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Abstract Based on the NEQR of quantum images, a new quantum gray-scale image
watermarking scheme is proposed through Arnold scrambling and least significant
bit (LSB) steganography. The sizes of the carrier image and the watermark image are
assumed to be 2n×2n and n×n, respectively. Firstly, a classical n×n sized watermark
image with 8-bit gray scale is expanded to a 2n × 2n sized image with 2-bit gray
scale. Secondly, through the module of PA-MOD N, the expanded watermark image
is scrambled to a meaningless image by the Arnold transform. Then, the expanded
scrambled image is embedded into the carrier image by the steganography method
of LSB. Finally, the time complexity analysis is given. The simulation experiment
results show that our quantum circuit has lower time complexity, and the proposed
watermarking scheme is superior to others.

Keywords Quantum watermarking · Arnold scramble · Least significant bit ·
Quantum circuit

1 Introduction

Images are an important medium in visual information transmission. Image processing
becomes more popular because of the need to extract visual information from the
natural world. Due to the rapid development of quantum computation and quantum
information in the past several decades, quantum computer has demonstrated a bright
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prospect over classic computer, particularly in Feynman’s computation model [1],
Deutsch’s quantum parallelism assertion [2], Shor’s integer factoring algorithm [3],
and Grover’s database searching algorithm [4].

Quantum image processing (QIMP), a new emerging sub-discipline of information
and image processing, is devoted to utilizing the quantum computing technologies
to capture, manipulate, and recover quantum image in different formats for differ-
ent purposes. The investigation of QIMP is beginning with how to store and retrieve
a quantum image in quantum computers. Venegas-Andraca and Bose proposed the
quantum image representation of qubit lattice [5] in 2003 using one qubit to hold one
pixel. Then, Latorre’s Real Ket presented a way to store image information using quan-
tum superposition state [6]. More recently, in 2010, Le et al. [7] proposed a flexible
representation of quantum image (FRQI), which integrates the information of colors
and the corresponding positions in an image into an entanglement state and captures
the positions information into a normalized superposition quantum state. It encodes the
color information of an image into angle θ using 1 qubit and uses the two-dimensional
position information (Y -axis and X-axis). Further, in 2013, more quantum image rep-
resentations were proposed. A novel enhanced quantum image representation (NEQR)
of digital images [8] improves the color information representation of FRQI from 1
qubit to q qubits encoding the pixel value from 0 to 2q − 1, which makes the complex
and elaborates color operations perform easier than FRQI does. QUALPI [9] stores
images sampled in log-polar coordinates. Color image representation utilizes two sets
of quantum states for M colors and N coordinates, respectively (QSMC and QSNC)
[10]. Multi-dimensional image representation uses a normal arbitrary quantum super-
position state (NAQSS) [11] and simple quantum representation of infrared images
(SQR) [12]. A novel quantum representation of color digital images was proposed
[13] in 2016.

In the literature [14,15], the QIMP is broadly classified into two groups: quantum-
inspired image processing and classical-inspired image processing [16,17]. The
quantum-inspired image processing aims to exploit some of the properties respon-
sible for the potency of quantum computing to improve some well-known classical or
digital (i.e., conventional or non-quantum) image processing. The classical-inspired
image processing derives inspiration from the expectation that quantum computing
hardware will soon be physically realized. Hence, such research focuses on extending
classical image processing to the quantum computing framework. Some of the avail-
able literatures that fall under this direction include geometric transformations [18–20],
color transformation [21], quantum image translation [22–24], quantum image scaling
[25–27], image scrambling [28–32], image segmentation [33], feature extraction [34],
edge detection [35], and image matching [36].

Quantum image protection devotes to protecting images from unauthorized use,
copying, and manipulation when images are used for commercial purpose. It has been
a very important theme for experts and researchers and mainly divided into two cat-
egories: quantum image cryptography and quantum image watermarking. The image
cryptography is to transform a meaningful image into a meaningless (or disorder)
form, while the image watermarking is to hide image information by embedding it
into some other images. The quantum image scrambling realizes image cryptography
in [29–32]. The quantum Arnold and Fibonacci image scrambling algorithms [28] and
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Fig. 1 An example of 2 × 2 image and its NEQR

quantum Hilbert image scrambling algorithm [30] were proposed by Jiang et al; Sev-
eral quantum watermarking schemes have been proposed in [37–41] using complex
quantum circuits such as QFT [37], QWT [38], and Hadamard transform [39], and
some other schemes were proposed, for example, a quantum watermarking scheme
using simple and small-scale quantum circuits [40] and a novel LSB-based quantum
watermarking [41].

This paper is organized as follows. Section 2 briefly introduces the quantum repre-
sentation of NEQR, classical LSB steganography, Arnold transformation, the parallel
adder, subtractor modulo N, and quantum equal. Section 3 presents the quantum
watermarking scheme. Section 4 analyzes the time complexity of circuits and the
experimental results. The conclusions are drawn in Sect. 5.

2 Preliminaries

2.1 Novel enhanced quantum image representation (NEQR) of digital image

Comparing to FRQI, the NEQR has improved the gray-scale value representation from
1 qubit to q qubits, which makes more image operations can be performed conveniently
[8]. A gray-scale image f (Y, X) with 2n × 2n pixels is expressed in Eq. (1) based
on NEQR. Figure 1 shows an example of an image of 2 × 2, and the corresponding
NEQR is on the right of the image.

|I〉 = 1

2n

22n−1∑

i=0

|Ci 〉 ⊗ |i〉 = 1

2n

2n−1∑

Y=0

2n−1∑

X=0

q−1⊗
k=0

∣∣∣Ck
Y X

〉
⊗ |Y 〉 |X〉 (1)

where

|Ci 〉 =
∣∣∣Cq−1

i . . .C1
i C

0
i

〉

2.2 The classic LSB scheme

Steganography is a branch of information hiding which hides a message into a cover.
It is a kind of subliminal channel that provides secret communication so that the
intended hacker or attacker is unable to detect the presence of the message. The LSB
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Fig. 2 Least significant bit

steganography, first proposed by Tirkel [42] in 1993, is a fundamental and simple data
hiding method. The principle is using message bits to substitute the least significant
bits of the cover. In general, the cover is a 24-bit or 8-bit image. Taking the latter, for
example, it has 28 = 256 colors (or gray scales). The least significant bit of one of the
pixels is shown in Fig. 2. The message bit is “1”; then, we only need to change the
least significant bit from “0” to“1,” i.e., color 90 should be changed to color 91. The
receiver can get the message by simply reading the least significant bit.

2.3 Arnold scramble method

The Arnold transform or Arnold’s cat map was set up during the research of ergodic
theory by Arnold [43]. Dyson et al. quoted the Arnold transform as an image scram-
bling method in 1992 [44]. Since then, it has been widely used in image processing.

2.3.1 The principle of Arnold scramble

Supposing that I (x, y) is an original image with size 2n × 2n , (X,Y ) and (XA,YA)

are the pixel coordinates of the original image and the scrambled image, respectively.
Two-dimensional Arnold scrambling proceed is written by Eq. (2), and its inverse
operation is shown in Eq. (3).

[
XA

YA

]
=

[
1 1
1 2

] [
X
Y

]
mod 2n (2)

where

XA = (X + Y ) mod 2n ,YA = (X + 2Y ) mod 2n

The inverse Arnold transformation is

[
X
Y

]
=

[
1 1
1 2

]−1 [
XA

YA

]
mod 2n =

[
2 −1
−1 1

] [
XA

YA

]
mod 2n, (3)

i.e.,

X = (2XA − YA) mod 2n ,Y = (YA − XA) mod 2n
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Table 1 Period of Arnold
transform Size of image 4 8 16 32 64 128 256 512

Arnold period 3 6 12 24 48 96 192 384

(a) (b) (c) (d)

Fig. 3 Result of Arnold transformation after the specific iteration times. a Original image, b 12 times, c
48 times, d 192 times

2.3.2 The safety analysis of Arnold scrambling in quantum watermarking

Arnold transform is not a “pure” two-dimensional affine transformation because it has
a “mod” operator. It can be seen as a process of cutting and splicing. Using Arnold
scrambling, an original quantum image transforms into a disordered or meaningless
quantum image. Besides, as an image preprocessing technology, it can reduce the
distribution of scattered error bits of a quantum watermarked image to improve the
robustness.

The Arnold scrambling algorithm is simple and cyclical, i.e., if repeating Arnold
transform in certain iteration steps, it will surely resume the image. Based on Eq.
(2), the iteration equation of Arnold transform is shown in Eq. (4). In [44], Dyson
researched the period. Generally speaking, the explicit value of the period cannot be
calculated. He gave the upper bound and the lower bound of the period and gave
explicit values for particular cases as shown in Table 1. We can see that the period is
connected with the image size N from Table 1.

⎧
⎪⎪⎨

⎪⎪⎩

I 1 =
[
XA

YA

]
, A =

[
1 1
1 2

]
, I 0 =

[
X
Y

]

I 1 = AI 0 mod 2n

I n = AI n−1 mod 2n , n = 0, 1, 2, . . .

(4)

Figure 3 shows the scrambling results and corresponding period of a real image.
The size of the original image named “cameraman” is 256 × 256. (b)–(d) is the
Arnold transformation, the sub-captions of which are the iteration times. For more
comprehensive and state-of-the-art surveys of this topic, refer to paper [43,44].

2.4 Parallel adder and subtractor modulo N

Islam M S et al. proposed the reversible full adder based on Peres gate (PG) in [45].
Here, the introductions about the design of half adder, full adder, and parallel adder are
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(a) (b) (c)

Fig. 4 Reversible half adder (RHA). a PG gate working as half adder, b quantum circuit implement of half
adder, c simplified diagram of RHA

(a) (b)
Fig. 5 Reversible full adder (RFA). a quantum implement of the reverse full adder, b simplified diagram
of RFA

given. Then, the module of parallel adder modulo N (PA-MOD) and parallel subtractor
modulo N (PS-MOD) are designed.

2.4.1 Reversible half adder (RHA)

Figure 4a shows the Peres Gate working as a half adder and its quantum circuit, where
Q = A⊕ B represents the sum of A+ B and R = AB represents the carry of A+ B.
Figure 4b, c are the quantum circuit realization of RHA and corresponding diagram
of RHA, respectively.

Where V is a square root of NOT gate defined by

V = i + 1

2

(
1 −i
−i 1

)

V+ is the Hermitian matrix of V . V and V+ have the following properties:

V × V = V+ × V+ = NOT
V × V+ = V+ × V = I

2.4.2 Reversible full adder (RFA)

Based on the PG gates, we design the full adder as shown in Fig. 5, where R =
A ⊕ B ⊕ C represents the sum of (A + B + C) and S = (A ⊕ B)C ⊕ AB represents
the carry, respectively. The quantum circuit realization of RFA is shown in Fig. 5a,
and its simplified graph is shown in Fig. 5b.
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Fig. 6 Reversible parallel adder. a Reverse parallel adder (PA), b block diagram of PA

2.4.3 Reversible parallel adder (PA)

The reversible parallel adder adds an n qubits Y from an n qubits X designed by
one reversible half adder (RHA) and (n − 1) reversible full adders (RFA) as shown
in Fig. 6a. Here, SnSn−1 . . . S1S0 represents the sum of X + Y . Other unremarked
qubits are the garbage output, and the constant input qubit 0 is the ancillary qubit.
For convenience, the block diagram of PA omits the ancillary inputs and the garbage
outputs as shown in Fig. 6b.

2.4.4 Parallel adder modulo N (PA-MOD)

As shown in Fig. 7, X and Y are two n-bit binary numbers. Assuming that N = 2n ,
it is easy to find that X + Y is a (n + 1)-bit binary numbers SnSn−1. . .S1S0 as shown
in Fig. 6a. According to the mathematical proof of theorem 1 in [29], the result of
(X + Y ) mod N is Sn−1. . .S1S0, which just omits the highest-order bit of Sn . Figure
7a, b give the quantum circuit realization of PA-MOD and corresponding diagram of
PA-MOD, respectively.

2.4.5 Parallel subtractor modulo N (PS-MOD)

The subtraction operation can be converted into complement addition to achieve addi-
tion and subtraction operations of the binary bit. Supposing that we need to calculate
the difference between the two binary numbers X and Y , where Y = yn−1yn−2 . . . y0
and X = xn−1xn−2 . . . x0, then we can derive

(Y − X) mod 2n

= [Y + (−X)] mod 2n

= [Y + (X̄ + 1)] mod 2n

= (yn−1yn−2 . . . y0 + x̄n−1 x̄n−2 . . . x̄0 + 1) mod 2n (5)
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(a) (b)
Fig. 7 Parallel adder modulo N. a Parallel adder modulo N (PA-MOD), b diagram of PA-MOD N

(a) (b)
Fig. 8 Parallel subtractor modulo N. a Parallel subtract modulo N (PA-MOD), and b diagram of
PS-MOD N

According to Eq. (5), the construction of PS-MOD is shown in Fig. 8a. The module
diagram of PS-MOD is shown in Fig. 8b where the ancillary inputs and the garbage
outputs are omitted.

2.5 Quantum equal (QE)

The quantum equal compares two numbers |Y X〉 = |Y 〉 |X〉 and |AB〉 = |A〉 |B〉
to find out whether they are equal or not, where |Y 〉 = |yn−1 . . . y1y0〉 , |X〉 =
|Xn−1 . . . X1X0〉 , |A〉 = |an−1 . . . a1a0〉 , |B〉 = |bn−1 . . . b1b0〉 .Therein, xi , yi , ai , bi
∈ {0, 1}, i = n − 1, . . . 1. The output qubit|c〉 represents the comparative result. If
|c〉 = |1〉 , |Y X〉 = |AB〉; otherwise, |Y X〉 �= |AB〉. The quantum circuit of QE and
its diagram are shown in Fig. 9.
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(a)

(b)
Fig. 9 Quantum equal (QE) circuit realization and its diagram. a Circuit of quantum equal (QE), b diagram
of QE

3 The proposed quantum watermarking scheme

In this section, a quantum watermarking scheme was proposed based on NEQR, which
hides a secret gray-scale image (watermark) into a gray-scale image (carrier). Assume
that the size of the carrier image and the watermark image is 2n ×2n and 2n−1 ×2n−1,
respectively.

In order to explain the scheme, we take a small watermark (secret) image with 1×1
pixels and a small carrier image with 2 × 2 pixel as the example shown in Fig. 10.

3.1 Embedding procedure

Proposed embedding procedure of quantum watermarking shown in Fig. 11(a) is as
follows.
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0 64

128 25580

(a) (b)

Fig. 10 Watermark image and carrier image. a 1 × 1 watermark image, b 2 × 2 carrier image

1. Transform a classical carrier image with 2n × 2n size and 8-bit gray scale into a
quantum image by the NEQR |C〉.

2. Expand a classical watermark image with 2n−1 × 2n−1 size and 8-bit gray scale
to an image with 2n × 2nsize and 2-bit gray scale. An example is shown in
Fig. 12 (where n = 1), as we can see, the 8-bit string is divided into four 2-bit
strings.

3. Transform the expanded watermark image into a quantum image by the NEQR
|W 〉.

4. Scramble the expanded watermark image to a meaningless image
∣∣W ′〉 through

Arnold scrambling.
5. Embed the watermark image into the carrier image according to the embedding

procedure shown in Fig. 11a to obtain watermarked image
∣∣CW ′〉 and generate the

extracting key image K1, K0.
6. Transform

∣∣CW ′〉 into a classical digital watermarked image through quantum mea-
surement.

3.1.1 Quantum image preparing works

The watermark image with 2n−1 × 2n−1 size and 8-bit gray scale is firstly expanded
to an image with 2n × 2n size and 2-bit gray scale; thus, a 8-bit string is divided into
four 2-bit strings. Then, the expanded image is transformed into the quantum image
|W 〉 by the NEQR as shown in Eq. (6).

|W 〉 = 1

2n

22n−1∑

Y X=0

|WY X 〉 ⊗ |Y X〉 = 1

2n

2n−1∑

Y=0

2n−1∑

X=0

1⊗
k=0

∣∣∣Wk
Y X

〉
⊗ |Y X〉 (6)

For example, the watermark image with 1 × 1 image size and 8-bit gray scale is
expanded to the image with 2 × 2 image size as shown in Fig. 12. Since the value of
gray scale 183 is expressed as (10110111)2 by 8 bits, the expanded image consists
of four pixels: (10)2, (11)2, (01)2 and (11)2, respectively. Then, we can obtain the
NEQR as follows.
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(a)

(b)
Fig. 11 Procedures of proposed quantum watermarking scheme. a Embedding procedure of quantum
watermarking and b extracting procedure of quantum watermarking

Fig. 12 An example of expanding a watermark image from 1 × 1 size into 2 × 2 size

|W 〉 = 1

2
(|10〉 |00〉 + |11〉 |01〉 + |01〉 |10〉 + |11〉 |11〉)

Transform the carrier image into the NEQR as shown in Eq. (7).

|C〉 = 1

2n

22n−1∑

i=0

|Ci 〉 ⊗ |i〉 = 1

2n

22n−1∑

Y X=0

q−1⊗
k=0

∣∣∣Ck
Y X

〉
⊗ |Y X〉 (7)
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where

CY X = Cq−1
Y X Cq−2

Y X . . .C0
Y X .

The prepared quantum key image K0 and K1 are expressed by Eq. (8)

|K1〉 = I ⊗ H⊗n |0〉⊗(n+1) = 1

2n

22n−1∑

i=0

∣∣∣Ck1
i

〉
⊗ |i〉 ,

∣∣∣Ck1
i

〉
= |0〉

|K0〉 = I ⊗ H⊗n |0〉⊗(n+1) = 1

2n

22n−1∑

i=0

∣∣∣Ck0
i

〉
⊗ |i〉 ,

∣∣∣Ck0
i

〉
= |0〉 (8)

3.1.2 Arnold scrambling

In order to enhance the confidentiality, we adopt two-step process. In the first step, a
watermark with 2n−1 × 2n−1 image size and 8-bit gray scale is expanded to an image
with 2n × 2n image size and 2-bit gray scale as shown in Fig. 12. In the second step,
the watermark image |W 〉 is scrambled into a disorder image

∣∣W ′〉 through Arnold
scrambling as shown in Fig. 13.

Fig. 13 Arnold scrambling of watermark image
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Fig. 14 Quantum watermarking embedding procedure

Fig. 15 Embedding circuit

3.1.3 Implement embedding

A scrambled watermark image
∣∣W ′〉 is embedded into a carrier image |C〉 through

the LSB method as shown in Fig. 14. Therein, the output qubits |c0〉, |c1〉 and |c2〉
are acted as the control qubits of Embedding Circuit. As shown in Fig. 15, under the
control qubits, |W ′0

Y X 〉 and |W ′1
Y X 〉 of |W ′

Y X 〉 are used to substitute the least significant
qubit |C0

Y X 〉 of |CY X 〉 twice. The QE module is a quantum circuit as shown in Fig. 9a.
Firstly, the three QE modules are used to compare the coordinates of the carrier image
|C〉, the scrambled expanded watermark image

∣∣W ′〉, the two prepared key images
|K1〉, and |K0〉.

The pixel embedding steps are as follows:
If the coordinates of all the input images are equal, the outputs |c0〉, |c1〉, and |c2〉

of each QE module would be state |1〉. The qubits|c0〉, |c1〉, and |c2〉 are acted as the
control qubits in Fig. 15, which is implemented by the following steps:

If
∣∣∣w′0

i

〉
= ∣∣c0

i

〉 ⊕
∣∣∣w′0

i

〉
, then

∣∣c0
i

〉 =
∣∣∣w′0

i

〉
⊕ ∣∣c0

i

〉
,
∣∣Ck0

i

〉 =
∣∣∣w′0

i

〉
⊕ |0〉. Otherwise,

no change will be made.
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If
∣∣∣w′1

i

〉
= ∣∣c0

i

〉 ⊕
∣∣∣w′1

i

〉
, then

∣∣c0
i

〉 =
∣∣∣w′1

i

〉
⊕ ∣∣c0

i

〉
,
∣∣Ck1

i

〉 =
∣∣∣w′1

i

〉
⊕ |0〉. Otherwise,

no changes will be made.
By doing these, the watermark image is embedded into the carrier image, and it

will generate two key images |K1〉 and |K0〉 at the same time.

3.2 Extracting procedure

Extracting procedure shown in Fig. 11b is as follows.

1. Extract the scrambled expanded watermark image
∣∣W ′〉 according to the extract-

ing circuit, and the two extracting key images K1, K0 and the watermarked
image

∣∣CW ′〉 are needed.
2. Implement the inverse Arnold scrambling

∣∣W ′〉 to get the expanded watermark
image |W 〉.

3. Measure the expanded watermark quantum image|W 〉to get the corresponding
classic image, and further implement the inverse expanded transformation to get
the watermark image.

3.2.1 Implement extracting

A scrambled watermark image
∣∣W ′〉 is extracted from the carrier image |C〉 through

the LSB method as shown in Fig. 16. Therein, the output qubits |c0〉 and |c1〉 are acted

Fig. 16 Quantum watermarking extracting procedure
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Fig. 17 Extracting circuit

as the control qubits of Extracting Circuit. As shown in Fig. 17, under the control

qubits,
∣∣Ck0

i

〉
and

∣∣Ck1
i

〉
of

∣∣c0
i

〉
are used to retrieve the pixel qubits

∣∣∣W ′1
Y X

〉
and

∣∣∣W ′0
Y X

〉
.

The two QE modules are used to compare the coordinates of the watermarked image∣∣CW ′〉, and the two key images |K1〉, |K0〉.
The pixel extracting steps are as follows:
If the coordinates of all the input images are equal, the outputs |c0〉 and |c1〉 of each

QE module would be state |1〉. Then qubits |c0〉 and |c1〉 are acted as the control qubits
in Fig. 17, which is implemented by the following steps:

∣∣∣w
′1
i

〉
= ∣∣c0

i

〉 ⊕ |0〉 ,
∣∣c0

i

〉 =
∣∣∣Ck1

i

〉
⊕ ∣∣c0

i

〉
,

∣∣∣w
′0
i

〉
= ∣∣c0

i

〉 ⊕ |0〉 and ∣∣c0
i

〉 =
∣∣∣Ck0

i

〉
⊕ ∣∣c0

i

〉
.

By doing these, the scrambled expanded watermark image
∣∣W ′〉 is extracted from

the carrier image, and the carrier image |C〉 is retrieved at the same time.

3.2.2 Inverse Arnold scrambling

As shown in Fig. 11b, the extracting watermark image is a scrambled image; thus,
we need do the inverse Arnold image scrambling to obtain the expanded watermark
image |W 〉. According to Eq. (3), the concrete circuit realizes inverse Arnold scram-
bling as shown in Fig. 18 where the constant input qubits |0〉 act as the ancillary
qubit.

After we obtain the expanded watermark image, we need do the inverse expand
operation and quantum measurement to obtain the classic watermark image.

3.3 Measurement

Obviously, the quantum watermark image is quantum superposition state as a com-
posite quantum system composed by 2n + q qubits. In order to obtain the classical
watermark image, we need do measurements on these states. For a 2n × 2n NEQR
watermark image with gray range [0, 2q−1], the measurement results are some col-
lection of basis states

{
S1, S2, . . . , S2(n+m)

}
dimension Hilbert space. In [36], based on

Grover’s algorithm, the probability of pixels could be modified to measure the target
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Fig. 18 Inverse Arnold scrambling

pixel with higher probability. It points that we can measure with probability t2
∧
i

to get

the result after certain iterations
∧
i , where

∧
i ≈ 0.7962a − 0.6057, t2

∧
i

≥ (0.9194 + 0.0567a−1 + 0.2302a−2 − 0.0336a−3)2,

a = 2n+ q
2 .

In practice, however, the quantum state cannot be practically observed in quantum
system because a measurement will destroy the superposition. And what is worse, it is
not allowed to make copies of the state and measure each one due to the non-cloning
theorem. Hence, it is necessary to repeat the construction of the quantum watermarked
image state n times (n > 1) and measure each one to summarize the measurement
results, from which we can estimate the watermark image. For more details, refer to
the literature [36].

4 Circuit complexity and simulation experiments

4.1 Circuit complexity

The time complexity of the circuit depends on the number of the basic quantum gate.
Literatures [46,47] pointed out that any reversible gate can be realized using 1×1 NOT
gate and 2 × 2 reversible gates such as Controlled-V, Controlled-V+, and Controlled-
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NOT gate (CNOT). Thus, we take any one-qubit or two-qubit gate as the basic quantum
gate, the time complexity of which is 1.

4.1.1 The time complexity of embedding procedure

The watermarking embedding procedure is shown in Fig. 11a. The quantum Arnold
scrambling circuit (shown in Fig.13) needs 2 PA-MOD modules and n constant qubits
|0〉. The PA-MOD module contains 1 RHA and (n − 1) RFA. The circuit realization
of RHA is shown in Fig. 4b, the complexity of which is 4. The circuit realization of
RFA is shown in Fig. 5a and the complexity is 8. Thus, the complexity of the single
PA-MOD is 8n − 4. Therefore, the circuit complexity of Arnold scrambling is O(n)

and n constant qubits are needed. In realizing embedding procedure steps as shown in
Fig. 14, it includes three QE modules and the embedding circuit is shown in Fig. 15.
The literatures [48] pointed out that only (4 k−8) 2-Control-Not gates were needed to
construct a k-Control-Not gate, as well as some assistant qubits. The QE module (see
Fig. 9a) contains 4n Controlled-Not gates and one 2n-Controlled-Not gate (it means
2n qubits act as the controlled qubits). Thus, the complexity of single QE is O(n).
Besides, the embedding circuit as shown in Fig. 15 can be regarded as containing six
4-Controlled-Not gates, and the complexity of which is O(1). Therefore, the circuit
complexity of embedding the scrambling expanded watermark image into the carrier
image is O(n).

4.1.2 The time complexity of extracting procedure

The watermarking extracting procedure is shown in Fig. 11b. In realizing extracting
procedure steps as shown in Fig. 16, it includes two QE modules and the extracting
circuit is shown in Fig. 17, which can be regarded as containing four 3-Controlled-
Not gates, the time complexity of which is around O(1). The quantum inverse Arnold
scrambling operation circuit shown in Fig. 17 includes two PS-MOD modules and
n + 1 constant input qubits |0〉. The single PS-MOD contains a PA module and a
PA-MOD module, the time complexity of which is around O(n). Thus, the circuit
complexity of realizing extracting the scrambling expanded watermark image from
the watermarked image is O(n).

Therefore, according to the above analysis, the time complexity of watermarking
embedding and extracting procedures of the proposed scheme is around O(n). Com-
pared to classical image processing, the complexity of the Arnold scrambling and
Arnold reverse scrambling is O(22n) for a 2n × 2n sized image. The complexity of
the watermark embedding and extracting algorithm based on the least significant bit
is also O(22n) for a 2n ×2nsized image. Thus, the complexity of the scheme in classic
image processing is O(22n) for a 2n × 2n sized image. However, in quantum image
processing, if we omit the quantum image processing and measurement procedure, the
quantum circuit cost is around O(n), which is very low for quantum image processing
compared to classical image processing.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 19 Result of quantum watermarking experiments. aCarrier image, bwatermark image, cwatermarked
image, d watermark image, e watermarked image, f carrier image, g watermark image, h watermarked
image, i watermark image, j watermarked image

4.2 Simulation experiments analysis

This section gives the simulation experiment results of the proposed watermarking
scheme. All experiments are simulated on the MATLAB R2014b. Three images named
“baboon,” “cameraman,” and “Lena” are used. The sizes of carrier image and water-
mark image are 256 × 256 and 128 × 128, respectively.

The peak signal-to-noise ratio (PSNR) is one of the most used quantities to compare
the fidelity of a stego image with its original version. PSNR is defined as follows:

PSN R = 10 log10
MAX2

I

MSE
= 20 log

MAXI√
MSE

(9)

Therein, MAXI is the maximum gray-level value of the image. MSE is the mean
squared error for two m × n gray-scale images: a carrier image I and its watermarked
image version O , as defined in Eq. (10).

MSE = 1

mn

m−1∑

i=0

n−1∑

j=0

[I (i, j) − O(i, j)]2 (10)

The experimental results are shown in Fig. 19. The size of the watermark image is
128 × 128, and the size of the carrier image is 256 × 256.

Comparing to the carrier image of the experimental shown in Fig. 19, Table 2 shows
the visual quality of the watermarked images. The visual quality PSNR is all around
54 dB. Therefore, we can conclude that the PSNR by our scheme is obviously higher
than previous studies in [39] (around 30 dB) and [40] (around 44 dB).
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Table 2 Similarity of
watermarked images of our
proposed scheme (PSNR [dB])

Watermark
Carrier image Lena Cameraman Mandrill

Cameraman 53.5916 – 54.1324

Lena – 54.3408 54.1218

In a noiseless environment, our proposed scheme can extract an error-free water-
mark image. However, considering the complexity and difficulty to describe the noise
environment in the quantum system, it is unreasonable to take it for granted that the
noise types in classical image (macroscopic world) exist in quantum image (micro-
scopic world). Thus, the robustness analysis of the watermark scheme in the noise
environment is not discussed in this paper.

5 Conclusions

In this paper, a quantum gray-scale watermarking scheme using Arnold scrambling
and LSB method based on NEQR is proposed. We assume that the size of carrier
image and watermark image is 2n × 2n and n × n, respectively.

Watermark embedding and extracting procedures consist of two processes: com-
paring coordinates and replacing pixel bit. Before realizing the watermarking scheme,
a series of quantum modules are designed to realize special functions, which mainly
include QE, PA-MOD, and PS-MOD. The QE is used to compare the coordinates of
all input images whether they are equal or not. The PA-MOD and PS-MOD are used to
scramble and recover the watermark image, respectively. Besides, comparing with the
other watermarking schemes, the experiment results show that our proposed scheme
is superior to other schemes whether or not in noisy environment.

Acknowledgements This work is supported by the National Natural Science Foundation of China under
Grant No. 61463016, Program for New Century Excellent Talents in University under Grant No. NCET-
13-0795, Training program of Academic and technical leaders of Jiangxi Province under Grant No.
20153BCB22002, and the advantages of scientific and technological innovation team of Nanchang City
under Grant No. 2015CXTD003. Project of Science and Technology of Jiangxi province Grant No.
20161BAB202065. Project of International Cooperation and Exchanges of Jiangxi Province under Grant
No. 20161BBH80034. Project of Humanities and Social Sciences in colleges and universities of Jiangxi
Province under Grant No. JC161023.

References

1. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21(6–7), 467–488 (1982)
2. Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc.

R. Soc. Lond. A 400, 97–117 (1985)
3. Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of

the 35th Annual Symposium on Foundations of Computer Science, 124–134 (1994)
4. Grover, L.A.: fast quantum mechanical algorithm for database search. In: Proceedings of the 28th

Annual ACM Symposium on Theory of Computing, 212–219 (1996)

123



212 Page 20 of 21 R.-G. Zhou et al.

5. Venegas-Andraca, S., Bose, S.: Storing, processing, and retrieving an image using quantum mechan-
ics.In: Proceedings of SPIE Conference of Quantum Information and Computation, 5105, 134–147
(2003)

6. Latorre, J.: Image Compression and Entanglement. arXiv:quant-ph/0510031 (2005)
7. Le, P., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation,

image compression, and processing operations. Quant. Inf. Process. 10(1), 63–84 (2011)
8. Zhang, Y., Lu, K., Gao, Y., et al.: NEQR: a novel enhanced quantum representation of digital images.

Quant. Inf. Process. 12(8), 2833–2860 (2013)
9. Zhang, Y., Lu, K., Gao, Y., Xu, K.: A novel quantum representation for log-polar images. Quant. Inf.

Process. 12(9), 3103–3126 (2013)
10. Li, H., Zhu, Q., Lan, S., Shen, C., Zhou, R., Mo, J.: Image storage, retrieval, compression and segmen-

tation in a quantum system. Quant. Inf. Process. 12(6), 2269–2290 (2013)
11. Li, H., Zhu, Q., Zhou, R., Song, L., Yang, X.: Multi-dimensional color image storage and retrieval for

a normal arbitrary quantum superposition state. Quant. Inf. Process. 13(4), 991–1011 (2014)
12. Yuan, S., Mao, X., Xue, Y., Chen, L., Xiong, Q., Compare, A.: SQR: a simple quantum representation

of infrared images. Quant. Inf. Process. 13(6), 1353–1379 (2014)
13. Sang, J., Wang, S., Li, Q.: A novel quantum representation of color digital images. Quant. Inf. Process

16(2), 42 (2017)
14. Iliyasu, A.: Towards realising secure and efficient image and video processing applications on quantum

computers. Entropy 15, 2874–2974 (2013)
15. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quant.

Inf. Process 15, 1–35 (2016)
16. Yan, F.: Quantum Computation Based Image Data Searching, Image Watermarking, and representation

of Emotion Space. Ph.D. Thesis, Tokyo Institute of Technology, Japan (2014)
17. Yan, F., Iliyasu, A., Jiang, Z.: Quantum computation-based image representation, processing operations

and their applications. Entropy 16(10), 5290–5338 (2014)
18. Le, P.Q., Iliyasu, A.M., Dong, F., et al.: Strategies for designing geometric transformations on quantum

images. Theor. Comput. Sci. 412(15), 1406–1418 (2011)
19. Fan, P., Zhou, R.G., Jing, N., et al.: Geometric transformations of multidimensional color images based

on NASS. Inf. Sci. S 340–341, 191–208 (2016)
20. Le, P.Q., Iliyasu, A.M., Dong, F., et al.: Fast geometric transformations on quantum images. Iaeng Int.

J. Appl. Math. 40(3), 113–123 (2010)
21. Le, P.Q., Iliyasu, A.M., Dong, F., et al.: Efficient color transformations on quantum images. J. Adv.

Comput. Intell. Intell. Inf. 15(6), 698–706 (2011)
22. Fan, P., Zhou, Rigui: Quantum gray-scale image translation transform. J. Comput. Inf. Syst. 11(23),

8763–8770 (2015)
23. Wang, J., Jiang, N., Wang, L.: Quantum image translation. Quant. Inf. Process. 14(5), 1589–1604

(2015)
24. Zhou, R.G., Tan, C., Hou, I.: Global and local translation designs of quantum image based on FRQI.

Int. J. Theor. Phys. 56(4), 1382–1398 (2017)
25. Sang, J., Wang, S., Niu, X.: Quantum realization of the nearest-neighbor interpolation method for

FRQI and NEQR. Quant. Inf. Process. 15(1), 37–64 (2016)
26. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quant. Inf. Process.

14(5), 1559–1571 (2015)
27. Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with

integer scaling ratio. Quant. Inf. Process. 14(11), 4001–4026 (2015)
28. Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling.

Quant. Inf. Process. 13(5), 1223–1236 (2014)
29. Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quant. Inf.

Process. 13(7), 1545–1551 (2014)
30. Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–

2484 (2014)
31. Zhou, RiGui, Sun, YaJuan, Fan, Ping: Quantum image Gray-code and bit-plane scrambling. Quant.

Inf. Process. 14, 1717–1734 (2015)
32. Sang, J., Wang, S., Shi, X., Li, Qiong: Quantum realization of Arnold scrambling for IFRQI. Int. J.

Theor. Phys. 55(8), 3706–3721 (2016)

123

http://arxiv.org/abs/quant-ph/0510031


Quantum watermarking scheme through Arnold scrambling… Page 21 of 21 212

33. Caraiman, S., Manta, V.I.: Image segmentation on a quantum computer. Quant. Inf. Process. 14(5),
1693–1715 (2015)

34. Zhang, Y., Lu, K., Xu, K., et al.: Local feature point extraction for quantum images. Quant. Inf. Process.
14(5), 1573–1588 (2015)

35. Zhang, Y., Lu, K., Gao, Y.H.: QSobel: a novel quantum image edge extraction algorithm. Sci. China
Inf. Sci. 58(1), 1–13 (2015)

36. Jiang, N., Dang, Y., Wang, J.: Quantum image matching. Quant. Inf. Process. 15(9), 3543–3572 (2016)
37. Zhang, W.W., Gao, F., Liu, B., Wen, Q.Y., Chen, H.: A watermark strategy for quantum images based

on quantum Fourier transform. Quant. Inf. Process. 12(2), 793–803 (2013)
38. Song, X.H., Wang, S., Liu, S., et al.: A dynamic watermarking scheme for quantum images using

quantum wavelet transform. Quant. Inf. Process. 12(12), 3689–3706 (2013)
39. Song, X., Wang, S., El-Latif, A.A.A., Niu, X.: Dynamic watermarking scheme for quantum images

based on Hadamard transform. Multimed. Syst. 20(4), 379–388 (2014)
40. Miyake, S., Nakamael, K.: A quantum watermarking scheme using simple and small-scale quantum

circuits. Quant. Inf. Process. 15, 1849–1864 (2016)
41. Heidari, S., Naseri, M.: A novel LSB based quantum watermarking. Int. J. Theor. Phys. 55(10), 1–14

(2016)
42. Tirkel, A.Z., Rankin, G.A., VanSchyndel, R.M et al.: Electronic watermark. In: Proceedings of Digital

Image Computing: Techniques and Applications, Macquarie University. 666–672 (1993)
43. Arnold, V.I., Avez, A.: Ergodic Problems of Classical Mechanics. Benjamin, New York (1968)
44. Dyson, F.J., Falk, H.: Period of a discrete cat mapping. Am. Math. Mon. 99(7), 603–614 (1992)
45. Islam, M.S., Rahman, M.M., Begum, Z., et al.: Low cost quantum realization of reversible multiplier

circuit. Inf. Technol. J. 8(2), 208–213 (2009)
46. Thapliyal, H., Ranganathan, N.A .: New design of the reversible subtractor circuit. In: 11th IEEE

Conference on Nanotechnology (IEEE-NANO), 2011. IEEE. pp. 1430–1435 (2011)
47. Kotiyal, S., Thapliyal, H., Ranganathan, N.: Circuit for reversible quantum multiplier based on binary

tree optimizing ancilla and garbage bits. In: 2014 27th International Conference on VLSI Design and
2014 13th International Conference on Embedded Systems. IEEE. 545–550 (2014)

48. Weinfurter, H., Smolin, J.A.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)

123


	Quantum watermarking scheme through Arnold scrambling and LSB steganography
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Novel enhanced quantum image representation (NEQR) of digital image
	2.2 The classic LSB scheme
	2.3 Arnold scramble method
	2.3.1 The principle of Arnold scramble
	2.3.2 The safety analysis of Arnold scrambling in quantum watermarking

	2.4 Parallel adder and subtractor modulo N
	2.4.1 Reversible half adder (RHA)
	2.4.2 Reversible full adder (RFA)
	2.4.3 Reversible parallel adder (PA)
	2.4.4 Parallel adder modulo N (PA-MOD)
	2.4.5 Parallel subtractor modulo N (PS-MOD)

	2.5 Quantum equal (QE)

	3 The proposed quantum watermarking scheme
	3.1 Embedding procedure
	3.1.1 Quantum image preparing works
	3.1.2 Arnold scrambling
	3.1.3 Implement embedding

	3.2 Extracting procedure
	3.2.1 Implement extracting
	3.2.2 Inverse Arnold scrambling

	3.3 Measurement

	4 Circuit complexity and simulation experiments
	4.1 Circuit complexity
	4.1.1 The time complexity of embedding procedure
	4.1.2 The time complexity of extracting procedure

	4.2 Simulation experiments analysis

	5 Conclusions
	Acknowledgements
	References




