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Abstract We present a general problem of quantum entanglement quantified by von
Neumann entropy for N -level atomic system. Time evolution of state vector of the
entire system is investigated numerically under the influence of intrinsic decoherence
for moving three-, four- and five-level atoms. It is seen that the phase shift estimator
parameter, intrinsic decoherence and the atomic motion play very important role during
the time evolution of the atomic systems. There is a monotonic relation between
the atomic quantum Fisher information and entanglement in the absence of atomic
motion. It is seen that the local maximum values at the revival time of both QFI and
SA decreases gradually during its time evolution. It decreases more rapidly in case of
four- and five-level atoms as compared to the three-level atoms. A periodic behaviour
of QFI is seen in the presence of atomic motion which becomes more prominent
for higher-dimensional systems. However, atomic quantum Fisher information and
entanglement exhibit an opposite behaviour during its time evolution in the presence
of atomic motion. The evolution of the entanglement is found to be very prone to the
intrinsic decoherence. Dramatic change takes place in the degree of entanglement when
the intrinsic decoherence increases. Intrinsic decoherence in the atom-field interaction
suppresses the nonclassical effects of the atomic systems. The entanglement and Fisher
information saturate to its lower level for longer timescales in the presence of intrinsic
decoherence. It leads to the sudden death of entanglement for higher values of intrinsic
decoherence. However, the damping behaviour of entanglement remains independent
of the system dimensions at larger timescales.
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1 Introduction

Quantum metrology [1,2] is an important ingredient of quantum technologies. It is
aimed to provide parameter estimation with high measurement precision. Parame-
ter estimation, an important milestone of quantum technology, has developed new
techniques in measurement of parameter sensitivity during recent years yielding
remarkable scientific breakthroughs. In classical parameter estimation theory, the
Craḿer-Rao bound (CRB) expresses a lower bound on the variance of an unbiased
estimator [3–5]. Its quantum counterpart “the quantum Cramer-Rao bound (QCRB)”
that accounts for all (unbiased) measurement techniques allowed by quantum mechan-
ics is discussed in Refs. [6,7]. There exists an optimal quantum measurement whose
classical Fisher information, obtained from the measurement outcomes, achieves the
quantum Fisher information (QFI) [8]. Quantum Fisher information can be used to
estimate the value of an unknown parameter. It is an abstract quantity that measures the
maximum information about a parameter that can be extracted from a given measure-
ment procedure. In other words, it is a measure of how fast a given state changes under
a given evolution. It can also be used as a pointer that how useful a quantum state is for
quantum metrology [9–11]. A larger QFI implies that the parameter can be estimated
with a higher precision. In this work, we use the symmetric logarithmic derivative
(SLD) operator-based method to quantify QFI, because it has tremendous physical
properties, such as convexity and invariance under unitary processes. Recently, QFI is
found to be a sensitive probe to the quantum phase transitions [12,13]. It has also been
proposed as a measure for macroscopicity of quantum systems [14,15]. Time evolu-
tion of the QFI of a system whose dynamics is described by the phase-damped model
has been studied by Berrada et al. [16]. The QFI in phase estimation for a qubit placed
under the influence of a non-Markovian environment is investigated recently [17]. It
has also been extended for the case of two-mode Gaussian states: The mode-mixed
thermal states and the squeezed thermal states by Paulina and Tudo [18]. Moreover,
a new emphasis has emerged in this context where QFI is related to the properties of
interacting many-body quantum systems.

The study of atom-field interaction lies at the heart of quantum optics. One of
the most simplest example is a two-level atom coupled to a single-mode quantized
radiation field in an optical cavity which represents the well-known Jaynes–Cummings
model (JCM) [19,20]. The JCM is the simplest quantum mechanical model which
describes a formalism for a two-level atom interacting with a quantized radiation field
in the rotating wave approximation (RWA). Various generalizations of this model have
been proposed so far [21–32]. For instance, a general formalism for a �-type three-
level atom interacting with a correlated two-mode field is presented by Abdel-Aty et
al. [33]. Dynamics of entanglement and other nonclassical properties of a V - and a
�-type three-level atom interacting with a single-mode field in a Kerr medium with
intensity-dependent coupling and in the presence of the detuning parameters have been
studied by Faghihi and Tavassoly [34]. The dynamic behaviour of the JCM beyond
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the RWA has been investigated where the effect of the counter-rotating terms on some
nonclassical features has been examined [35]. A model with moving atoms undergoing
one-photon and two-photon transitions in a two-mode coherent-state field has been
studied by Joshi and Schlicher [36,37]. Furthermore, the dynamics of entanglement for
a higher-level atoms interacting with a single-mode cavity field has been investigated
by different authors [38–40]. Recently, the geometric phase of a two-level atomic
system driven by a phase noise laser under non-Markovian dynamics has been studied
by Abdel-Khalek [41].

Assuming that the system does not evolve continuously, Milburn [42] has proposed
a simple model of intrinsic decoherence based on an assumption that on sufficiently
short time steps the system does not evolve continuously under unitary evolution but
rather in a stochastic sequence of identical unitary transformations. This model has
been applied to the study of decoherence effects in Jayne–Cummings model [43–
45] in open quantum systems [46] in a two-level system coupled to a photon field
[47]. In this direction, the effect of intrinsic decoherence on the entropy squeezing of
coupled field-superconducting charge qubit [48]. Also, the intrinsic decoherence of
tripartite states Bell-nonlocality has been investigated [49]. It has been shown that the
multipartite Bell-inequality violations can be destroyed infinite time in the system.

The main focus of this work is to investigate the time evolution of QFI and von
Neumann entropy under intrinsic decoherence for phase shift estimator parameter of a
moving and non-moving N -level atomic system. We consider the examples of three-,
four- and five-level atomic system interacting with a coherent field under rotating wave
approximations. It is seen that both the intrinsic decoherence and phase shift parameter
play an important role during the time evolution of the N -level atomic system. There
is a monotonic relation between the atomic quantum Fisher information and entan-
glement in the absence of atomic motion. On the other hand, atomic quantum Fisher
information and entanglement exhibit an opposite behaviour during its time evolution
in the presence of atomic motion. Time evolution of the entanglement is found to be
very sensitive in the presence of intrinsic decoherence. Dramatic changes take place
in the degree of entanglement when we increase the intrinsic decoherence parameter.
Larger value of intrinsic decoherence leads to sudden death of entanglement. However,
the damping behaviour of entanglement is independent of the system dimensions for
larger timescales. Furthermore, we compare our results with the existing literature and
found it consistent with the previous studies.

The paper is organized as follows. In Sect. 2, we present the basic definition of
quantum Fisher Information and von Neumann entropy and its formalism for numerical
calculations. The model Hamiltonian and interaction dynamics of coherent field with
moving N -level atomic system in terms of phase shift estimator parameter and intrinsic
decoherence are presented in Sect. 3. In Sect. 4, numerical results and discussions are
presented. In Sect. 5, we conclude our results.

2 The quantum Fisher information

The classical Fisher information for a given process with a single unknown parameter
θ is defined as

123



142 Page 4 of 18 S. J. Anwar et al.

Fθ =
∑

i

pi (θ)

[
∂

∂θ
ln pi (θ)

]2

, (1)

where pi (θ) is the probability density conditioned on the fixed parameter with mea-
surement outcome {xi } for a discrete observable X. The classical Fisher information
characterizes the inverse variance of the asymptotic normality of a maximum-
likelihood estimator. The quantum Fisher information of a parameterized quantum
states ρ(θ) can be defined by extending it to quantum regime

Fθ = Tr[ρ(θ)L2], (2)

where θ is the parameter to be measured, and L is the symmetric logarithmic derivative
(SLD) determined by

dρ(θ)

dθ
= 1

2
[ρ(θ)L + Lρ(θ)], (3)

Here, we consider N -dimensional system (N can be infinite) with the density operator
ρ(θ). The spectral decomposition of the density matrix can be written as

ρθ =
∑

K

λK |k〉〈k|, (4)

The QFI with respect to θ for such a density matrix is given by [50–52]

Fθ =
∑

k

(∂θλk)
2

λk
+ 2

∑

k,k′

(λk − λk′ )

(λk + λk′)
|〈k|∂θk

′ 〉|2 (5)

where λk > 0 and λk+λk′ > 0. The first term in Eq. (5) is classical Fisher information,
and the second term represents its quantum counterpart. In this fashion, we can define
the atomic quantum Fisher information of a bipartite density operator ρAB. in terms
of θ as [53]

IQF (t) = IAB(θ, t) = Tr[ρAB(θ, t){L(θ, t)}2] (6)

where L(θ, t) is the quantum score [54] (the symmetric logarithmic derivative) which
can be found as

∂ρAB(θ, t)

∂θ
= 1

2
[L(θ, t)ρAB(θ, t) + ρAB(θ, t)L(θ, t)] (7)

Similarly, the von Neumann entropy can be defined as

SA = −Tr(ρA ln ρA) = −
∑

i

ri ln ri (8)

where ri are the eigenvalues of the atomic density matrix ρA = TrB(ρAB).
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3 The intrinsic decoherence model for N-level atomic system

Milburn has proposed a simple model of intrinsic decoherence by giving a modification
of standard quantum mechanics. He assumed that on a sufficiently small timescale τ,

the state of the system changes by

ρ(t + τ) = exp

[
− i

h
θ(τ )H

]
ρ(t)exp

[
i

h
θ(τ )H

]]
(9)

with a probability of p(t). The master equation describing the intrinsic decoherence
under the Markovian approximations is given by

dρ(t)

dt
= −i[H, ρ(t)] − γ

2
[H, [H, ρ(t)]] (10)

where γ is the intrinsic decoherence parameter. The formal solution of the above
master equation can be expressed as

ρ(t) =
∞∑

k=0

(t)k

k! Mkρ(0)M†k (11)

where ρ(0) is the density operator of the initial state and Mk is defined by

Mk = Hke−i Ht e− t
2 H

2
(12)

The dynamics of a density operator for a system under intrinsic decoherence can be
governed by the formalism given below. For our particular case, we consider the model
consisting of moving N -level atoms interacting with a single-mode cavity field. The
field mode is described by the creation (annihilation) operator â†â and frequency 	 .
The total Hamiltonian ĤTot in the rotating wave approximation for the given system
can be written as [55]

ĤTot = ĤAtom-Field + ĤInt. (13)

Where ĤAtom-Field is the Hamiltonian for the non-interacting atom and field, and
the interaction part is ĤInt. We can define ĤAtom-Field as

ĤAtom-Field =
∑

j

ω j σ̂ j, j + 	â†â, (14)

where σ̂ j , j = | j〉 〈 j | are known as population operators for the j th level. The inter-
action Hamiltonian for the non-resonant case is given by [56,57]

ĤInt =
N∑

s=1

	(t)

[
âe−i�s t σ̂s,s+1 +

(
âe−i�s t σ̂s, s+1

)†
]

. (15)
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Fig. 1 (Colour online) Atomic quantum Fisher information (upper panel) and von Neumann entropy
(lower panel) as a function of time for three-level atomic system for α = 6 and the phase shift estimator
parameter φ = 0 (left panel) and π/4 (right panel). The atomic motion parameter p is neglected

We can define detuning parameter as

�s = 	 + ωs+1 − ωs , (16)

and the coupling constant for atom and field is g, 	(t) represents the shape function
of the cavity field mode [58,59] and the atomic motion is along z-axis. A realization
of particular interest is

	(t) = g sin (pπvt /L) in the presence of atomic motion , p �= 0

	(t) = g in the absence of atomic motion p = 0 (17)

where v denotes the atomic motion velocity and p stands for the number of half
wavelengths of the mode in the cavity and L represents the cavity length in z-direction.
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Fig. 2 (Colour online) Atomic quantum Fisher information (upper panel) and von Neumann entropy
(lower panel) as a function of time for four-level atomic system for α = 6 and the phase shift estimator
parameter φ = 0 (left panel) and π/4 (right panel). The atomic motion parameter p is neglected

Let us now consider the atomic motion velocity as v = λL /T which leads to

	1(t) =
∫ t

0
	(τ)dτ = 1

p
(1 − cos(pπvt/L) for p �= 0 (18)

= gt for p = 0 (19)

In order to find the phase shift parameter as precisely as possible, we consider the
optimal input state as

|�(0)〉Opt = 1√
2
(|1〉 + |0〉) ⊗ |α〉 (20)

where j describes the state of atom and α is the coherent state of the input field as
given below
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Fig. 3 (Colour online) Atomic quantum Fisher information (upper panel) and von Neumann entropy
(lower panel) as a function of time for five-level atomic system for α = 6 and the phase shift estimator
parameter φ = 0 (left panel) and π/4 (right panel). The atomic motion parameter p is neglected

|α〉 =
∞∑

m=0

αm
√
e−|α|2/m!|m〉 (21)

In order to introduce the phase shift parameter φ, we consider a single-atom phase
gate which introduces the phase shift as

Ûφ = |1〉〈1| + eiφ |0〉〈|0|, (22)

|�(0)〉 is obtained from the operation of the single-atom phase gate on |�(0)〉Opt

Ûφ |�(0)〉Opt = |�(0)〉 (23)

= 1√
2
(|1〉 + eiφ |0〉) ⊗ |α〉 (24)
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Fig. 4 (Colour online) Atomic quantum Fisher information (upper panel) and von Neumann entropy
(lower panel) as a function of time for three-level atomic system for α = 6 and the phase shift estimator
parameter φ = 0 (left panel) and π/4 (right panel) in the presence of atomic motion for p = 1

After the phase gate operation, the system will have the interaction with a field. The
precision of the estimation is strongly affected by the characteristics of the interaction
between the field and moving N -level atomic system.

Now, we can write the state |�(0)〉 as

|�(0)〉 = 1√
2
(|1,m + 1〉 + eiφ |0,m〉) (25)

where |1,m+1〉 and |0,m〉 are allowable atom-field states. The state in which number
of photons are consistent with the atomic level are known as allowable atom-field
states. If m photons are present in 0 level than m+1 photons will be present in level 1.

m + 2 with level 1 or 0 is not allowed. It will be allowed with level 2. For our N -level
atomic system, the allowable basis are given by

|0,m〉, |1,m+1〉, |2,m+2〉, ........|N−2, (m+N−2)〉, |N−1, (m+N−1)〉 (26)
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Fig. 5 (Colour online) Atomic quantum Fisher information (upper panel) and von Neumann entropy
(lower panel) as a function of time for four-level atomic system for α = 6 and the phase shift estimator
parameter φ = 0 (left panel) and π/4 (right panel) in the presence of atomic motion for p = 1

where m are number of photons initially present in the cavity and N−1 are the number
of levels in an atom. 0 and N−1 represent the excited and ground state of the atom.

Let us consider the time-independent case, characterized by the transformation
matrix Û (t). The wave function

|�(t)〉 = Û (t) |�(0)〉, (27)

and U (t) is given by

U (t) =
N∑

z=1

exp

(−γ

2
t − Ezt

)
|ϕz(t)〉〈ϕz(t)|, (28)

where |ϕz(t)〉 and Ez(t) are eigenvectors and eigenvalues of the Hamiltonian HInt,
respectively, and γ is the intrinsic decoherence parameter. The quantum Fisher infor-
mation is calculated numerically for the atom-field density matrix given below
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Fig. 6 (Colour online) Atomic quantum Fisher information (upper panel) and von Neumann entropy
(lower panel) as a function of time for five-level atomic system for α = 6 and the phase shift estimator
parameter φ = 0 (left panel) and π/4 (right panel) in the presence of atomic motion for p = 1

ρ̂(t) = Û (t) ρ(0)Û
†
(t) . (29)

Now, the influence of the parameters γ, φ and p on the evolution of the atomic QFI
and von Neumann entropy is presented in the next section.

4 Numerical results and discussions

In this section, we present the main results for the evolution of atomic quantum
Fisher information and von Neumann entropy for N -level atomic system influenced
by intrinsic decoherence. We set the mean photon number n =|α|2 = 36 for our
convenience and the time t has been scaled, i.e. one unit of time is given by the
inverse of the coupling constant g. Our main interest in this case is to investigate
the dynamical behaviour of atomic QFI and von Neumann entropy under intrinsic
decoherence and the phase shift estimator parameter φ in the presence and absence
of the atomic motion. In Fig. 1, we plot the atomic quantum Fisher information and
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Fig. 7 (Colour online) Comparison of intrinsic decoherence on QFI (upper panel) and von Neumann
entropy (lower panel) of a three-level atomic system, b five-level atomic system without atomic motion
for φ = 0

von Neumann entropy for a three-level atomic system as a function of time for α

= 6 and the phase shift estimator parameter φ = 0 and π/4 in the absence of
atomic motion. In Figs. 2 and 3, the atomic quantum Fisher information and von
Neumann entropy for four- and five-level atomic systems are plotted as a function
of time for α = 6 and the phase shift estimator parameter φ = 0 and π/4 in the
absence of atomic motion. It is shown that there is a monotonic relation between
the atomic quantum Fisher information and entanglement in the case of non-moving
atoms. It is seen that the intrinsic decoherence causes the decay of entanglement
and Fisher information of the N -level atomic system. It is also seen that the local
maximum values at the revival time of both QFI and SA decreases gradually dur-
ing the time evolution. The local maximum value at the revival time decreases
more rapidly in case of four- and five-level atoms as compared to the three-level
atoms.
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Fig. 8 (Colour online) Comparison of intrinsic decoherence on QFI (upper panel) and von Neumann
entropy (lower panel) of a three-level atomic system, b five-level atomic system without atomic motion
for φ = π/4

We use the similar approach as adopted in Ref. [60] for our calculations, whereas
Obada and Khalek used the probability amplitude approach to study the atomic quan-
tum Fisher information [61]. When we compare our results with the existing literature,
a correlation between the quantum entanglement and quantum Fisher information is
observed. A decrease in quantum entanglement corresponds to the negative QFI flow
and the positive QFI corresponds to the growth of the quantum entanglement. It is also
seen that the QFI slowly decay to the minimal value and then rise again after long time
similar to Ref. [60]. In this case, the system has a long-time-interval separable state or
in other words the disappearing of entanglement. From this result, it is clear that the
considered case leads to the maximization of QFI during the time evolution. However,
the variations of the QFI correspond to the negative and positive values of QFI flow
within certain intervals of the time. QFI decreases as the time goes on corresponds to
the systematic loss of coherence of the radiation field as discussed in Ref. [62]. The
argument presented by Khalek et al. [62] that the amplitude of QFI due to increase
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Fig. 9 (Colour online) 3D viewgraphs of QFI (left panel) and von Neumann entropy (right panel) for a
five-level atomic system (a, b) with atomic motion (c, d) without atomic motion for γ = 0.01.

of <n> is justified. The same happens due to statistical properties of the Poissonian
photon number distribution of the coherent field.

In Figs. 4, 5 and 6, the atomic quantum Fisher information and von Neumann
entropy for three-, four- and five-level atomic systems are plotted as a function of time
for α = 6 and the phase shift estimator parameter φ = 0 and π/4 in the presence of
atomic motion, i.e. p = 1. We find that the atomic quantum Fisher information and
entanglement exhibit an opposite behaviour during the time evolution in the presence
of atomic motion. It is shown that the atomic motion destroys the monotonic correlation
between QFI and SA. In Figs. 7 and 8, we compare the effect of intrinsic decoherence
on QFI and von Neumann entropy for three- and five-level atomic systems without
atomic motion for φ = 0 and φ = π/4, respectively. It is seen that the evolution of
the entropy is very sensitive to the degree of intrinsic decoherence. Our results show
that the effect of intrinsic decoherence decreases the degree of entanglement between
the atom and the field. In other words, the intrinsic decoherence in the atom-field
interaction suppresses the non-classical effects of the atomic system. Drastic change
has been observed when we increase the value of intrinsic decoherence parameter γ
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from 0.1 to 0.01. The value of entanglement and Fisher information saturate to its
lower level for longer times. A further increase in the value of intrinsic decoherence
leads to sudden death of entanglement.

In Fig. 9, we present 3D viewgraphs of QFI (left panel) and von Neumann entropy
(right panel) for a five-level atomic system (a and b) with atomic motion (c and d) with-
out atomic motion for γ = 0.01. A damping behaviour of entanglement is seen in the
presence of intrinsic decoherence. It can be seen that the damping behaviour of entan-
glement is independent of the system dimensions for larger timescales. The phase shift
parameter is helpful to distinguish the system dimensions in case of higher-dimensional
systems. Furthermore, the periodic behaviour of QFI becomes more prominent for
higher-dimensional systems in the presence of atomic motion.

5 Conclusions

We consider a rather more general approach for quantification of entanglement to
be quantified through von Neumann entropy for N -level atomic system. Different
examples have been investigated in order to study the dynamics of QFI and von
Neumann entropy under intrinsic decoherence for moving and non-moving N -level
atoms such as three-, four- and five-level atomic systems. The QFI and von Neumann
entropy are calculated numerically for all the cases under consideration. The phase
shift estimator parameter, intrinsic decoherence and the atomic motion play a very
important role during the time evolution of the atomic systems. It is shown that there is a
monotonic relation between the atomic quantum Fisher information and entanglement
in the absence of atomic motion. It is seen that the local maximum values at the
revival time of both QFI and SA decrease gradually during its time evolution. The
local maximum value at the revival time decreases more rapidly in case of four-
and five-level atoms as compared to the three-level atoms. The periodic behaviour
of QFI is observed and becomes more prominent for higher-dimensional moving
systems. Furthermore, atomic quantum Fisher information and entanglement exhibit
an opposite behaviour during its time evolution in the presence of atomic motion. It has
also been observed that the atomic motion destroys the monotonic correlation between
QFI and SA. Time evolution of entanglement is found to be very sensitive to the degree
of intrinsic decoherence. Dramatic change takes place in the degree of entanglement
when we increase the value of intrinsic decoherence. Intrinsic decoherence in the
atom-field interaction suppresses the non-classical effects of the atomic systems. The
entanglement and Fisher information saturate to its lower level for longer times at larger
values of intrinsic decoherence. A further increase in the value of intrinsic decoherence
parameter leads to sudden death of entanglement. However, the damping behaviour
of entanglement is independent of the system dimensions for larger timescales.
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