
Quantum Inf Process (2017) 16:173
DOI 10.1007/s11128-017-1625-8

Steady states of continuous-time open quantum walks

Chaobin Liu1 · Radhakrishnan Balu2

Received: 9 December 2016 / Accepted: 22 May 2017 / Published online: 29 May 2017
© Springer Science+Business Media New York 2017

Abstract Continuous-time open quantum walks (CTOQW) are introduced as the
formulation of quantum dynamical semigroups of trace-preserving and completely
positive linear maps (or quantum Markov semigroups) on graphs. We show that a
CTOQW always converges to a steady state regardless of the initial state when a
graph is connected. When the graph is both connected and regular, it is shown that
the steady state is the maximally mixed state. As shown by the examples in this
article, the steady states of CTOQW can be very unusual and complicated even though
the underlying graphs are simple. The examples demonstrate that the structure of a
graph can affect quantum coherence in CTOQW through a long-time run. Precisely,
the quantum coherence persists throughout the evolution of the CTOQW when the
underlying topology is certain irregular graphs (such as a path or a star as shown in the
examples). In contrast, the quantum coherence will eventually vanish from the open
quantum system when the underlying topology is a regular graph (such as a cycle).
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1 Introduction

A standard starting point for the discussion of the dynamics of continuous-time open
quantum systems is the Markovian quantum master equation [1–3]

dρ(t)

dt
= i[ρ(t), H(t)] +

∑

k

γk(t)[Lk(t)ρ(t)L†
k(t)

−1

2
{L†

k(t)Lk(t), ρ(t)}]. (1)

Here, ρ(t) is the state of the system at time t , the self-adjoint operator H(t) is the
generator of the coherent part of the evolution, and the Lindblad operators Lk(t) are
the incoherent or dissipative system operators of the evolution with corresponding
relaxation times γk(t).

When H(t), Lk(t) and γk(t) are independent of time t , the Markovian master
equation describes a homogeneous evolution of continuous-time open quantum sys-
tem. For simplicity, all γk(t) can be assumed to be 1, then the above equation is written
as

dρ(t)

dt
= i[ρ(t), H ] +

∑

k

[Lkρ(t)L†
k

−1

2
{L†

k Lk, ρ(t)}]. (2)

Introducing an operator L as follows

Lρ = i[ρ, H ] +
∑

k

[LkρL
†
k − 1

2
{L†

k Lk, ρ}], (3)

one can rewrite Eq. (2) as

d

dt
ρ(t) = Lρ(t). (4)

As we may know, Tt = etL forms a quantum dynamical semigroup of trace-
preserving and completely positive linear maps, which is continuous in t ∈ R+. For
any density matrix ρ(0), ρ(t) = Tt (ρ(0)) fulfills Eq. (4). A detailed justification for
these assertions can be found in literature, for example [4]. In the context of quantum
dynamical semigroup, the operator L is often called the generator or infinitesimal
generator of the semigroup.

When dynamical processes take place on a graph, the topology of the graph often
affects or even determines the behavior of the processes [5,6]. Our work here is
concerned with a semigroup taking place on a graph; we are interested in determining
the limiting states of the semigroup and knowing how the structure of the graph can
determine the behavior of the semigroup. The study shows through the examples of this
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article, among other things, that the long-time behavior of the semigroups can be very
unusual and complicated even though the underlying graphs are simple. The aforesaid
key attribute of the semigroups on graphs may be useful for quantum information
processing and quantum computing [7].

To be more precise, we now consider a scenario that the quantum dynamical
semigroup governed by Eq. (4) is confined to a graph G = (V, E). Here, ρ(t),
the state of the system at time t , is a density matrix on the Hilbert space spanned
by the orthonormal basis represented by the vertices of G. We interpret H , the
generator of the coherent part, to be the Laplacian matrix of G, and Lk , the dissi-
pative system operators, to be operators determined by the adjacency matrix of G
(the precise description of these operators will be given in Sect. 2). This interpre-
tation is not necessary. Nonetheless, it respects the topological structure of a graph
G.

In this article, the formulation of the quantum dynamical semigroup of trace-
preserving, completely positive linear maps on a graph G will be called continuous-
time open quantum walks (abbreviated to CTOQW) [8].1

We remark that a different approach to the notion of the CTOQW was recently
proposed [9]. This type of continuous-time open quantum walks is obtained by taking
a continuous-time limit of the discrete-time open quantum random walks [10,11].
More recently, a second different species of CTOQW was presented [12]; it can be
considered as the exact continuous-time version of the aforesaid discrete-time open
quantum walks

It is noteworthy that there are two extreme cases of possible continuous-time trans-
port processes on graphs that have been extensively studied. One is continuous-time
random walks (CTRW) modeling a purely incoherent transport process, see, e.g., [6].
The other is continuous-time quantum walks (CTQW) modeling a purely coherent
transport process [13]. The probability distribution for CTRW at time t is given by
p(t) = etL p(0) where p(0) is the initial probability distribution. The transition ampli-
tude for CTQW at time t is given by |ψ〉 = e−i t L |ψ(0)〉 where |ψ(0)〉 is the initial
amplitude of CTQW. In both cases described above, L can be chosen as the Laplacian
matrix of the graph. The history and developments of continuous-time quantum walks,
and their application to various sciences can be found in [6,14,15] and the references
therein.

Coming back to CTOQW to be formulated, we may consider it as a mixture of the
two aforesaid extreme cases of continuous-time transport processes on graphs to some
extent. In addition to formulating CTOQW, we will also study properties of steady
states of CTOQW.

This article is organized as follows. In Sect. 2 , the formalism for continuous-time
open quantum walks is presented. We then analyze the steady states of CTOQW and
offer examples of CTOQW in Sect. 3. This article is closed in Sect. 4 with concluding
remarks and related questions.

1 We were not aware of the work [8] before we posted on arXiv the first version of the present article under
the title Continuous-time open quantum walks. We acknowledge that [8] should be the very first paper
concerning semigroups on graphs.
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2 Formulation of continuous-time open quantum walks

2.1 Matrices associated with a graph

In this section, we will introduce continuous-time open quantum walks (CTOQW) as
the formulation of homogeneous quantum Markov semigroups on graphs.

To prepare for the formulation, we will first recall some matrices associated with a
graph. Given an undirected graph G = (V, E) without multiple edges or self-loops,
let A be the adjacency matrix of G, the |V | × |V | matrix with the elements,

A jk =
{

1 if ( j, k) ∈ E

0 if ( j, k) /∈ E
for every pair j, k ∈ V .

We denote by D the degree matrix with Dj j = deg( j). Here, deg( j) denotes the
degree of vertex j for each vertex j in V . There are two more equally important
matrices associated with the graph G: the Laplacian matrix of G and the (canonical)
matrix of transition probabilities for the Markov chain generated by the graph G.

Their elements are defined as:

L jk =

⎧
⎪⎪⎨

⎪⎪⎩

deg( j) if j = k

−1 if ( j, k) ∈ E

0 if ( j, k) /∈ E

Mjk =
{

1
deg(k) if( j, k) ∈ E

0 Otherwise

for every pair j, k ∈ V . By their definitions, it is evident that L = D − A, and
M = AD−1.

One can associate with every vertex of the graph G a basis vector in an |V |-
dimensional vector space. Now, these basis vectors form a complete orthonormal
basis, which, for instance, is given by

|1〉 =

⎡

⎢⎢⎢⎣

1
0
...

0

⎤

⎥⎥⎥⎦ , |2〉 =

⎡

⎢⎢⎢⎣

0
1
...

0

⎤

⎥⎥⎥⎦ , . . . , |N 〉 =

⎡

⎢⎢⎢⎣

0
0
...

1

⎤

⎥⎥⎥⎦ . (5)

Take as an example a cycle of three sites, then the matrices L and M read:

L =
⎡

⎣
2 −1 −1

−1 2 −1
−1 −1 2

⎤

⎦ , M =
⎡

⎣
0 1/2 1/2

1/2 0 1/2
1/2 1/2 0

⎤

⎦ . (6)

Writing M in a quantum mechanical fashion via the projection operators | j〉〈k|
leads to
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M = 1

2

∑

j �=k

|k〉〈 j |

= 1

2
[|2〉〈1| + |3〉〈1| + |1〉〈2| + |3〉〈2| + |1〉〈3| + |2〉〈3|] (7)

2.2 Definition of continuous-time open quantum walks

Having now specified a graph G through its associated matrices, we are in a position
to define the generator of the semigroup etL on G. We choose H in Eq. (3) to be
the Laplacian matrix of the graph G, Lindblad operators to be the swap operator
Bjk = √

M jk | j〉〈k|. The parameters M jk specify the strength of swapping the state
|k〉 for the state | j〉.

Then, the generator L can be recast as

Lρ = i[ρ, L] +
∑

j,k

[BjkρB
†
jk − 1

2
{B†

jk B jk, ρ}]. (8)

For a given initial state ρ(0) of the quantum system on G, the expression ρ(t) =
Tt (ρ(0)) = etLρ(0) is called the state of the continuous-time open quantum walk on
G at time t .

It should be pointed out that the group of Lindblad operators given in Eq. (8) is just
one of possible options; there are other options for Lindblad operators in Eq. (3). For
example, (1) the Lindblad operators can be chosen to be e−i L and I where L is the
Laplacian matrix of a graph; or (2) they can be chosen to be a projection operator P
and I− P where P = |1〉〈1| + · · · + · · · + | j〉〈 j | + · · · + |m〉〈m| with j standing for
the j th vertex of a graph. In what follows, unless specified, the Lindblad operators to
be used are ones given by Eq. (8).

3 Steady states of continuous-times open quantum walks

In this section, we will study properties of steady states of CTOQW. In the theory of
completely positive semigroups, a semigroup Tt is said to be relaxing if there exists a
unique (steady) state ρ∞ such that Tt (ρ∞) = ρ∞ for all t and limt→∞ Tt (ρ) = ρ∞
for an arbitrary state ρ.

It can be verified that ρ is a steady state of Tt for t > 0 if and only if ρ is in the
kernel of L, i.e., Tt (ρ) = ρ for all t > 0 if and only if L(ρ) = 0. The semigroup is
obviously not relaxing if the equation L(ρ) = 0 admits more than one solution.

It is desirable to have some condition on the structure of the graph which assures
that the semigroup defining CTOQW is relaxing as well as a characterization of the
steady states.

Here, we recall a very important result (please refer to [4,16] and the references
cited therein) as a sufficient condition for a semigroup being relaxing.
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Lemma 1 Consider a quantum dynamical semigroup of trace-preserving, completely
positive linear maps, Tt = eLt with generator

Lρ = i[ρ, H ] +
∑

k

[LkρL
†
k − 1

2
{L†

k Lk, ρ}], (9)

for some set of indices I . Provided that the linear space spanned by the set of Lindblad
operators Lk is Hermitian (this means that for every X = ∑

k xk Lk there are yk ∈ C

such that X† = ∑
k yk Lk .) and the only operators commuting with all of them are

proportional to the identity, which is expressed as {Lk, k ∈ I }′ = cI (Note: the left-
hand side of this equality is called the commutant of {Lk, k ∈ I }), then the semigroup
Tt is relaxing and the steady state is a positive definite density matrix.

We now present our basic result which gives a sufficient condition for convergence
of a continuous-time open quantum walk.

Theorem 1 If a graph G is connected, then CTOQW on the graph has a positive
definite matrix (state) ρ∞ such that for all density matrices ρ we have limt→∞ etLρ =
ρ∞. If G is connected, then limt→∞ etLρ = 1

|V | I for any initial state ρ if and only if
the associated matrix of transition probabilities on G is doubly stochastic.

We call a square matrix with nonnegative entries doubly stochastic if the sum of
the entries in each row and in each column is 1.

Proof Since G is an undirected graph, M jk �= 0 iff Mk j �= 0 for any j and k. This
implies that the linear space spanned by the set of Lindblad operators Bjk is Hermitian.
Next, we prove that {Bjk, j, k ∈ I }′ = cI. Provided that X = (Xlm) ∈ {Bjk, j, k ∈
I }′, i.e., Bjk X = XBjk for all possible Bjk , then we claim X = cI for some constant
c. To justify it, we will show that for each l0, Xl0m0 = 0 whenever m0 �= l0. Now
for the given l0, there exists k0 such that Bk0l0 �= 0 as G is connected. Please note
that 	


Bk0l0 X = 1√
deg(l0)

|k0〉〈l0|
∑

j,m

X jm | j〉〈m|

= 1√
deg(l0)

∑

m

Xl0m |k0〉〈m|,

XBk0l0 = 1√
deg(l0)

∑

j,m

X jm | j〉〈m|k0〉〈l0|

= 1√
deg(l0)

∑

j

X jk0 | j〉〈l0|. (10)

Then, Bk0l0 X = XBk0l0 implies that Xl0m0 = 0 whenever m0 �= l0 and Xl0l0 =
Xk0k0 . Repeated applying this reasoning leads to the claim that X = cI where c is
a constant. Thus, {Bjk, j, k ∈ I }′ = cI. By Lemma 1, CTOQW on the graph has a
positive definite matrix ( steady state ) ρ∞ such that for all density matrices ρ we have
limt→∞ etLρ = ρ∞.
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To prove the second assertion, it suffices to show that L(I) = 0 if and only if∑
k M jk = 1 for all j (which means that M is doubly stochastic).
Since the sum of all entries on each column of M is one, i.e.,

∑
j M jk = 1 for all

k, we have

∑

j

∑

k

B†
jk B jk =

∑

k

∑

j

(√
Mjk

)2 |k〉〈 j | j〉〈k|

=
∑

k

⎛

⎝
∑

j

M jk

⎞

⎠ |k〉〈k|

= I. (11)

Observe that

∑

j

∑

k

B jk B
†
jk =

∑

j

∑

k

(
√
Mjk)

2| j〉〈k|k〉〈 j |

=
∑

j

(
∑

k

M jk

)
| j〉〈 j |. (12)

Equations (11) and (12) together imply the following identities:

L(I) = i[I, L] +
∑

j,k

[BjkIB
†
jk − 1

2
{B†

jk B jk, I}]

=
∑

j

(
∑

k

M jk

)
| j〉〈 j | − I. (13)

Note that L(I) = 0 iff
∑

j

(∑
k M jk

) | j〉〈 j | = I iff
∑

k M jk = 1 for all j .
Therefore, the result follows.
Since the matrix of transition probabilities associated with a regular graph is doubly

stochastic, Theorem 1 has an immediate corollary, which concerns the convergence
of CTOQW on a regular graph.

Corollary 1 If graph G is regular, then limt→∞ etLρ = 1
|V | I for any initial state ρ.

In what follows, we consider three examples of CTOQW. The first example of
CTOQW is the one on an n−cycle. Since the graph is regular, 1

n I is the unique steady
state such that limt→∞ etLρ = 1

n I for any initial state ρ according to Corollary 1.
We then consider the CTOQW on a path with three sites (see the graph below).

Meanwhile, we also consider the corresponding CTRW and CTQW on this graph to
compare the long-time behaviors of these three distinct continuous-time dynamical
processes in terms of steady states and limiting probability distributions (Fig. 1).
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Fig. 1 Path with three sites
v1 v2 v3

The Laplacian matrix and the matrix of transition probabilities associated with this
graph are as follows:

L =
⎡

⎣
1 −1 0

−1 2 −1
0 −1 1

⎤

⎦ , M =
⎡

⎣
0 1/2 0
1 0 1
0 1/2 0

⎤

⎦ (14)

The Lindblad operators/Swap operators are given by:

B12 = √
2/2|v1〉〈v2| =

⎡

⎣
0

√
2/2 0

0 0 0
0 0 0

⎤

⎦ (15)

B32 = √
2/2|v3〉〈v2| =

⎡

⎣
0 0 0
0 0 0
0

√
2/2 0

⎤

⎦ (16)

B21 = |v2〉〈v1| =
⎡

⎣
0 0 0
1 0 0
0 0 0

⎤

⎦ (17)

B23 = |v2〉〈v3| =
⎡

⎣
0 0 0
0 0 1
0 0 0

⎤

⎦ (18)

Since this path is a connected graph, CTOQW has a unique steady state by Theo-
rem 1. To find this steady state, it suffices to solve for ρ the system of linear equations
of L(ρ) = 0 and

∑3
j=1 ρ j j = 1. Here, L is given by Eq. (8) and ρ = (ρ jk)3×3. After

massive calculation, we obtain a unique solution to the system of the linear equations,
which is given by ⎡

⎣
2
7 − 1

28 + 1
28 i

1
14− 1

28 − 1
28 i

3
7 − 1

28 − 1
28 i

1
14 − 1

28 + 1
28 i

2
7

⎤

⎦ (19)

It can be verified that the above matrix is a positive definite density matrix. To
distinguish this steady state from other density states, we denote it by ρ∞. According
to Theorem 1, for CTOQW on this path, we have limt→∞ etLρ = ρ∞ for any initial
state ρ. This implies that the limiting probability distribution over the three sites,
namely v1, v2 and v3, is ( 2

7 , 3
7 , 2

7 ) regardless of the initial state of CTOQW.
We now turn to the two aforesaid extreme cases of continuous-time processes on

this graph. For CTRW, it is interesting to note that the long-time limit of all transition
probabilities is limt→∞ p(t) = 1/3. In fact, every CTRW whose transfer matrix
follows directly from the Laplacian matrix will eventually decay at long times to the
equipartition value 1/N and is independent of the connectivity of the graph [6].
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Fig. 2 Star with three edges

v1

v2

v3v4

For CTQW, the eigenvalues and the corresponding unit eigenvectors of Laplacian
matrix L are as follows:

λ1 = 0, ψ1 =
(√

3

3
,

√
3

3
,

√
3

3

)T

(20)

λ2 = 1, ψ2 =
(

−
√

2

2
, 0,

√
2

2

)T

(21)

λ3 = 3, ψ3 =
(√

6

6
,−

√
6

3
,

√
6

6

)T

(22)

By standard computation rule, the limiting average probability of finding the
quantum walker at a site v initially launching at a site u is given by P∞(v|u) =∑3

j=1 |〈v|ψ j 〉|2|〈u|ψ j 〉|2.
We now show the limiting average probability distributions of the CTQW launching

from two specific states:

Case 1 When the walker is launched at v1 (or v3), then the limiting average probability
distribution is ( 7

18 , 4
18 , 7

18 ).
Case 2 When the walker is launched at v2, then the limiting average probability

distribution is ( 2
9 , 5

9 , 2
9 ).

As shown above, the asymptotic behaviors of these three continuous-time processes
on the path are quite distinct. Unlike CTQW, both CTOQW and CTRW have unique
limiting distributions which are independent of initial states/probability distributions.

Finally, we consider the CTOQW on a star with three edges (this graph is often
called a claw and is shown in Fig. 2).
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The Laplacian matrix and the matrix of transition probabilities associated with this
graph are as follows:

L =

⎡

⎢⎢⎣

3 −1 −1 −1
−1 1 0 0
−1 0 1 0
−1 0 0 1

⎤

⎥⎥⎦ , M =

⎡

⎢⎢⎣

0 1 1 1
1/3 0 0 0
1/3 0 0 0
1/3 0 0 0

⎤

⎥⎥⎦ (23)

Since the star is connected, there is a unique steady state denoted by ρ∞ such that
limt→∞ etLρ = ρ∞ for any initial state ρ according to Theorem 1. By a similar
approach employed in the second example, we obtain the steady state given by:

ρ∞ =

⎡

⎢⎢⎢⎢⎢⎣

11
26 − 2

39 − 1
39 i − 2

39 − 1
39 i − 2

39 − 1
39 i

− 2
39 + 1

39 i
5

26
2
39

2
39

− 2
39 + 1

39 i
2
39

5
26

2
39

− 2
39 + 1

39 i
2
39

2
39

5
26

⎤

⎥⎥⎥⎥⎥⎦
(24)

It should be noted that the limiting density matrices of CTOQW such as the ones
given by Eqs. (19) and (24) can be very complicated and unusual even though the
underlying graphs are simple. It also should be noted that the nonzeroness of the off-
diagonal elements of the limiting density matrices indicates the existence of quantum
coherence throughout the evolution of the CTOQW on the graphs. This finding sug-
gests that quantum coherence persists throughout the evolution of the CTOQW when
the underlying topology is certain irregular graphs (such as a path or a star as shown in
the examples). In contrast, quantum coherence will eventually vanish from the open
quantum system when the underlying topology is a regular graph (such as a cycle) by
Theorem 1.

4 Concluding remarks and related questions

In this article, we examine the evolution of CTOQW on finite graphs. In general, for
dynamical processes on graphs, one is interested not only in determining the shape of
the limiting state (also known as steady state) of the processes and the condition under
which the limiting state exists, but also in determining the relation between steady
states and the structures of the underlying graphs. We have shown that a CTOQW
always converges to a steady state regardless of the initial state when a graph is con-
nected. When the graph is both connected and regular, it is shown that the steady state
is the maximally mixed state. As shown by the examples in this article, the steady states
of CTOQW can be very unusual and complicated even though the underlying graphs
are simple. Our examples with the steady states of CTOQW, to our best knowledge,
may be the first examples that were reported in literature for semigroups with explicit
steady states determined by graphs.

CTOQW on graphs can be extended to lattices. For instance, consider CTOQW
on one-dimensional lattice Z. One may choose H in Eq. (3) to be the Laplacian
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matrix of the lattice Z and choose the swap operator Bx,x−1 =
√

2
2 |x〉〈x − 1| and

Bx,x+1 =
√

2
2 |x〉〈x + 1| as Lindblad operators. It would be interesting to investigate

the asymptotic behavior of ρt/
√
t .
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