
Quantum Inf Process (2017) 16:195
DOI 10.1007/s11128-017-1646-3

Generation of an arbitrary four-photon
polarization-entangled decoherence-free state
with cross-Kerr nonlinearity

Meiyu Wang1 · Fengli Yan1 · Ting Gao2

Received: 3 March 2017 / Accepted: 15 June 2017 / Published online: 1 July 2017
© Springer Science+Business Media, LLC 2017

Abstract We present a new scheme to provide an arbitrary four-photon polarization-
entangled state, which enables the encoding of single logical qubit information into
a four-qubit decoherence-free subspace robustly against collective decoherence. With
the assistance of the cross-Kerr nonlinearities, a spatial entanglement gate and a
polarization entanglement gate are inserted into the circuit, where the X-quadrature
homodyne measurement is properly performed. According to the outcomes of homo-
dyne measurement in the spatial entanglement process, some swap gates are inserted
into the corresponding paths of the photons to swap their spatial modes. Apart from
Kerr media, some basic linear optical elements are necessary, which make it feasible
with current experimental techniques.
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1 Introduction

Entanglement [1–3] plays an important role in quantum information processing (QIP),
such as long-distance quantum communication and distributed quantum computation.
In order to complete these QIP protocols perfectly, maximally entangled states are usu-
ally required. However, in a realistic situation, decoherence, induced by uncontrolled
coupling between a quantum system and the environment, is a significant obstacle
to the realization of QIP. When qubits are coupled to the environment, the quantum
superposition and coherence are easily destructed, and as a result, the maximally
entangled state collapses into a nonmaximally entangled one or even a mixed state.
This will degrade the fidelity and security of quantum communication. Since it is
impossible to perfectly isolate a quantum system from its surrounding environment,
decoherence effects are more or less inevitable. Overcoming the destructive effects of
decoherence is the central issue for quantum communication and computation. Many
strategies addressing this challenge have been focused on using either quantum error
corrections [4,5], dynamical decoupling [6,7], entanglement concentration [8–11] or
decoherence-free subspaces (DFSs) [12–15]. In these approaches, the proposal of
DFSs is a promising way. Provided that the interaction between the system and the
environment exhibits a certain symmetry, the particular subspaces of the overall Hilbert
space are immune to the decoherence induced by this symmetrical interaction. That
is, when the decoherence-free (DF) states are influenced by this symmetrical inter-
action, no matter how strong this qubit–environment interaction, they exhibit some
symmetry, so the quantum states are invariant under this interaction. This property
makes the decoherence-free states also useful for long-distance quantum information
transmission and storage.

The N-qubit decoherence-free states were originally proposed by Kempe et al. [14].
For two qubits, there is only one decoherence-free singlet state, i.e., 1√

2
(|01〉 − |10〉).

Therefore, it is not sufficient to fully protect the quantum information of an arbitrary
logical qubit against collective noise. Another nontrivial example is the four-qubit
entangled decoherence-free state

|�0〉 = α|0〉L + β|1〉L , (1)

where

|0〉L = 1

2
(|01〉 − |10〉)(|01〉 − |10〉), (2)

|1〉L = 1

2
√

3
(2|0011〉 + 2|1100〉 − |0101〉 − |1010〉 − |0110〉 − |1001〉). (3)

The dimension of the above four-qubit decoherence-free state in Eq. (1) is 2, and
thus it is sufficient to fully protect an arbitrary logical qubit against collective noise in
contrast to the two-qubit state. With its interesting applications, DFSs have been exten-
sively studied both in theoretical and in experimental frames [16–20]. Bourennane et al.
[16] did an experiment to generate four-photon polarization-entangled decoherence-
free states via a spontaneous parametric down-conversion source. Subsequently, Zou
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et al. [17] and Gong et al. [18] proposed two different schemes to generate four-photon
polarization-entangled decoherence-free states based on linear optical elements and
postselection strategy. In 2011, Wang et al. [19] proposed a probabilistic linear-optics-
based scheme for local conversion of four Einstein–Podolsky–Rosen photon pairs into
four-photon polarization-entangled decoherence-free states. Very recently, Zhou et al.
[20] proposed three effective protocols to generate four-qubit entangled decoherence-
free states assisted by the cavity-QED system.

In this paper, we present a new scheme to generate the four-photon polarization-
entangled decoherence-free state with the help of the cross-Kerr nonlinearities. Due
to the fact that photons have the merits of higher speed, lower decoherence, eas-
ier manipulation and lower energy cost compared with more massive qubits, we use
the polarization of photons as qubit and define the horizontally (vertically) linear
polarization |H〉 (|V 〉) as the qubit |0〉 (|1〉). The photonic QIP requires interactions
between photons. One possible coupling mechanism is the cross-Kerr nonlinearity,
where the photons interact via a nonlinear medium. The cross-Kerr nonlinearity
between photons offers an ideal playground for quantum state engineering, and a num-
ber of applications have been studied, such as constructing nondestructive quantum
nondemolition detectors (QND) [21,22], quantum logic gates [22–24], deterministic
entanglement distillation [25], logic-qubit entanglement [26,27], generation of multi-
photon-entangled states and three- or four-photon decoherence-free states [28–33].

The paper is organized as follows. We begin by briefly reviewing the cross-Kerr
nonlinearity, which was first used in Ref. [34], and describe the generation process of
the four-photon polarization-entangled DF state with the assistance of weak cross-Kerr
nonlinearities in Sect. 2. The discussion and conclusion are presented in Sect. 3.

2 Generation of four-qubit entangled decoherence-free states

The cross-Kerr nonlinearity can be described with the Hamiltonian Ĥk = −h̄κ n̂s n̂ p,
where n̂s (n̂ p) is the photon number operator of the signal (probe) mode, and κ is the
strength of the nonlinearity. If the signal field contains n photons and the probe field
is in an initial coherent state with amplitude α, the cross-Kerr nonlinearity interaction
causes the combined signal-probe system to evolve as follows:

e−iĤk t/h̄ |n〉s |α〉p = eiκt n̂s n̂ p |n〉s |α〉p = |n〉s |αeinθ 〉p, (4)

where θ = κt with t being the interaction time. It is easy to observe that signal-photon
state is unaffected by the interaction but the coherent state picks up a phase shift nθ

directly proportional to the number of photons n in the signal mode. One can exactly
obtain the information of photons in the signal state but cannot destroy them through
a general homodyne–heterodyne measurement of the phase of the coherent state. This
technique was first used to realize a parity gate [21] and then a CNOT gate [22], where
the requirement for this technique is αθ2 > 9 with α denoting the amplitude of the
coherent state. As for the cross-Kerr nonlinearity, the nonlinearity magnitude θ ∼ 10−2

is potentially available with the help of electromagnetically induced transparency
[35]. In particular, the error probability is Perror = 3.4 × 10−6 on the condition
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Fig. 1 Illustration plot for generating four-photon polarization-entangled decoherence-free state with the
help of the cross-Kerr nonlinearities. The beam splitters BS1 , BS2 and BS3 have equal probability (50:50) of

transmission and reflection, while BS4 has the ratio A2
1 : A2

2 for the reflection and transmission coefficients.
HWP22.5, HWP45 and HWPδ denote half-wave plates which realize the Hadamard transformation opera-
tion, single-photon σx operation and rotation of 2δ on the basis {|H〉, |V 〉}, respectively. In the construction
of the circuit, after a spatial entanglement module, the swap gates and the polarization entanglement module
are need to be performed, which can be seen in Figs. 2 and 3, respectively. Before four photons leave the
circuit, the eight potential paths of four photons are coherently combined by BS5-BS8 for obtaining the
four-photon polarization-entangled decoherence-free state

α = 90000, θ = 0.01. This shows that it is still possible to operate in the regime of
weak cross-Kerr nonlinearity, and the amplitude of the probe coherent state beam is
physically reasonable with current experimental technology. Our scheme of preparing
quantum-entangled state also works with the weak cross-Kerr nonlinearity.

In what follows, we explain the detailed procedures for generating the four-photon
polarization-entangled decoherence-free state abided by the following processes,
which is also illustrated in Fig. 1.

Assume the four single photons are initially prepared in the state |H〉1 ⊗ |H〉2 ⊗
|H〉3 ⊗|H〉4, and let them enter into the circuit shown in Fig. 1 from the input ports. In
the spatial entanglement gate, four photons pass through beam splitters (BS1, BS2, BS3
and BS4). The BSs’ reflectivity and transmissivity are independent of polarizations,
and BSs have the following function between two input modes (a,b) and two output
modes (c,d): a† → (A1c† + A2d†), b† → (A1c† − A2d†), where the reflection and
transmission coefficients of the BS1, BS2 and BS3 are A1 = A2 = 1√

2
. Accompanying

with a coherent state, the four photons enter into Kerr media; the evolution process of
four photons interacting with the coherent state |α〉 can be expressed as

1

2
√

2
(|H〉1|S11〉 + |H〉1|S12〉)(|H〉2|S21〉 + |H〉2|S22〉)(|H〉3|S31〉

+ |H〉3|S32〉)(A2|H〉4|S41〉 + A1|H〉4|S42〉)
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Kerr media−−−−−−→ 1

2
√

2
|H〉1|H〉2|H〉3|H〉4[(A2|S11〉|S21〉|S31〉|S41〉

+ A1|S12〉|S22〉|S32〉|S42〉)|α〉
+ (A2|S12〉|S21〉|S31〉|S41〉|αe−iθ 〉 + A1|S11〉|S22〉|S32〉|S42〉|αeiθ 〉)
+ (A2|S11〉|S22〉|S31〉|S41〉|αe−i2θ 〉 + A1|S12〉|S21〉|S32〉|S42〉|αei2θ 〉)
+ (A2|S12〉|S22〉|S31〉|S41〉|αe−i3θ 〉 + A1|S11〉|S21〉|S32〉|S42〉|αei3θ 〉)
+ (A2|S11〉|S21〉|S32〉|S41〉|αe−i4θ 〉 + A1|S12〉|S22〉|S31〉|S42〉|αei4θ 〉)
+ (A2|S12〉|S21〉|S32〉|S41〉|αe−i5θ 〉 + A1|S11〉|S22〉|S31〉|S42〉|αei5θ 〉)
+ (A2|S11〉|S22〉|S32〉|S41〉|αe−i6θ 〉 + A1|S12〉|S21〉|S31〉|S42〉|αei6θ 〉)
+ (A2|S12〉|S22〉|S32〉|S41〉|αe−i7θ 〉 + A1|S11〉|S21〉|S31〉|S42〉|αei7θ 〉)].

(5)

Performing an X-quadrature homodyne measurement [21] on the coherent state
with α real, there are eight groups of measurement outcomes corresponding to
eight scenarios of phase shifts (0,±θ,±2θ,±3θ,±4θ,±5θ,±6θ,±7θ )denoted as
Eq. (5). If zero phase shift occurs, the spatial entangled state of the four pho-
tons

|ψ〉1234,zero = |H〉1|H〉2|H〉3|H〉4(A2|S11〉|S21〉|S31〉|S41〉+A1|S12〉|S22〉|S32〉|S42〉)
(6)

is created. Otherwise, nonzero phase shifts (± jθ, j = 1, 2, . . . , 7) are obtained; a
phase shift 2φ(x, kθ), (k = 1, 2, . . . , 7) operation should be performed to erase the
phase difference between the two superposition terms in the scenarios of seven different
nonzero phase shifts. Here 2φ(x, kθ) = 2α sin kθ(x−2α cos kθ)mod2π is a function
of the phase shift and the eigenvalue x of the X operator. Then, some swap gates are
inserted into the corresponding paths (S11, S12; S21, S22; S31, S32; S41, S42 ) to change
the system state to that shown in Eq. (6). A swap gate is an important two-qubit logic
gate. In terms of the basis of {|00〉, |01〉, |10〉, |11〉}, the swap gate can be represented
as the following matrix:

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ . (7)

In practice, the swap gate transformation can be yielded by the Hong-Ou-Mandel
interference [36] in the Mach-Zehnder interferometer [23,37], illustrated in Fig. 2.
Two beam splitters constitute a Mach-Zehnder interferometer. Additionally, the phase
shifter PS π denotes the phase shift π executed on the photon passing through the line
it is inserted.

Subsequently, the half-wave plates, HWP22.5◦s, are inserted into the paths
S11, S12, S31, S32. Meanwhile, a HWPδ is inserted into the path S21, and a HWP45◦
is inserted into the path S41. The HWP(δ) transformation function is given by
|H〉 → cos 2δ|H〉 + sin 2δ|V 〉. So the system evolves to
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Fig. 2 Illustration plot for depicting the swap gate. The symbol PS π denotes the phase shift π executed
on the photon passing through the line it is inserted. A beam splitter has the following function between
two input modes (a, b) and two output modes (c, d): a† → 1√

2
(c† + d†), b† → 1√

2
(d† − c†)

A2

2
[cos 2δ(|V HHV 〉 + |V HVV 〉 + |HHHV 〉 + |HHVV 〉)

+ sin 2δ(|VV HV 〉 + |VVVV 〉 + |HV HV 〉 + |HVVV 〉)]|S11〉|S21〉|S31〉|S41〉
+ A1

2
(|HHHH〉 + |HHV H〉 + |V HHH〉 + |V HV H〉)|S12〉|S22〉|S32〉|S42〉.

(8)

In the polarization entanglement module, four controlled-NOT (CNOT) gates are
performed on the paths (S31, S41), (S12, S22 ), (S32, S42) and (S41, S21 ) ( the photon
in the former path as control photon and the photon in the latter path as target photon
in each pair of paths). The CNOT gate is important in the experimental realization.
Knill et al. [38] firstly proposed a probabilistic CNOT gate on two photonic qubits
by using linear optical elements and postselection. The cross-Kerr nonlinearity has
also been used to implement the CNOT gate [22,23,44]. After four CNOT gates, the
four-photon system will evolve into

A2

2
[cos 2δ(|VV HV 〉 + |V HV H〉 + |HV HV 〉 + |HHV H〉)

+ sin 2δ(|V HHV 〉 + |VVV H〉 + |HHHV 〉 + |HVV H〉)]|S11〉|S21〉|S31〉|S41〉
+ A1

2
(|HHHH〉 + |HHVV 〉 + |VV HH〉 + |VVVV 〉)|S12〉|S22〉|S32〉|S42〉.

(9)

When the photons (1,2,3) enter into the Kerr media, affected by cross-Kerr
nonlinearities, the horizontal polarization mode of photons (1,2,3) via the paths
S11, S12, S21, S32 will accumulate the phase shift θ , respectively, on the coherent state
|α′〉. As the consequence of the nonlinear interaction between photons and the coherent
state, the state of the whole system can be expressed as

A2

2
{[cos 2δ(|V HV H〉 + |HV HV 〉) + sin 2δ(|V HHV 〉 + |HVV H〉)]|α′〉

+ (cos 2δ|HHV H〉 + sin 2δ|HHHV 〉)|α′eiθ 〉 + (cos 2δ|VV HV 〉
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+ sin 2δ|VVV H〉)|α′e−iθ 〉}|S11〉|S21〉|S31〉|S41〉
+ A1

2
[(|HHVV 〉 + |VV HH〉)|α′〉 + |HHHH〉|α′eiθ 〉

+ |VVVV 〉|α′e−iθ 〉]|S12〉|S22〉|S32〉|S42〉. (10)

Perform the X-quadrature homodyne measurement on the coherent state. If zero
phase shift occurs, no phase modulation is necessary. Otherwise, if nonzero phase shift
is presented, three HWP45◦s should be put into the paths S11, S32, S42, respectively,
and two phase shifters PS 2φ(x) are inserted into the circuit. After that, we can obtain
the four-photon state as follows

A2√
2
[cos 2δ(|HV HV 〉 + |V HV H〉)

+ sin 2δ(|V HHV 〉 + |HVV H〉)]|S11〉|S21〉|S31〉|S41〉
+ A1√

2
(|HHVV 〉 + |VV HH〉)|S12〉|S22〉|S32〉|S42〉. (11)

Before four photons leave the circuit, we let them pass through the beam splitters
BS5 − BS8. According to the following rules, a†

S11
→ 1√

2
(a†

S′
11

+ a†
S′

12
), a†

S12
→

1√
2
(a†

S′
12

−a†
S′

11
), a†

S21
→ 1√

2
(a†

S′
21

−a†
S′

22
), a†

S22
→ 1√

2
(a†

S′
22

+a†
S′

21
), a†

S31
→ 1√

2
(a†

S′
31

−
a†
S′

32
), a†

S32
→ 1√

2
(a†

S′
32

+a†
S′

31
), a†

S41
→ 1√

2
(a†

S′
41

+a†
S′

42
), and a†

S42
→ 1√

2
(a†

S′
42

−a†
S′

41
),

at the output ports, the state of four photons expressed as Eq. (11) is transformed to

1

4
√

2
{[A2 cos 2δ(|HV HV 〉 + |V HV H〉) + A2 sin 2δ(|V HHV 〉 + |HVV H〉)

+ A1(|HHVV 〉 + |VV HH〉)](|S′
11〉|S′

21〉|S′
31〉|S′

41〉 − |S′
11〉|S′

21〉|S′
32〉|S′

42〉
− |S′

11〉|S′
22〉|S′

31〉|S′
42〉 + |S′

11〉|S′
22〉|S′

32〉|S′
41〉 + |S′

12〉|S′
21〉|S′

31〉|S′
42〉

− |S′
12〉|S′

21〉|S′
32〉|S′

41〉 − |S′
12〉|S′

22〉|S′
31〉|S′

41〉 + |S′
12〉|S′

22〉|S′
32〉|S′

42〉)
+[A2 cos 2δ(|HV HV 〉 + |V HV H〉) + A2 sin 2δ(|V HHV 〉 + |HVV H〉)
− A1(|HHVV 〉 + |VV HH〉)](|S′

11〉|S′
21〉|S′

31〉|S′
42〉 − |S′

11〉|S′
21〉|S′

32〉|S′
41〉

− |S′
11〉|S′

22〉|S′
31〉|S′

41〉 + |S′
11〉|S′

22〉|S′
32〉|S′

42〉 + |S′
12〉|S′

21〉|S′
31〉|S′

41〉
− |S′

12〉|S′
21〉|S′

32〉|S′
42〉 − |S′

12〉|S′
22〉|S′

31〉|S′
42〉 + |S′

12〉|S′
22〉|S′

32〉|S′
41〉)}. (12)

From the above equation, we can see that by detecting the outputs of the four
photons, if the state A2 cos 2δ(|HV HV 〉 + |V HV H〉) + A2 sin 2δ(|V HHV 〉 +
|HVV H〉) − A1(|HHVV 〉 + |VV HH〉) is obtained, two HWPs are employed to
be performed σzσz on the photons (1, 2) or the photons (3, 4). Finally, we obtain

A2 cos 2δ√
2

(|HV HV 〉 + |V HV H〉) + A2 sin 2δ√
2

(|V HHV 〉 + |HVV H〉)

+ A1√
2
(|HHVV 〉 + |VV HH〉). (13)
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Fig. 3 Illustration plot for depicting a polarization entanglement module. The left part represents the
photonic CNOT gates assisted by cross-Kerr nonlinearities, which can be realized in Refs. [22,23,44].
The polarization beam splitters (PBS) reflect the vertical polarization |V 〉 mode and transmit the horizontal
polarization |H〉 mode. After the CNOT gates, the photons (1,2,3) pass through the Kerr medium. Influenced
by cross-Kerr nonlinearities, the photons (1,2,3) in the horizontal polarization state enable the coherent state
|α〉 to pick up the phase shift θ , respectively, while the phase shifter −θ is applied to generate the minus
phase shift

By modulating the coefficients A1, A2 and δ as A1 =
√

2
3β, A2 sin 2δ = − α√

2
− β√

6

and A2 cos 2δ = α√
2

− β√
6
, we can obtain

|ψ〉L = α|0〉L + β|1〉L = α

2
(|HV 〉 − |V H〉)(|HV 〉 − |V H〉)

+ β

2
√

3
(2|VV HH〉 + 2|HHVV 〉 − |V HV H〉 − |V HHV 〉

− |HV HV 〉 − |HVV H〉)]1234. (14)

That is, the generation of four-photon polarization-entangled decoherence-free state is
achieved. Compared with the previous protocol in Ref. [33], which can be iterated to
get a good success probability, the present one is the first nearly deterministic scheme
to prepare the four-photon polarization-entangled decoherence-free state based on
cross-Kerr nonlinearities (Fig. 3).
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3 Discussion and conclusion

So far, we have shown an alternative scheme for photonic qubits in generating an
entangled decoherence-free state. We now give a brief discussion about the experi-
mental feasibility of protocol with the current experimental technology. First of all,
the cross-Kerr nonlinearities are exploited in the spatial entanglement process and the
polarization entanglement module. Although a lot of works have been studied in the
area of cross-Kerr nonlinearities, we should acknowledge that it is still a quite con-
troversial concept to have a clean cross-Kerr nonlinearity in the optical single-photon
regime with present science and technology. What is worse, the natural cross-Kerr
nonlinearities are extremely small and unsuitable for single-photon interaction. Hence,
various physics systems or artificial media such as negative index metamaterials [39],
a superconducting artificial atom [40] and three-dimensional circuit quantum electro-
dynamic architecture [41,42] are investigated to achieve larger strength of cross-Kerr
nonlinearities. Second, the experiment feasibility of the present protocol also depends
on the veracity of the X-quadrature homodyne measurement. Without considering
other conditions, the error chiefly comes from the overlap of adjacent curves because
of the fact that the coherent states of the probe beam with different phase shifts are
not completely orthogonal. In fact, it is only one type of detection error in homodyne;
other errors, such as the noises in detection, the reduced fidelity to the process in Eq. (4)
due to multi-mode effect and decoherence, etc., also exist in a realistic implementa-
tion. Exploiting the appropriate measurement methods, the disadvantageous influence
can be overcome or alleviated and the error probability will be decreased. In 2010,
Wittmann et al. [43] investigated quantum measurement strategies capable of discrim-
inating two coherent states using a homodyne detector and a photon number resolving
(PNR) detector. In order to lower the error probability, the postselection strategy is
applied to the measurement data of homodyne detector as well as a PNR detector.
They indicated that the performance of the new displacement-controlled PNR is bet-
ter than homodyne receiver. Finally, one can see that four CNOT gates are performed
in the polarization entanglement module. Employing weak cross-Kerr nonlinearities,
a nearly deterministic CNOT gate was put forward by Nemoto and Munro [22] with
one auxiliary photon. At the price of halving the construction probability, Lin and Li
[23] proposed a CNOT gate without the ancilla photon. Motivated by these schemes,
Xiu et al. [44] presented a scheme for constructing the nearly deterministic CNOT
gate, where the auxiliary photon is not necessary. However, these methods are at the
best, nearly deterministic, so our scheme could be nearly deterministic.

To summarize, we have proposed the detailed generation circuit of the four-photon
polarization-entangled decoherence-free state with the assistance of the cross-Kerr
nonlinearities. In our protocol, combined with some swap gates and simple linear
optical elements, two main processes including the four-photon spatial entangle-
ment process and the four-photon polarization entanglement process are applied.
This protocol can be implemented nearly deterministically in principle. By virtue of
the availability of optical elements and techniques involved, we hope the generation
scheme is feasible and it will stimulate investigations on the applications of four-qubit
decoherence-free states based on optics.
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