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Abstract Quantum discord refers to an important aspect of quantum correlations for
bipartite quantum systems. In our earlier works, we have shown that corresponding to
every graph (combinatorial) there are quantum states whose properties are reflected in
the structure of the corresponding graph. Here, we attempt to develop a graph theoretic
study of quantum discord that corresponds to a necessary and sufficient condition of
zero quantum discord states which says that the blocks of density matrix corresponding
to a zero quantum discord state are normal and commute with each other. These
blocks have a one-to-one correspondence with some specific subgraphs of the graph
which represents the quantum state. We obtain a number of graph theoretic properties
representing normality and commutativity of a set of matrices which are indeed arising
from the given graph. Utilizing these properties, we define graph theoretic measures for
normality and commutativity that results in a formulation of graph theoretic quantum
discord. We identify classes of quantum states with zero discord using the developed
formulation.
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1 Introduction

Graph theory [1] is a well-established branch of mathematics. It has made significant
contributions to quantum physics [2] and information theory [3–5]. Graphs provide
a pictorial representation of quantum states [6]. They have been used to interpret
separability property of quantum states [7], and to model useful unitary operations
[8]. Quantum correlations [9] are useful resources in quantum information theory [10].
Important facets of quantum correlations are quantum entanglement [11] and quantum
discord [12–15]. Here, we attempt to provide a graph theoretical interpretation of
quantum discord.

In quantum mechanics, a density matrix ρ is a positive semidefinite, Hermitian
matrix with unit trace, acting on a Hilbert space, say H(A). A measure of ‘infor-
mation’ contained in the quantum state ρ is the von Neumann entropy, S(ρ) =
− trace(ρ log(ρ)). A bipartite density matrix acts on a Hilbert space H(A) ⊗ H(B),
where ⊗ denotes Kronecker (tensor) product, throughout this article. We denote the
reduced density matrix inH(B) with ρB . Let {|kB〉 : k = 1, 2, . . .} be the standard com-
putational basis of the Hilbert space H(B). The conditional entropy may be defined
with S(A|{|kB〉}), which is given by

∑
k pkB S(ρkB ) where ρkB = 1

pkB
〈kB |ρ|kB〉,

and pkB = traceA(〈kB |ρ|kB〉). Further, conditional entropy may be expressed as
S(ρ)− S(ρB). These two quantities are equal for classical systems but differ for quan-
tum systems. Quantum discord is the difference between two classically equivalent
faces of mutual information.

Definition 1 (Quantum discord) Given a quantum state ρ acting on a bipartite system
H(A) ⊗ H(B), the quantum discord is defined by [16]

D{kB }(ρ) = S(A|{|kB〉}) − [
S(ρ) − S(ρB)

]
.

Let {ρ(a)
i } be a set of density matrices in H(A). Quantum discord is zero for pointer

states that may be expressed as,

ρ =
∑

i

piρ
(a)
i ⊗ |kb〉〈kb|. (1)

Understanding the nature of zero quantum discord states is an important stepping
stone toward understanding quantum discord, in that it acts as preliminary step to
distinguish quantum from the classical aspects. It has been used to understand the
completely positive evolution of a system [17–19], local broadcasting [20,21]. Thus,
finding zero discord quantum states is important in quantum information theory. Cor-
responding to any graph G, there are quantum states ρ(G), defined below. Here, we
present a new combinatorial significance to the pointer states. We study a graph the-
oretic interpretation of binary, normal and commutating matrices. In this framework,
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we provide a constructive method to generate at least one quantum state with zero dis-
cord in an arbitrary dimensional bipartite system. We come up with an idea of graph
theoretic measure of quantum discord applicable for quantum states related to graphs.
This article contains a considerable study on combinatorial properties of binary matri-
ces along with their physical significance. A number of important quantum states can
be represented with weighted graphs. They require a set of additional criteria. This
motivates us to study discord of a larger class of quantum states in a forthcoming
work [22].

This article is organized as follows. In Sect. 2, we compile a number of nomencla-
tures and results from graph theory, which would be of use to us subsequently. We
generate density matrices corresponding to combinatorial graphs. The combinatorial
properties of normal and commutative matrices are investigated in Sect. 3. These are
used to investigate graph theoretic quantum discord in Sect. 4. We also propose a mea-
sure of quantum discord in terms of graph theoretic parameters. Section 5 is dedicated
to graph theoretic quantum states with zero discord. We then make our conclusions.

2 Preliminaries

In this section, we provide a brief review on simple graphs and describe the quantum
states arising from them [5,6]. A simple graph G = (V (G), E(G)) consists of a vertex
set V (G) and an edge set E(G) ⊂ V (G)×V (G) such that (i, i) /∈ E(G) for any i ∈ V
and any edge (i, j) ∈ E(G) is treated as the same edge ( j, i) ∈ E(G). The number of
vertices of G which we denote by #(V (G)) is called the order of G. In this paper, we
consider only finite graphs, that is, #(V (G)) < ∞. The adjacency matrix of a graph
G on N vertices is a symmetric binary matrix, that is, a (0, 1) matrix A = (ai j )N×N

defined as [23]

ai j =
{

1 if (i, j) ∈ E(G),

0 if (i, j) /∈ E(G).
(2)

The degree of a vertex i is di = ∑N
j=1 ai j . The degree matrix of the graph G is

given by D(G) = diag{d1, d2, . . . , dN }, and we define the total degree of G as d =∑N
i=1 di = trace(D). The combinatorial Laplacian matrix and the signless Laplacian

matrix associated with the graph G are defined by

L(G) = D(G) − A(G), Q(G) = D(G) + A(G),

respectively [23,24]. Note that, trace(L(G)) = trace(Q(G)) = d and both
L(G), Q(G) are symmetric positive semidefinite matrices.

Recall that density matrix representation of a quantum state is described by a
Hermitian positive semidefinite matrix with unit trace [10]. Thus, density matrices
corresponding to a graph G are defined by

ρl(G) = 1

d
L(G) and ρq(G) = 1

d
Q(G). (3)
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They were introduced in [5,6] and represent quantum states of dimension N . We
denote ρl(G) and ρq(G) together by ρ(G) when no confusion arises. It is important
to note that L(G) and Q(G) depend on the vertex labelings, and hence, different
labelings on the vertex set of a graph generate different quantum states [5,6].

Given a graph G on N = mn vertices, the vertex set V (G) can be partitioned into
m classes, say C1,C2, . . . ,Cm such that

V = C1 ∪ C2 ∪ · · · ∪ Cm

Cμ ∩ Cν = ∅ for μ �= ν and μ, ν = 1, 2, . . . ,m

Cμ = {vμ1, vμ2, . . . , vμn}.
(4)

The induced subgraph of G generated by Cμ, that is the graph with vertex set Cμ and
edge set {(i, j) ∈ E(G) : i, j ∈ Cμ}, is called a cluster in G, and we denote it by
〈Cμ〉. We denote the bipartite graph defined by a pair Cμ,Cν, μ �= ν consisting of
the edge set {(i, j) ∈ E(G) : i ∈ Cμ, j ∈ Cν} and vertex set Cμ ∪ Cν as 〈Cμ,Cν〉
which is a subgraph of G representing the edges between the pair of clusters for any
μ, ν = 1, . . . ,m. Hence, the adjacency matrix associated with G can be represented
as the block matrix

A(G) =

⎡

⎢
⎢
⎢
⎣

A11 A12 . . . A1m
A21 A22 . . . A2m
...

...
. . .

...

Am1 Am2 . . . Amm

⎤

⎥
⎥
⎥
⎦

mn×mn

, (5)

where Aμμ denotes the adjacency matrix of the cluster 〈Cμ〉 and

[
0 Aμν

Aνμ 0

]

=
[

0 Aμν

At
μν 0

]

(6)

denotes the adjacency matrix associated with the bipartite graph 〈Cμ,Cν〉 [7].
Consequently, the density matrices corresponding to the graph G are block matrices

ρ(G) = [ρμν] such that

ρμν =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s

d
Aμν if μ �= ν

1

d
(Dμ + s Aμμ) if μ = ν

(7)

where D = diag{D1, D2, . . . , Dm}, Dμ is a diagonal matrix whose diagonal entries
are the degrees of the vertices belonging to Cμ, s = 1 if ρ(G) = ρq(G), and s = −1
if ρ(G) = ρl(G). Thus, ρ(G) represents quantum states corresponding to a bipartite
system of order m × n. Finally, we conclude the section with the following definition
which will be used later.
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Definition 2 (Edge characteristic function) Given a graph G, the function X :
V (G) × V (G) → {0, 1} defined by

X (vμ,i , vν, j ) ≡ Xμ,ν(i, j) =
{

1 if (vμ,i , vν, j ) ∈ E(G),

0 if (vμ,i , vν, j ) /∈ E(G),

for all μ, ν = 1, . . . ,m and i, j = 1, . . . , n is called an edge characteristic function.

3 Graph theoretic interpretations of normal and commuting matrices

As mentioned earlier, the zero quantum discord states are given by the normal and
commuting blocks of the corresponding density matrices [16]. In this section, we
determine the structural properties of a graph onmn vertices such that its density matrix
has blocks that are normal and commute pairwise. We derive properties of the clusters
〈Cμ〉 and the bipartite graphs 〈Cμ,Cν〉 such that the matrices ρμν, μ, ν = 1, . . . ,m
form a set of normal commutating matrices.

First, we discuss some notations and observations regarding graphs generated from
a binary matrix. In what follows, given a vector a = [a1 a2 . . . an]t ∈ {0, 1}n , we
denote

a = {i : ai = 1, 1 ≤ i ≤ n}.

Hence, given a, b ∈ {0, 1}n we obtain

atb = #(a ∩ b). (8)

For a matrix M = [mi j ] ∈ {0, 1}n×n , we denote mi∗ and m∗ j as the i th row and
j th column vectors, respectively. Corresponding to every such matrix M , there is a
simple bipartite graph GM = (V (GM ), E(GM )) of order 2n whose adjacency matrix
is given by

A(GM ) = M =
[

0 M
Mt 0

]

. (9)

We mention that corresponding to any nonnegative matrix, that is, a matrix whose all
the entries are nonnegative such a bipartite graph can also be defined, for example,
see [25].

Assuming the partitioned vertex sets of V (GM ) as Cμ = {vμ,1, vμ,2, . . . , vμ,n}
and Cν = {vν,1, vν,2, . . . , vν,n}, note that (vμi , vν j ) ∈ E(GM ) if and only if mi j = 1.
Thus, GM = 〈Cμ,Cν〉. As GM is bipartite, the neighborhood of a vertex vμi in GM

is given by

nbdM(vμi ) = {vν j : (vμi , vν j ) ∈ E(G)} ⊆ Cν . (10)
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Similarly, nbdM(vνi ) ⊆ Cμ. Now we define a set of numbers for any vμi ∈ Cμ and
vν j ∈ Cν, 1 ≤ μ, ν ≤ m corresponding to the bipartite graph 〈Cμ,Cν〉 with the help
of (10) as

nbd(vμi ) = { j : vν j ∈ nbdM(vμi )} = mt
i∗, (11)

nbd(vνi ) = { j : vμj ∈ nbdM(vνi )} = m∗i , (12)

which are extensively used in the sequel.
Let 01,n and 0n,1 be the zero row and column vectors. Note that, the i th row of M,

that is [01,n mi∗] ∈ {0, 1}2n depicts edges incident to vμi , 1 ≤ i ≤ n, and hence,

[01,n mi∗]t = mt
i∗ = nbdM(vμi ).

Similarly, the (n + i)th column of M, that is

[
m∗i
0n,1

]

represents the edges incident to

vνi and thus
[
m∗i
0n,1

]

= m∗i = nbdM(vνi ).

In particular, any symmetric matrix M ∈ {0, 1}n×n with diagonal entries zero can
be considered as an adjacency matrix of a graph G(M). Let V (G(M)) = Cμ =
{vμ,1, vμ,2, . . . , vμ,n}. Then, (vμ,i , vμ, j ) ∈ E(G(M)) if and only if mi j = 1. Thus,
G(M) = 〈Cμ〉.

We illustrate the above discussion using the following example.

Example 1 Consider the matrix M =
⎡

⎣
0 1 1
1 0 0
1 0 0

⎤

⎦. The corresponding bipartite graph,

GM is:
•μ,1 •μ,2 •μ,3

•ν,1 •ν,2 •ν,3

Consider, m∗1 = (0, 1, 1)t , that is m∗1 = {2, 3}. Note that, nbdA(vν1) = {vμ,2, vμ,3}.
Also, M is a symmetric binary matrix with zero diagonal entries. Thus, M is the
adjacency matrix of the following graph G(M)

•μ3 •μ1 •μ2 .

We characterize commutativity of two binary matrices in the following results by
using the bipartite graphs introduced above. Next, we also provide a measure of non-
commutativity of two binary matrices using these results.

Theorem 1 Let the bipartite graphs corresponding to the matrices A, B ∈ {0, 1}n×n

be GA = 〈Cμ,Cν〉 and GB = 〈Cα,Cβ〉, respectively. Then, AB = BA if and only if
for all i, j with 1 ≤ i, j ≤ n,
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#(nbd(vμi ) ∩ nbd(vβ j )) = #(nbd(vν j ) ∩ nbd(vαi )).

Proof Note that AB = BA holds if and only if (AB)i j = (BA)i j for all i, j with
1 ≤ i, j ≤ n. Now applying Eq. (8) we get,

(AB)i j =
n∑

k=1

aikbk j = ati∗b∗ j = #(nbd(vμi ) ∩ nbd(vβ j )),

(BA)i j =
n∑

k=1

bikak j = bti∗a∗ j = #(nbd(vν j ) ∩ nbd(vαi )). (13)

Hence, the desired result follows. ��
Obviously if AB �= BA the corresponding condition on graphs do not hold. The

non-commutativity of A and B is captured in E(GA), and E(GB). Hence, we introduce
the following quantity as a measure of non-commutativity of any two matrices A, B ∈
{0, 1}n×n .

NC1(A, B) =
∑

i, j

∣
∣#(nbd(vμi ) ∩ nbd(vβ j )) − #(nbd(vν j ) ∩ nbd(vαi ))

∣
∣. (14)

Corollary 1 Let A = [ai j ] ∈ {0, 1}n×n be a symmetric matrix with diagonal entries
zero and B = [bi j ] ∈ {0, 1}n×n. Assume that G(A) = 〈Cμ〉 and GB = 〈Cα,Cβ〉 are
the graphs corresponding to A and B, respectively. Then, AB = BA if and only if for
all i, j with 1 ≤ i, j ≤ n,

#(nbd(vμi ) ∩ nbd(vβ j )) = #(nbd(vμj ) ∩ nbd(vαi )).

Proof We have already justified that, ati∗ = nbd(vμi ) = a∗i , for all i = 1, 2, . . . , n.
Further AB = BA if and only if ati∗b∗ j = bti∗a∗ j for all i, j . Applying the symmetry
of A, we obtain ati∗b∗ j = atj∗bi∗. Using the graph theoretic convention #(nbd(vμi ) ∩
nbd(vβ j )) = #(nbd(vμj ) ∩ nbd(vαi )). ��

When such matrices A, B in the above corollary do not commute, we denote

NC2(A, B)i j = #(nbd(vμi ) ∩ nbd(vβ j )) − #(nbd(vμj ) ∩ nbd(vαi )), (15)

and define a measure of non-commutativity of the pair of matrices A, B as

NC2(A, B) =
∑

i, j

∣
∣#(nbd(vμi ) ∩ nbd(vβ j )) − #(nbd(vμj ) ∩ nbd(vαi ))

∣
∣. (16)

Corollary 2 Let A = [ai j ], B = [bi j ] ∈ {0, 1}n×n be symmetric matrices with zero
diagonal entries. Suppose G(A) = 〈Cμ〉 and G(B) = 〈Cν〉. Then, AB = BA if and
only if for every i, j with 1 ≤ i, j ≤ n,

#(nbd(vμi ) ∩ nbd(vν j )) = #(nbd(vμj ) ∩ nbd(vνi )).
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Proof The proof follows from the above corollary by setting α = β = ν. ��
Thus, given two symmetric binary matrices with diagonal entries zero we denote

NC3(A, B)i j = #(nbd(vμi ) ∩ nbd(vν j )) − #(nbd(vμj ) ∩ nbd(vνi )), (17)

and define a measure of non-commutativity of A and B as

NC3(A, B) =
∑

i, j

∣
∣#(nbd(vμi ) ∩ nbd(vν j )) − #(nbd(vμj ) ∩ nbd(vνi ))

∣
∣. (18)

Now we provide graph theoretic interpretation of normality of a binary matrix as
follows.

Theorem 2 Let A = [ai j ] ∈ {0, 1}n×n and GA = 〈Cμ,Cν〉 be the bipartite graph
corresponding to A. Then, A is normal, that is, AAt = At A if and only if for every i
and j with 1 ≤ i, j ≤ n,

#(nbd(vμi ) ∩ nbd(vμj )) = #(nbd(vνi ) ∩ nbd(vν j )).

Proof Let B = (bi j )n×n = (a ji )n×n = At . Clearly, bi∗ = a∗i and b∗i = ai∗ for all i .
Note that,

(AAt )i j =
n∑

k=1

aikbk j = ati∗b∗ j = ati∗a j∗ = #(nbd(vμi ) ∩ nbd(vμj )). (19)

Similarly, (At A)i j = #(nbd(vνi ) ∩ nbd(vν j )). Hence, for any two i , and j with 1 ≤
i, j ≤ n we have, #(nbd(vμi ) ∩ nbd(vμj )) = #(nbd(vνi ) ∩ nbd(vν j )). ��

When A ∈ {0, 1}n×n is not a normal matrix we define its non-normality in terms
of the edges in GA by the following quantity:

NN (A) =
∑

i, j

|#(nbd(vμi ) ∩ nbd(vμj )) − #(nbd(vνi ) ∩ nbd(vν j ))|. (20)

4 Quantum discord of states corresponding to graphs

We first recall the clusters for a given graph G on m × n vertices that are mentioned
in Eq. (4). Note that any such simple graph G can be partitioned into edge-disjoint
subgraphs 〈Cμ〉 and 〈Cμ,Cν〉, 1 ≤ μ, ν ≤ m, and properties of these subgraphs
determine some properties of G. In order to determine the zero quantum discord
states which arise from G, the blocks of ρ(G) = [ρμν] must satisfy the following
conditions:

ρt
μμρμμ = ρμμρt

μμ, (21)
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ρt
μνρμν = ρμνρ

t
μν, μ �= ν (22)

ρμνραβ = ραβρμν, μ �= ν, α �= β, (μ, ν) �= (α, β) (23)

ρμμραβ = ραβρμμ, α �= β (24)

ρμμρνν = ρννρμμ, (25)

where ρμμ = Dμ + Aμμ if ρ(G) = ρl(G), ρμμ = Dμ − Aμμ if ρ(G) = ρs(G),
ρμν = Aμν, μ �= ν, and Aμμ, Aμν are described in Eqs. (5) and (6). Thus, the quantum
states ρ(G) arising from a graph G must satisfy the conditions (21)–(25) to represent a
state with zero quantum discord. It is needless to mention that the structural properties
of the clusters and the edges between the clusters determine the same.

Observe that the condition (21) satisfies trivially for any graph G since the matrix
Aμμ represents a symmetric adjacency matrix associated with the cluster 〈Cμ〉. Also,
Dμ is a diagonal matrix. The condition (22) is satisfied by G if all the bipartite graphs
〈Cμ,Cν〉 meet the normality condition given in Theorem 2. If there are some block
matrices ρμν which are not normal, hence violate (22), the amount of non-normality
can be measured by using formula (20) considering all pairs of μ, ν such that μ �= ν.
Thus, the quantity ∑

μ�=ν

NN (Aμν) (26)

measures the violation of (22).
The condition (23) is satisfied if all the pair of bipartite graphs 〈Cμ,Cν〉, and

〈Cα,Cβ〉, 1 ≤ μ, ν, α, β ≤ m, μ �= ν, α �= β, (μ, ν) �= (α, β) satisfy Theorem 1. If
the condition gets violated, the amount of non-commutativity defined in (14) can be
used to measure the violation of condition (23) due to all pairs of Aμν, Aαβ as

∑

μ�=ν,α �=β

NC1(Aμν, Aαβ). (27)

Note that, the condition (24) deals with the commutativity between ρμμ and
ραβ, α �= β, that is, the graph G will satisfy ρμμραβ = ραβρμμ, 1 ≤ μ, α, β ≤ m.
Thus,

1

d
(Dμ + s Aμμ)

s

d
Aαβ = s

d
Aαβ

1

d
(Dμ + s Aμμ)

⇒ DμAαβ + s AμμAαβ = AαβDμ + s Aαβ Aμμ,

(28)

where s = 1 if ρ(G) = ρl(G) and s = −1 if ρ(G) = ρs(G). Rearranging the terms,
we obtain

(DμAαβ − AαβDμ) + s(AμμAαβ − Aαβ Aμμ) = 0. (29)

Recall that Dμ represents the diagonal matrix having the diagonal entries as the degrees
of the vertices belong to Cμ and Aμμ is the adjacency matrix of the cluster 〈Cμ〉.
Besides, Aαβ corresponds to the bipartite graph 〈Cα,Cβ〉. Thus, the above equation
holds if for all i, j with 1 ≤ i, j ≤ n

(DμAαβ)i j − (AαβDμ)i j + s{(AμμAαβ)i j − (Aαβ Aμμ)i j } = 0

⇒ dμi (Aαβ)i j − (Aαβ)i j dμj + s{(AμμAαβ)i j − (Aαβ Aμμ)i j } = 0.
(30)
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Further, (Aαβ)i j is either 0 or 1 depending on the existence of the edge (vαi , vβ j ) in
G. Thus, the graph G satisfies condition (24) if

Xαβ(i, j)(dμi − dμj ) + s(#(nbd(vμi ) ∩ nbd(vβ j )) − #(nbd(vμj ) ∩ nbd(vαi ))) = 0

(31)

as follows from Corollary 1 for all 1 ≤ μ, α, β ≤ m, α �= β, where Xαβ denotes
the edge characteristic function defined in Definition 2. Moreover, the violation of the
condition (24) can be represented by

∑

μ,α �=β

∑

i, j

∣
∣Xαβ(i, j)(dμi − dμj ) + sNC2(Aμμ, Aαβ)i j

∣
∣ (32)

where NC2(Aμμ, Aαβ)i j is given by Eq. (15), s = 1 if ρ(G) = ρl(G) and s = −1 if
ρ(G) = ρs(G).

Finally, the condition (25) holds if ρμμρνν = ρννρμμ which implies that

1

d
(Dμ + s Aμμ)

1

d
(Dν + s Aνν) = 1

d
(Dν + s Aνν)

1

d
(Dμ + s Aμμ)

⇒ DμDν + sDμAνν + s AμμDν + AμμAνν

= DνDμ + sDν Aμμ + s AννDμ + Aνν Aμμ

⇒ (AμμAνν − Aνν Aμμ) + s(DμAνν − AννDμ) + s(AμμDν − Dν Aμμ) = 0

⇒(AμμAνν − Aνν Aμμ)i j + s(DμAνν − AννDμ)i j + s(AμμDν − Dν Aμμ)i j = 0,

(33)
holds for all 1 ≤ i, j ≤ n. Note that, Aμμ and Aνν represent the adjacency matrices
corresponding to the clusters 〈Cμ〉 and 〈Cν〉, respectively, and commutativity of such
matrices has been discussed in Corollary 2. Note that,

(DμAνν − AννDμ)i j = dμi (Aνν)i j − (Aνν)i j dμj = Xνν(i, j)(dμi − dμj ) (34)

(AμμDν − Dν Aμμ)i j = (Aμμ)i j dν j − dνi (Aνν)i j = Xμμ(i, j)(dν j − dνi ) (35)

which follows from the definition of the edge characteristic function X , and

(AμμAνν − Aνν Aμμ)i j = #(nbd(vμi ) ∩ nbd(vν j )) − #(nbd(vμj ) ∩ nbd(vνi )). (36)

Combining Eqs. (34)–(36), we obtain

[
#(nbd(vμi ) ∩ nbd(vν j )) − #(nbd(vμj ) ∩ nbd(vνi ))

]

+ s
[Xνν(i, j)(dμi − dμj )

] + s
[Xμμ(i, j)(dν j − dνi )

] = 0
(37)

which must be satisfied for all 1 ≤ i, j ≤ n in order to satisfy condition (25).
Further, observe that if the vertices belong to Cμ,μ = 1, 2, . . . ,m have equal

degree, then dμi − dμj = 0 as well as dν j − dνi = 0. Then, G satisfies condition
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(25) if and only if for any two subgraphs 〈Cμ〉 and 〈Cν〉, conditions of Corollary 2 is
fulfilled. Thus, a measure of violation of the (25) can be defined by

∑

μ�=ν

∑

i, j

∣
∣NC3(Aμμ, Aνν)i j +s

[Xνν(i, j)(dμi −dμj )+Xμμ(i, j)(dν j −dνi )
]∣
∣, (38)

where NC3(Aμμ, Aνν)i j is given by (17), s = 1 if ρ(G) = ρl(G) and s = −1 if
ρ(G) = ρs(G).

Based on the discussions above, it is obvious that given a graph G on m×n vertices
with a labeling on the vertices and clusters 〈Cμ〉, 1 ≤ μ ≤ m a notion of quantum
discord for the quantum states ρ(G) can be defined by using Eqs. (26), (27), (32)
and (38). This definition of quantum discord would then be philosophically different
compared to the existing measures of quantum discord, for example see [26], as it
depends on the structural properties of the clusters in the graph. Thus, we introduce
the following definition of quantum discord for states arising from a graph.

Definition 3 (Graph theoretic quantum discord) Let G be a graph on m × n vertices
and 〈Cμ〉,Cμ = {vμi : 1 ≤ i ≤ n}, 1 ≤ μ ≤ m be the clusters in G. Then, the
quantum discord of the states ρ(G) = 1

d [D(G) + s A(G)], s ∈ {1,−1} is given by

QD(G) =
∑

μ�=ν

NN (Aμν) +
∑

μ�=ν

NN (Aμν)

+
∑

μ,α �=β

∑

i, j

∣
∣Xαβ(i, j)(dμi − dμj ) + sNC2(Aμμ, Aαβ)i j

∣
∣

+
∑

μ�=ν

∑

i, j

∣
∣NC3(Aμμ, Aνν)i j

+ s
[Xνν(i, j)(dμi − dμj ) + Xμμ(i, j)(dν j − dνi )

]∣
∣,

where 1 ≤ ν ≤ m, 1 ≤ j ≤ n, A(G) = [Aμν], dμi is the degree of vμi , and d is the
total degree of G.

We mention that different labelings on the vertices of the same graph G can produce
different states with different quantum discord. The definition helps to generate zero
quantum discord states defined by graphs. Indeed, a procedure to create such states
with a given dimension m × n would be to define the edges of the graph such that the
quantities defined in Eqs. (26), (27), (32) and (38) become zero.

Now we discuss whether QD(G) is a valid measure of quantum correlation for
bipartite states represented by the density matrices ρ(G) of order mn. First we recall
that a general measure M of quantum correlation is expected to possess the following
properties [27].

1. M is nonnegative.
2. M is zero for classically correlated states.
3. M in invariant under local unitary transformation.
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SettingM(ρ(G)) = QD(G) for any graphG onmn vertices, we have the following
observations. First note that QD(G) ≥ 0 by default. Further, by definition of QD(G)

it is zero for classically correlated states with zero quantum discord. Finally, a general
picture of graph theoretic analogue of local unitary transformations on ρ(G) is not yet
known, see [8]. In fact, it is a hard problem to characterize local unitary operations
which transform a given ρ(G) in to an another state ρ(H) for some other graph
H . However, we show in the next theorem that QD(G) is a promising measure for
quantum correlation as it is invariant under local unitary operators of the form P1 ⊗P2,
where Pi , i = 1, 2 are permutation matrices, which are special unitary matrices.

Let the permutation matrices P1 and P2 act on the Hilbert spaces H(A), and H(B),
respectively. Hence, P1 ⊗ P2 = (P1 ⊗ I )(I ⊗ P2) is a local unitary operator acting
on H(A) ⊗ H(B). Then, we have the following theorem:

Theorem 3 Let P2 be a permutation matrix acting on the Hilbart space H(B). Let
ρ(G) be a quantum state with zero discord in the bipartite system H(A) ⊗ H(B).
Consider a graph H, such that, A(H) = (I ⊗ P2)

t A(G)(I ⊗ P2). Then, ρ(H) and
ρ(G) have equal quantum discord.

Proof Note that,

(I ⊗ P2)
tρ(G)(I ⊗ P2)

= (I ⊗ Pt
2)

1

d

⎡

⎢
⎢
⎢
⎣

D1 + s A11 s A12 . . . s A1m
sA21 D2 + s A22 . . . s A2m

...
...

. . .
...

s Am1 s Am2 . . . Dm + s Amm

⎤

⎥
⎥
⎥
⎦

(I ⊗ P2)

= 1

d

⎡

⎢
⎢
⎢
⎣

Pt
2(D1 + s A11)P2 sPt

2 A12P2 . . . sPt
2 A1m P2

sPt
2 A21P2 Pt

2(D2 + s A22)P2 . . . sPt
2 A2m P2

...
...

. . .
...

sPt
2 Am1P2 sPt

2 Am2P2 . . . Pt
2(Dm + s Amm)P2

⎤

⎥
⎥
⎥
⎦

.

Recall the subgraphs 〈Cμ〉 and 〈Cμ,Cν〉 in G and the fact that graph isomorphisms are
represented by permutation matrices. Hence, the above equation can be interpreted as
a graph isomorphism operation. The adjacency matrices of the new subgraphs corre-

sponding to 〈Cμ〉 and 〈Cμ,Cν〉 are given by Pt
2 AμμP2, and

[
0 Pt

2 Aμν P2
Pt

2 A
t
μν P2 0

]

,

respectively. Note that, the permutation matrix P2 does not switch one vertex of Cμ

to another vertex of Cν when μ �= ν but only changes the labeling of vertices of
Cμ, 1 ≤ μ ≤ m. Thus, the normality and commutativity conditions hold as earlier in
the new graph. Thus, ρ(H) and ρ(G) have equal quantum discord. ��

The Werner state [28] is a class of quantum states, important in quantum information
processing. A Werner state is represented by,

ρx,d = d − x

d3 − d
I + xd − 1

d3 − d
F, (39)
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•1,1 •1,2 •1,3

•2,1 •2,2 •2,3

•3,1 •3,2 •3,3

•1,1 •1,2 •1,3 •1,4

•2,1 •2,2 •2,3 •2,4

•3,1 •3,2 •3,3 •1,4

•4,1 •4,2 •4,3 •4,4
(a) (b)

Fig. 1 Graphs of the Werner states. a Graph for ρ1,3, b graph for ρ1,4

where F = ∑d
i, j |i〉〈 j | ⊗ | j〉〈i |, x ∈ [0, 1] and d is the dimension of the individual

subsystems. Note that, ρx,d is a symmetric matrix of order d2. It can be shown that these
states have nonzero quantum discord even though some of them are separable [29].

Example 2 We may represent ρ1,3, and ρ1,4 as a simple graph having 9 and 16 vertices
in Fig. 1.

Theorem 4 Every Werner state has nonzero discord.

Proof Consider the subgraph 〈Cμ,Cν〉 for any μ and ν, with μ �= ν. Using lemma 2,
we may conclude that Aμ,ν is not a normal matrix. Thus, every Werner state has a
nonzero discord. ��

A detailed study of quantum discord of states represented with weighted graphs
will be presented in an upcoming work [22].

5 Graph theoretic zero quantum discord states

As discussed above, we can generate zero quantum discord bipartite states of dimen-
sion m × n arising from graphs for any m, n by generating graphs G for which
QD(G) = 0. In fact states arising from a graph G have zero quantum discord if
and only if QD(G) = 0. In this section we determine certain standard graphs which
have always zero quantum discord for any labeling on the vertices.

First we have the following theorem for complete graphs on N = mn vertices
which are graphs in which any pair of distinct vertices are adjacent.

Theorem 5 Let G be a complete graph on N = mn vertices. Then, the states ρ(G)

have zero quantum discord, that is, QD(G) = 0.
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Proof As G is a complete graph, degree of every vertex is N − 1. Thus, total degree
of G is d = N (N − 1). Then, the blocks of ρ(G) are given by

ρμν =
{±1

d Aμμ = 1
d [(N − 1)In + Jn − In] = 1

d [(N − 2)In + Jn] for μ = ν
±1
d Aμν = ±1

d Jn for μ �= ν

(40)
where 1 ≤ μ, ν ≤ m and Jn is the all-one matrix of order n. Note that, all the blocks
ρμν are normal and commute pairwise. Hence, the desired result follows. ��

We conclude from Theorem 5 that for any m and n there is a graph G of order mn
for which the corresponding bipartite states of dimension m × n have zero quantum
discord. In the next theorem, we prove that given any n, the complete bipartite graphs
G on 2n vertices, that is, G consist of two clusters 〈Cμ〉, μ = 1, 2 with n vertices
such that no two vertices of Cμ for a fixed μ are adjacent and all pairs of vertices
u ∈ C1, v ∈ C2, (u, v) ∈ E(G) provide zero quantum discord bipartite states ρ(G)

of dimension 2 × n.

Theorem 6 Let G be a complete bipartite graph on 2n vertices with two clusters,
each on n vertices. Then, QD(G) = 0, that is, ρ(G) have zero quantum discord.

Proof Let C1 = {v1,1, v1,2, . . . , v1,n}, C2 = {v2,1, v2,2, . . . , v2,n} be the bipartition
of G. Then,

ρ(G) = 1

2n

[
nIn s Jn
s Jn nIn

]

.

It is easy to verify that all the block matrices commute with each other and they are
normal matrices. Hence, QD(G) = 0. ��

Next, we provide an example of two isomorphic graphs such that for one, the
corresponding bipartite states have zero quantum discord and for the other, the
corresponding states have nonzero quantum discord. Thus, the following example
establishes that quantum discord is not invariant under graph isomorphism, hence
depends on labeling of the vertices.

Example 3 In Fig. 2, there are two isomorphic complete bipartite graphs G and H
with vertex set V = {1, 2, 3, 4, 5, 6}. It consists of two clusters C1 = {1, 2, 3} and
C2 = {4, 5, 6}. A simple calculation shows that QD(H) �= 0 and from Theorem 6,
QD(G) = 0. It is interesting to observe that H is a 3-regular graph which confirms
that regular graphs need not represent states with zero quantum discord.

Now we consider partially symmetric graphs which were introduced in [7] and
show that states corresponding to bipartite partially symmetric regular graphs have
always zero quantum discord. First, we recall the following definition from [7].

Definition 4 (Partially symmetric graph) A graph G with clusters C1,C2, . . . ,Cm is
called a partially symmetric graph if the edge (vμi , vν j ) ∈ E(G) indicates (vνi , vμj ) ∈
E(G).
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•4 •5 •6

•1 •2 •3

•4 •5 •6

•1 •2 •3

(a) (b)

Fig. 2 Isomorphic complete bipartite graphs with different quantum discords

Note from the definition that every block of the adjacency matrix of a partially
symmetric graph is a symmetric matrix. Then, we have the following theorem.

Theorem 7 Every bipartite partially symmetric regular graph has zero quantum dis-
cord.

Proof Let G be a partially symmetric regular bipartite graph. Then,

ρ(G) =
[
r In s An

s An r In

]

,

where r is the regularity of the graph and s ∈ {1,−1}. Since An is a symmetric
matrix, it is normal. Besides, all these block matrices commute with each other. Hence,
QD(G) = 0. ��
Theorem 8 Let G = 〈Cμ,Cν〉 be a regular graph satisfying the condition of Theorem
2. Then, the states ρ(G) have zero quantum discord.

Proof The proof is similar to the last theorem. Here the matrix An is a normal matrix
instead of symmetric matrix. Indeed the quantum states corresponding to G are given
by

ρ(G) = 1

2nr

[
r In s An

s At
n r In

]

= 1

2n

[
In s 1

r An

s 1
r A

t
n In

]

, (41)

where s ∈ {1,−1}. ��

Consider the matrix

[
r In An

At
n r In

]

in the above equation by putting s = 1. Every row

and column has equal sum 2r . The matrix 1
2r

[
r In An

At
n r In

]

is an example of a doubly

stochastic matrix. Doubly stochastic matrices are widely used in different branches of
science [30].

Finally, as it is well known that there are separable quantum states with nonzero
quantum discord, in the following example we confirm the same also for the states
arising from graphs.
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Example 4 Consider the bipartite partially symmetric graph G representing a separa-
ble two-qubit mixed state.

•1,1 •1,2

•2,1 •2,2

L(G) =

⎡

⎢
⎢
⎣

2 0 −1 −1
0 1 −1 0

−1 −1 2 0
−1 0 0 1

⎤

⎥
⎥
⎦ .

Note that

[
2 0
0 1

]

and

[−1 −1
−1 0

]

do not commute, hence QD(G) �= 0 although ρ(G) =
1

5
L(G) represents a 2-qubit separable state.

6 Conclusions and open problems

This work is important from the perspective of mathematics and theoretical quantum
information. Calculating the exact amount of quantum discord is a computationally
formidable task [31]. Here, we derive graph theoretic criteria for normality and com-
mutativity of binary matrices. The blocks of a density matrix of a zero discord state
are normal and commuting. We apply combinatorial tools to find out graph theoretic
criterion for zero quantum discord. Further, we propose a graph theoretic measure of
discord. This work initiates a number of directions for future research.

1. Given a positive integer n, calculate the exact number of binary normal matrices.
There is no general formula for this problem till date, although some lower bound
exists. This work provides a graph theoretic visualization to the structure of binary
normal matrices, which may be useful for solving this problem.

2. The Werner states play an important role in quantum information theory. It was
proved in [29] that they have nonzero quantum discord. These states can be rep-
resented by weighted graphs and will be considered in a forthcoming work.
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