants’ secret keys. This is
achieved by applying the rotation operation on encrypted photons. For retrieving the
final secret key, only measurement on single states is needed. Sun et al. claimed that
assuming no mutual trust between participants, the scheme is secure against partici-
pant’s attack. In this paper, we show that this is not true. In particular, we demonstrate
how a malicious participant in Sun et al.’s protocol can introduce “a” final fake key to
target parties of his choice. We further propose an improvement to guard against this
attack.

Keywords Quantum key agreement · Commutative encryption · Cryptanalysis

1 Introduction

In order to prevent the contents of messages exchanged in group communications
from revealing, some form of encryption must be used. Therefore, the communicating
parties should first agree upon a shared secret key which can then be used to imple-
ment a classical private key cryptosystem and communicate securely. One approach
to establish such a shared key is through a key distribution (KD) protocol where one of
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the participants, usually called the key distribution center (KDC), determines the key
alone and distributes it securely among others. This approach might appear efficient
and practical; however, the security in a KD protocol might be circumvented by a
KDC who, out of some malicious grounds (such as commercial, political, or military
benefit) might send a faulty key to some parties. Even a fully trusted KDC may impose
serious issues: It introduces a single point of failure, a performance bottleneck, and
is an attractive target for adversaries. Moreover, it might be simply unacceptable for
a single party to generate the group key. For example, each party may need assur-
ance that the resulting group key is fresh and random. Centralized key distribution
may not even be a feasible choice for environments with no hierarchy of trust, for
example, a group composed of members in competing organizations or countries. All
in all, assuming a fixed distribution center is a poor assumption for highly dynamic
environments [1]. Therefore, we might require the involvement of all group members
for constructing the secret key. The cryptographic primitive which allows a group of
participants to cooperatively derive a common secret key is called a key agreement
(KA) protocol. Although the security of KA protocols is no longer jeopardized by a
malicious chairperson sending fake values, they still suffer from other insider attacks.
Here, a malicious group member may try to exclude honest participants from the group
by sending faulty messages in such a way that victim members obtain flawed keys. In
this regard, it is essential for any KA protocol to withstand participants attacks and
ensure that such malicious attempts would not go unnoticed. The first classical KA
was introduced by Deffie and Hellman in 1976 [2] to enable two users to interact with
each other and jointly contribute to a negotiating key. The security of this scheme
is based on the intractability of what is called the discrete logarithm (DL) problem.
Since then lots of KA protocols have appeared in the literature with the same secu-
rity assumptions. However, along with growing computing power and development
of quantum computers, classical KA protocols are facing severe challenges. For the
special case of DLP-based schemes, in 1997, Shor introduced polynomial-time quan-
tum algorithms for discrete logarithm [3] and prime factorization problems. These
two quantum algorithms clearly established that neither the RSA protocol nor the
DH-based KA protocols would remain secure if a scalable quantum computer is built.
Unlike the classic case, the security of quantum versions of KD and KA protocols,
known, respectively, as quantum key distribution (QKD) and quantum key agreement
(QKA) is simply based on physical principles such as Heisenberg uncertainty princi-
ple and quantum no-cloning theorem. The first QKA scheme was introduced by Zhou
et al. in 2004 [4] using quantum teleportation. However, in 2009, Tsai and Hwang [5]
showed that this quantum teleportation-based protocol suffers from a weakness. They
showed that a particular user can completely determine the final (shared) key without
being detected. In [6–9], one can find other examples of QKA protocols, all limited
to the two-party case.

Recently, Sun et al. [10] proposed an innovative and efficient multiparty QKA based
on commutative encryption which can be applied for arbitrary number of participants.
They compared their protocol with [11–13] and showed that it is more efficient in
terms of the number of used qubits. The novelty of Sun et al.’s protocol mostly lies
in the fact that it does not need any entangled states or unitary operation and that the
(highly efficient) rotation operation is used to implement commutative encryption.
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Each participant uses secret private angles for encrypting his photons, and at the end,
all participants determine the shared secret key simultaneously. As for security, the
authors of [10] first show that their scheme withstands outside attacks. They claim
that no malicious participant can influence the final shared key so that their scheme is
secure against inside attacks. The goal of this paper is to show that this claim is not
true. We prove that any participant can prohibit legitimate parties from obtaining the
final shared key and remain completely unnoticed.

The rest of this paper is organized as follows: The QKA scheme of Sun et al. is
reviewed in Sect. 2 and its cryptanalysis is explained in Sect. 3. Section 4 explains
our proposed improvement to guard against the attack. Finally, concluding remarks
are provided in Sect. 5.

2 Review of the Sun et al.’s multiparty quantum key agreement protocol

In this section, we use the following notations to briefly review Sun et al.’s scheme.

N The number of participants
P0 . . . PN−1 The participants
K The final shared key
n The bit-length of the shared secret key
Ki = (ki,1 . . . ki,n), 0 ≤ i < N The main secret key of participant i
θi = (θ i

1, . . . , θ
i
n), 0 ≤ θ i

j < π The axillary secret key of participant i

|Ki 〉 = ∣
∣ki,1

〉 ∣
∣ki,2

〉

. . .
∣
∣ki,n

〉

Encoding Ki into n photon
Ek[|ψ〉] Encryption of state |ψ〉 with key k
Dk[C] Decryption of C with key k
E XorK j [|Ki 〉] = ∣

∣Ki ⊕ K j
〉

See Remark in this section
ins_d(|Ki 〉) Inserting decoy states randomly in |Ki 〉
annc(i) The announcement of Pi

M[|ψ〉] Measuring state |ψ〉 in basis {|0〉 , |1〉}
Let P = {P0, P1, . . . , PN−1} be the set of participants who want to run the protocol

and generate a secret shared key. The participants are arranged on a ring such that Pi−1
and Pi+1 are the left and right neighbors of Pi , respectively, {0 ≤ i < N }. All indices
through this paper are computed mod N, i.e., Pi±N = Pi for all {0 ≤ i < N }. The
members of P want to derive the secret shared key K as the XOR of their individual
secret keys, i.e., K = K0 ⊕ . . . ⊕ KN−1.

In this protocol, the commutative encryption of Reference [14] is used to protect
participant’s keys. Note that binary data can be encoded by using horizontal and
vertical polarization (i.e., the horizontally polarized photon |0〉 represents zero in a
binary representation and the vertically polarized photon |1〉 represents one). Now, to
encrypt these polarized photons, rotation operation is used which has a commutative
property. The encryption key is a set of angles k = {θi : 0 ≤ θi < π, i = 1, 2, . . . , n}
for an n-bit message, where the subscript indicates the position in the message where
the encryption with angle θi is applied. The encryption of some state |ψ〉 with a secret
key k = {θ} is Ek[|ψ〉] = R(θ) |ψ〉 where R(θ) is the following matrix:
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R(θ) =
(

cos(θ) sin(θ)

− sin(θ) cos(θ)

)

For decrypting the cipher photon, rotation operation by angle θ in the opposite
direction is applied, i.e., Dk[Ek[|ψ〉]] = R(−θ)(Ek[|ψ〉]).
Remark The classic XOR operation can be applied on qubits by the following scenario.

Rotating the encrypted photon by 90 degree changes the photon where as rotation by
0 degree does not. In other words, we have E π

2
|0〉 = |1〉, E π

2
|1〉 = |0〉, E0 |0〉 = |0〉

and E0 |1〉 = |1〉. The notation E Xork[|ψ〉] is used in this paper to describe this
operation.

An algorithmic description of Sun et al.’s protocol is given below.
An algorithmic description of Sun et al.’s protocol is given below.

Procedure MQKA (Ki )
Round 1

Each {Pi }N−1
i=0 performs the following steps:

1. Encodes Ki into n photons i.e. prepares |Ki 〉 = ∣
∣ki,1

〉 ∣
∣ki,2

〉

. . .
∣
∣ki,n

〉

for an n bit message.
2. Generates θi randomly and computes Eθi [|Ki 〉] = R(θ i

1)
∣
∣ki,1

〉 ⊗ . . . ⊗ R(θ i
n)

∣
∣ki,n

〉

.
3. Prepares the sequence Si

i = ins_d(Eθi [|Ki 〉]).
4. Sends Si

i to Pi+1.

Round 2
Each {Pi }N−1

i=0 performs the following steps:
For t = i − 1 downto t = i , //Indices are computed mod N
1. Receives Si−1

t from Pi−1.
2. If Check Eavesdropper(Si−1

t ) = true then
annc(i) = true

else annc(i) = f alse.

// Note that if Check Eavesdropper(Si−1
t ) = true then Pi has received

∣
∣
∣K i−1

t

〉

.

//
(∣
∣
∣K i−1

i−1

〉

= Eθi−1 [|Ki−1〉]
)

.

3. Receives annc( j), 0 ≤ j < N , j �= i .
4. If (all annc( j) = true, 0 ≤ j < N , j �= i)

If t = i then RetrieveSecureK ey
(∣
∣
∣K i−1

i

〉)

else computes
∣
∣K i

t

〉 = E XorKi

∣
∣
∣K i−1

t

〉

, Si
t = ins_d(

∣
∣K i

t

〉

), sends Si
t to Pi + 1

else abandons the protocol.
End For.

End Proc.
Procedure Check Eavesdropper(S j

i )

1. Pj announces the positions and the bases of the decoy particles in sequence S j
i .

2. Pj + 1 measures them in the correct bases.
3. If the initial states/measurement results are consistent then

return true
else return f alse.

End Proc.
Procedure RetrieveSecureK ey

(∣
∣
∣K i−1

i

〉)
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Fig. 1 Graphical representation of the Sun et al.’s protocol ([13])

1. Dθi

[∣
∣
∣K i−1

i

〉]

= |K0 ⊕ . . . ⊕ KN−1〉
2. K = M[|K0 ⊕ . . . ⊕ KN−1〉]
End Proc.

Fig. 1 (cited from [13]) is a graphical representation of Sun et al.’s protocol process.
The protocol requires all parties, one after another, to check eavesdroppers, and only

if all transmitted photons are secure, they encode their secret key on these photons.

3 Cryptanalysis of Sun et al.’s protocol against participant attack

Sun et al. considered the security of their scheme against outsiders first. As for insider
attack (which is the main focus of our paper), i.e., participant’s attack, they made the
assumption that participants are not of mutual trust. Sun et al. then claimed that their
delayed message encoding strategy can prohibit any dishonest party from influencing
the final key as her wish.

In this section, we show that Sun et al.’s scheme suffers from a security problem.
More precisely, under the assumption of no mutual trust between participants, we
show that a malicious participant can deprive legitimate parties from obtaining the
same shared key and remain completely unnoticed. Although all parties obtain ”a”
final shared key simultaneously, but this final key can be manipulated by the malicious
participant and is no longer the Xor of the individual secret keys. This is described in
detail in the following theorem. Recall that according to Sun et al.’s scheme, the final
shared key should be K = K0 ⊕ . . . ⊕ Ki ⊕ . . . ⊕ KN−1 where Ki is the main secret
key of participant i(0 ≤ i < N ).

Theorem 1 Consider Sun et al.’s scheme reviewed in Sect. 2. Assume that Pi is a
dishonest participant. Then Pi , without being detected, can interrupt the creation of
the final shared key in the sense that some honest participant computes K ′ �= K as
the shared key. Moreover, at the end of protocol Pi knows the value of both K and K ′.

Proof Pi receives the sequence Si−1
j from Pi−1. Then, Pi−1 and Pi execute the eaves-

dropping checking by using decoy states as described in previous section. If there is no
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eavesdropper, Pi obtains
∣
∣
∣K i−1

j

〉

= E XorKi−1 [E XorKi−2 . . . [∣∣Eθ j [
∣
∣K j

〉]〉]]. Assume

that Pi ’s intention is to fool Pj . For computing
∣
∣
∣K i

j

〉

, Pi proceeds as follows:

1. Generates a random bit string K ′
i of length n.

2. Computes K ′′
i = Ki ⊕ K ′

i .

3. Performs commutative encryption on
∣
∣
∣K i−1

j

〉

according to K ′′
i , i.e.

∣
∣
∣K i

j

〉

= E XorK ′′
i

[

E XorKi−1 . . .
[∣
∣
∣Eθ j [

∣
∣
∣K j

〉]〉]]

.

4. Sends Si
j = ins_d

(∣
∣
∣K i

j

〉)

to Pi + 1.

The parties Pi+1, . . . , Pj−1 sequentially perform eavesdropping check and the com-

mutative encryption processes. Pj−1 sends the sequence S j−1
j to Pj . They do eaves-

dropping check. In the absence of the eavesdropper, Pj obtains Eθ j [
∣
∣K j−1 ⊕ . . . ⊕ K ′′

i⊕ . . . ⊕ K j+1 ⊕ K j
〉]. He decrypts it with his secret key θ j , Dθ j [Eθ j [

∣
∣K j−1 ⊕ . . . ⊕

K ′′
i ⊕ . . . ⊕ K j+1 ⊕ K j

〉]] = ∣
∣K j−1 ⊕ . . . ⊕ K ′′

i ⊕ . . . ⊕ K j+1 ⊕ K j
〉

. At the end of
protocol, the result of Pj ’s measurement on

∣
∣K j−1 ⊕ . . . ⊕ K ′′

i ⊕ . . . ⊕ K j+1 ⊕ K j
〉

is the fake key K ′ = K0 ⊕ . . . ⊕ K ′′
i ⊕ . . . ⊕ KN−1, while the result of the other

participants is K = K0 ⊕ . . . ⊕ Ki ⊕ . . . ⊕ KN−1 because Pi has done commutative

encryption on photons
∣
∣
∣K i−1

t

〉

, 0 ≤ t < N , t �= j according to his main secret key Ki .

The malicious participant Pi can obtain the value of Pj ’s fake key by exclusive-OR
of K ′

i and K . It is easy to show that K ′ = K ⊕ K ′
i . According to the procedure of the

protocol, the malicious party will be undetected. �	

4 Improvement to Sun et al.’s QKA protocol

The attack described in previous section can be launched against any KA (circular
or not) in which the data provided by participants are not somehow verified, i.e.,
participants are not forced to commit to the information they broadcast. The aim of
this section is to propose an improvement to fix this problem. Note that due to the nature
of Sun et al.’s proposed protocol (its circularity and performing the measurement at the
end of the protocol), there is no way to detect the cheating party. Fortunately, this does
not mean that the protocol is useless. One of the advantages of Sun et al.’s approach
is its efficiency in using qubits which is achieved because of the circularity. The point
of our paper is that this QKA protocol should be used in situations where participants
are all trusted and efficiency is of prime importance. In the case where each party’s
key is just a random bit string and privacy (as described in Reference [13]) is not the
main concern, we propose a solution which can prohibit the dishonest party from the
above attack. In the proposed improvement each party basically sends his (encrypted)
share to others. Therefore, we bind each party to his contribution of the final secret
key and make it possible to detect the cheating member.

In the following, we first provide the details of our proposed improvement and then
elaborate on the associated costs and merits.
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Round 1
Each {Pi }N−1

i=0 performs the following steps:

1. Encodes Ki into N − 1 series of n photons i.e.
∣
∣
∣K

j
i

〉

=
∣
∣
∣k

j
i,1

〉 ∣
∣
∣k

j
i,2

〉

. . .

∣
∣
∣k

j
i,n

〉

will be sent

to participant j, 0 ≤ j < N , j �= i .

2. Generates θi randomly and computes Eθi

[ ∣
∣
∣K

j
i

〉 ]

= R(θ i
1)

∣
∣
∣k

j
i,1

〉

⊗ . . . ⊗ R(θ i
n)

∣
∣
∣k

j
i,n

〉

,

0 ≤ j < N , j �= i .

3. Prepares the sequence S j
i = ins_d

(

Eθi

[ ∣
∣
∣K

j
i

〉 ])

, 0 ≤ j < N , j �= i .

4. Sends S j
i to Pj , 0 ≤ j < N , j �= i .

Round 2
Each {Pi }N−1

i=0 performs the following steps:

1. Receives Si
j from Pj , 0 ≤ j < N , j �= i .

2. If Check Eavesdropper(Si
j ) = true, 0 ≤ j < N , j �= i then

annc(i) = true
else annc(i) = f alse.

// Note that if Check Eavesdropper(Si
j ) = true then Pi has received

∣
∣
∣K i

j

〉

3. Receives annc( j), 0 ≤ j < N , j �= i .
4. If (all annc( j) = true, 0 ≤ j < N , j �= i)

Pi reveals θi

else abandons the protocol.

5. RetrieveSecureK ey
( ∣

∣
∣K i

j

〉

, θ j , 0 ≤ j < N , j �= i
)

.

Procedure Check Eavesdropper(Si
j )

1. Pj announces the positions and the bases of the decoy particles in sequence Si
j .

2. Pi measures them in the correct bases.
3. If the initial states/measurement results are consistent then

return true
else return f alse.

End Proc.
Procedure RetrieveSecureK ey

( ∣
∣
∣K i

j

〉

, θ j , 0 ≤ j < N , j �= i
)

1. for 0 ≤ j < N , j �= i , Dθ j

[ ∣
∣
∣K i

j

〉 ]

=
∣
∣
∣K i

j

〉

.

2. K j = M
[ ∣
∣
∣K i

j

〉 ]

.

3. K = K0 ⊕ . . . ⊕ KN−1.

End Proc.

We now proceed to show that although the cost of the aforementioned solution
is using more qubits but still using rotation operation will preserve the merits of the
protocol. We use the Cabello [15] qubit efficiency, which is given as

η = c

q + b

where c denotes the length of the transmitted bits, q is the number of the used qubits,
and b is the number of classical bits exchanged for decoding of the message.
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Table 1 Comparison between
previously proposed multiparty
QKA protocols and our
proposed improvement

Schemes Entanglement Qubit efficiency

Reference [11] Yes 2
(κ+1).N

Reference [16] Yes 1
(κ+1)N (N−1)

Improved protocol No 1
(κ+1)N (N−1)

In order to generate n bits of shared key, in our improvement to Sun et. al’s protocol,
each party has to prepare (N − 1).n single photons. As stated in [10] for QKA, c is
the length of the shared key generated by the protocol. Hence, the qubit efficiency of
our improvement to Sun et al.’s protocol can be computed by

η = n

(κ.n + n)N (N − 1)
= 1

(κ + 1)(N − 1)N

where κ is the detection rate (i.e., κ represents the number of detection qubits when
one qubit is need to be sent)[16].

This is quite acceptable compared to recent existing QKA in the literature. As an
example, the qubit efficiency of the scheme of [16] is similar to our scheme. As another
example, the QKA of [11] achieves 2

(κ+1)N as its qubit efficiency. However, both of
these protocols use multipartite entangled states which are much more difficult to
prepare and more fragile in practice [17]. Although in [11] cluster states are used and
these states are more stable than GHZ states employed in [16], they still suffer from
decoherence which can be viewed as the loss of information from a system into the
environment [18].

On the other hand, our proposed improvement uses rotation operation. This is a
great advantage since this operation can be realized by current technologies. The
photon is linearly polarized by a polarizing apparatus called linear polarizer, and the
direction can be determined by the orientation of the polarizer. In order to rotate
the polarized photon, the photon is passed through a Faraday effect modulator. The
rotation angle is controlled by the strength of the magnetic field parallel to the light
beam. The output polarization from the Faraday effect modulator can be rotated by
the desired angle. Therefore, in view of the difficulty in creating and maintaining
multiparty entangled states, our proposed improvement is more efficient and practical.
The results are summarized in Table 1.

5 Conclusion

In this paper, we consider the security of the multiparty quantum key agreement of [10].
It is claimed that the protocol is secure against both outside and inside adversaries. We
propose an attack that rejects this claim for inside attackers. We show that a malicious
participant can provide fake values such that group members compute different final
shared keys and at the same time his malicious behavior will not be detected. Although
all participants retrieve the final share key simultaneously, there is no guarantee that
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they all obtain the same key as expected. We further demonstrate how to fix this
problem at an acceptable cost.
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