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Abstract Recently, Brodutch and Modi proposed a general method of constructing
meaningful measures of classical and quantum correlations. We systematically apply
this method to obtain geometric classical and quantum correlations based on the Bures
and the trace distances for two-qubit Bell diagonal states. Moreover, we argue that in
general the Brodutch and Modi method may provide non-unique results, and we show
how to modify this method to avoid this issue.
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1 Introduction

In quantum information science, the problem of classification and quantification of
correlations present in quantum states has been widely studied in the last two decades
[1,2]. In this regard, the most significant progress has been made in the case of bipartite
quantum systems which have been studied initially in the entanglement-separability
paradigm that was first formalized by Werner [3]. Within this paradigm, the correla-
tions present in a quantum state can be classified as either classical or quantum, where
the latter ones are identified with entanglement that can be quantified by a variety of
entanglement measures [1].
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However, it has gradually become clear that entanglement cannot be regarded as
the only kind of quantum correlations, because separable quantum states can also have
quantum correlations, other than entanglement, that are responsible for the improve-
ments of some quantum tasks that cannot be simulated by classical methods [4—10].
Therefore, it has become evident that the entanglement-separability paradigm should
be replaced by a new one.

The first step in this direction was taken independently by Ollivier and Zurek who
introduced quantum discord as an information-theoretic measure of quantum correla-
tions beyond entanglement [11] and by Henderson and Vedral who studied the problem
of separation of classical and quantum correlations from an information-theoretic per-
spective [12]. Due to the discovery [13] that quantum discord may be the key resource
in the deterministic quantum computation with one qubit [4], the problem of classifica-
tion and quantification of correlations present in quantum states has been extensively
studied within the information-theoretic paradigm [2].

Because quantum discord cannot be computed analytically even for arbitrary
two-qubit states [2], an alternative approach to classification and quantification of
correlations within the information-theoretic paradigm has been proposed in which
different types of correlations are quantified by a distance from a given quantum state
to the closest state which does not have the desired property [14]. Of course, within
this approach the amount of quantum correlations present in a given quantum state is
determined by the choice of distance measure for quantum states.

The first geometric measure of quantum correlations was geometric quantum dis-
cord in which the Schatten 2-norm has been applied as the distance measure between a
given quantum state and the closest zero discord state to obtain the analytical expres-
sion for geometric quantum discord for a general two-qubit state [15]. Of course,
geometric quantum discord has attracted considerable interest due to its analytic com-
putability for general two-qubit states [2].

However, recently it has been shown that geometric quantum discord cannot be
regarded as a bona fide measure of quantum correlations [16], because of the lack of
contractivity of the Schatten 2-norm under trace-preserving quantum channels [17].
Moreover, it has turned out that among all geometric quantum discords based on the
Schatten p-norms [18] only geometric quantum discord based on the Schatten 1-norm
is a meaningful measure of quantum correlations [17].

The problems with geometric quantum discord have highlighted the need for
a general method of constructing meaningful measures of correlations within the
information-theoretic paradigm.

Recently, Brodutch and Modi [19] proposed a method in which quantum corre-
lations are quantified by a distance between a given multipartite quantum state and
the classical-quantum state emerging from a measurement performed on the consid-
ered state, where the measurement is chosen according to some strategy. Moreover,
within this method classical correlations are quantified by a distance between the
classical-quantum state and the completely separable state resulting from the same
measurement performed on the tensor product of the states of the individual sub-
systems. Furthermore, Brodutch and Modi [19] identified the strategies that provide
meaningful measures of classical and quantum correlations that satisfy the following
necessary conditions: product states have no correlations, all correlations are invariant
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under local unitary operations, all correlations are non-negative, and classical states
have no quantum correlations.

The purpose of this paper is twofold. First, we systematically apply the Brodutch
and Modi method to obtain for the first time geometric classical and quantum cor-
relations based on the Bures distance for two-qubit Bell diagonal states using two
natural strategies for constructing meaningful measures of correlations. Second, we
consider geometric classical and quantum correlations based on the trace distance for
two-qubit Bell diagonal states to show that the Brodutch and Modi method should be
modified as in this case one of two possible strategies results in the non-uniqueness
of geometric classical correlations. Moreover, we show how to modify the Brodutch
and Modi method to avoid the problem of non-unique results in the general case.

2 Geometric classical and quantum correlations based on the Bures
distance

In this section, we systematically apply the Brodutch and Modi method to obtain
geometric classical and quantum correlations based on the Bures distance for two-
qubit Bell diagonal states using two natural strategies for constructing meaningful
measures of correlations.

In the framework of the Brodutch and Modi method [19], quantum and classical
correlations present in a multipartite state p are quantified, respectively, by

O(p) = K[p, M(p)], (D
C(p) = K[M(p), M(mp)], 2

where K[p, t] is a non-negative real-valued function of states p and 7 that vanishes
for t = p, M is a measurement chosen according to some strategy, M (p) is the
classical-quantum state emerging from a measurement M performed on p, M (7)) is
the completely separable state resulting from the same measurement performed on
7, and 7, is the tensor product of the states of the individual subsystems. Moreover,
within this method there are two natural strategies of choosing a measurement M
that provide meaningful measures of quantum and classical correlations present in a
multipartite state p [19]

e M is a non-selective rank-1 projective measurement performed on one subsystem
of the multipartite system in a state p, and M minimizes the quantum correlations
0(p),

e M is a non-selective rank-1 projective measurement performed on one subsystem
of the multipartite system in a state p, and M maximizes the classical correlations

C(p).

One can apply the Brodutch and Modi method to define geometric quantum and
classical correlations present in a multipartite state p by adopting the Bures distance
between states p and t as a function K[p, 7]
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Qg(p) =dp(p, M(p)), 3)
Cp(p) =dp(M(p), M(7p)), “

with dp(p, 1) = 2 —-2/F(p,t) where F(p,7) = (Tr[\//p 13/?])2 is the
Uhlmann fidelity between states p and 7, and the measurement M is chosen according
to one of the above strategies.

A two-qubit Bell diagonal state can be written in the following form [20]

3
1
p:Z(1®I+Zchm®Gm>, (5)

m=1

where [ is the identity matrix, o, are the Pauli matrices and real numbers ¢, fulfill
the following conditions

05%(1—01—02—03)51, (6a)
05%(1—c1+c2+c3)51, (6b)
0=< %(1+61 —cte) =1, (6¢)
0= 30 +eiter— =l (6d)

The above inequalities describe a tetrahedron with vertices (1, 1, —1), (—1, —1, —1),
(1, —1,1), and (—1, 1, 1) representing the Bell states [20]. Thus, there is a one-to-
one correspondence between two-qubit Bell diagonal states and points within the
tetrahedron.

Let us note that if the measurement M, described by a complete set of one-
dimensional orthogonal projectors {I1.}, is performed on the first qubit of the
two-qubit system in a Bell diagonal state, then the classical-quantum state M (p)
and the completely separable state M (r,,) have the form

M(p)= Y (Mu®Dp,&D), (7
m=-+,—
1
M(rp) = U ®1D), ®)

where I1+ = %(1 +n-0),n = (n1,ny,ns) is a real three-dimensional unit vector
and 0 = (01, 02, 03).

To determine geometric classical and quantum correlations based on the Bures
distance for two-qubit Bell diagonal states, we first need to find the Uhlmann fidelity
between states p and M (p) and then the Uhlmann fidelity between states M (p) and
M (). One can show that in the case of two-qubit Bell diagonal states and the
measurement M described by {I1.+}, the Uhlmann fidelity between states p and M (p)
is given by
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4 2
F(p, M(p)) = (Z \/T) : ©)
i=1

where coefficients A;, being the eigenvalues of operator A = ,/p M(p)./p, are the
solutions of the characteristic equation

Mtas A+l +a A+ =0, (10)
with
a3 = —Tr(A), (11a)
1 2 1 2
ay = —ETr(A ) + E(TF(A)) ) (11b)
1 3 1 2 1 3
a1 = =3 Tr(A%) + STr(A) Tr(A%) — <(Tr(A))*, (11¢)
ap = Det(A). (11d)

Although the coefficients A; can be computed analytically, we do not report them here
as the explicit expressions are too cumbersome. One can also show that in the case
of two-qubit Bell diagonal states and the measurement M described by {I1.+}, the
Uhlmann fidelity between states M (p) and M (r,,) is given by

1
F(M(p), M(mp)) = 5(1 ~|—\/1 —c%n%—c%n%—c%n%). (12)

The analytic expressions for F(M(p), M(x,)) and F(p, M(p)) make it possible to
obtain geometric classical and quantum correlations based on the Bures distance for
two-qubit Bell diagonal states under the two natural strategies of choosing the mea-
surement M.

2.1 Strategy 1

In the framework of the first strategy, for a given two-qubit Bell diagonal state (5) we
first identify the measurements M that minimize the geometric quantum correlations
(3) and then we use these optimal measurements to compute the geometric classical
correlations (4). In other words, for a given point (c1, c2, c3) of tetrahedron (6) we
first identify unit vectors (n1, ny, n3) that maximize the fidelity (9) and then we use
these optimal vectors to compute the fidelity (12).

It can be shown that under this strategy
o if ci2 = c? = c,% where i # j # k, then all measurements M are optimal, and
geometric quantum and classical correlations are given by
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05(p) = /2 =2/ w, (13a)
Cp(p) = \/2—\/2+2 (13b)

< c,% where i # j # k, then only measurements M with nl2 = n3 =0

e 2 2
o1fcl- =c5

and n,% = 1 are optimal, and geometric quantum and classical correlations are
given by Eqgs. (13),

o if cl.2 < c? = c,% where i # j # k, then only measurements M with nf = (0 and
n? + ni = 1 are optimal, and geometric quantum and classical correlations are
given by Eqgs. (13),

o if cl.2 < c? < c,% where i # j # k, then only measurements M with nl2 = n% =0

and n,% = 1 are optimal, and geometric quantum and classical correlations are

given by Eqgs. (13),

where coefficients wy, wy and w3 have the following form

1
wi =B(\/(1_cl)(1_cl —cr—c3) +y/(I—en —cp+ca+e3)

+ VA +e)(+er—cr+e3)+/A+e)d +e +62—C3)>2, (14a)

1
wy = (V- —a-a-a+/I+a)l—atate)

2
+ \/(1—c2)(1+cl—Cz-l—cg)—i-\/(l-l-cz)(l-l-cl+Cz—63)) . (14b)

1
wy = o (V= =i —ca —e) + /T + ) —er + 2 +c5)

2
+ Vit i+a—a+ra+/I-al+ata—c) . (d)

The above results show that geometric classical and quantum correlations based on
the Bures distance for two-qubit Bell diagonal states are uniquely determined under
the first strategy, despite the fact that for a wide class of two-qubit Bell diagonal
states we have more than one optimal measurement A/ which means that for those
states the classical-quantum state M (p) cannot be uniquely determined. Therefore, in
general non-uniqueness of M (p) does not necessarily imply non-uniqueness of geo-
metric classical correlations under the first strategy. In the next section, we show that
non-uniqueness of M (p) may, however, imply non-uniqueness of geometric classical
correlations under this strategy.

Let us note here that the problem of identification of unit vectors (n1, na, n3) max-
imizing the fidelity (9) for a given point (cy, c2, ¢3) of tetrahedron (6) is closely
related to the problem of finding classical-quantum states y, that maximize the fidelity
F(p, xp). This problem has been studied in the literature [21,22] in the context of the
Bures geometric quantum discord in which the Bures distance was applied as the dis-
tance measure between a given quantum state and the closest classical-quantum state.
Interestingly, in general the Bures geometric quantum discord Dp(p) [23] is less than
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or equal to geometric quantum correlations based on the Bures distance under the first
strategy Qp(p), i.e., Dp(p) < Qp(p), since M(p) is always a classical-quantum
state for a bipartite state p [24]. Of course, the relation Dp(p) < Qp(p) holds in the
case of two-qubit Bell diagonal states as one can verify taking into account our results
regarding Q p(p) and those found in the literature regarding Dp(p) [23]. Moreover,
one can show that this inequality becomes an equality if and only if p = M(p) for
optimal measurement M or p is a mixture of two Bell states. It is also worth noting that
considering the Bures geometric quantum discord for two-qubit Bell diagonal states
one cannot uniquely determine the closest classical-quantum state for a wide class of
two-qubit Bell diagonal states [22]. More precisely, it can be done uniquely if and
only if a two-qubit Bell diagonal state is represented by the point (cy, ¢z, ¢3) being
interior point of tetrahedron (6) and the index k such that c,% = max(c%, c%, c%) is
uniquely given. For comparison, in the case of geometric quantum correlations based
on the Bures distance under the first strategy the classical-quantum state M (p) can be
uniquely determined if and only if a two-qubit Bell diagonal state is represented by
the point (cy, c2, ¢3) of tetrahedron (6) and the index k such that c,% = max(c%, c%, c%)
is uniquely given, as it was shown above. Moreover, it is worth noting that an alter-
native approach to geometric classical correlations based on the Bures distance under
the first strategy has been considered in the literature [23]. The classical correlations
measure based on the Bures distance introduced in [23] can be computed analytically
for two-qubit Bell diagonal states, like geometric classical correlations based on the
Bures distance under the first strategy. However, it can be shown that they are not
directly comparable measures of classical correlations, because unlike for Dg(p) and
Qg (p) for which the relation Dp(p) < Qp(p) holds, a similar relation, valid for all
two-qubit Bell diagonal states, cannot be established between these two measures of
classical correlations.

2.2 Strategy 2

In the framework of the second strategy, for a given two-qubit Bell diagonal state (5) we
first identify the measurements M that maximize the geometric classical correlations
(4) and then we use these optimal measurements to compute the geometric quantum
correlations (3). In other words, for a given point (c1, ¢z, c3) of tetrahedron (6) we
first identify unit vectors (n1, ny, n3) that minimize the fidelity (12) and then we use
these optimal vectors to compute the fidelity (9).

It can be shown that under this strategy

o if cl.2 = c? = c,% where i # j # k, then all measurements M are optimal, and

geometric quantum and classical correlations are given by

05(p) = /2 = 2wy, (15a)

CB(p)=\/2—,/2+2,/1—c,§, (15b)
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? < c,% where i # j # k, then only measurements M with nl2 = n? =0
and n,% = 1 are optimal, and geometric quantum and classical correlations are
given by Eqgs. (15),

o if cl.2 < c? = c,% where i # j # k, then only measurements M with ”12 = 0 and

o ifct=c

n? + n% = 1 are optimal, and geometric quantum and classical correlations are
given by Eqgs. (15),
2

o if cl.2 <cj < c,% where i # j # k, then only measurements M with ”12 = n? =0

and n,% = 1 are optimal, and geometric quantum and classical correlations are
given by Eqgs. (15),

where coefficients w1, wy and w3 are given by Eqgs. (14). The above results show that
geometric classical and quantum correlations based on the Bures distance for two-qubit
Bell diagonal states are also uniquely determined under the second strategy, despite
the fact that for a wide class of two-qubit Bell diagonal states we have more than
one optimal measurement M which means that for those states the classical-quantum
state M (p) cannot be uniquely determined. Therefore, in general non-uniqueness of
M (p) does not necessarily imply non-uniqueness of geometric quantum correlations
under the second strategy. Remarkably, the both strategies provide the same results
with regard to the geometric classical and quantum correlations based on the Bures
distance and the optimal measurements M.

3 Geometric classical and quantum correlations based on the trace
distance

In this section, we consider geometric classical and quantum correlations based on the
trace distance, induced by the Schatten 1-norm, for two-qubit Bell diagonal states to
show that the Brodutch and Modi method should be modified as in this case one of two
possible strategies results in the non-uniqueness of geometric classical correlations.
Moreover, we show how to modify the Brodutch and Modi method to avoid the non-
unique results in the general case.

One can apply the Brodutch and Modi method to define geometric quantum and
classical correlations present in a multipartite state p by adopting the Schatten 1-norm
of an operator p — t as a function K[p, 7]

Qr(p) =dr(p, M(p)), (16)
Cr(p) =dr(M(p), M(mp)), A7)

with dr(p, T) = ||p — t||1 where ||X]||; = Tr[v X7 X], and the measurement M is
chosen according to one of the above strategies.

It is worth noting here that if p is a bipartite state and the measurement M is chosen
according to the first strategy, then the geometric quantum correlations (16) coincide
with the trace distance geometric quantum discord introduced in [17] if and only if the
measured subsystem is a qubit [25]. Although the trace distance geometric quantum
discord was evaluated explicitly for two-qubit Bell diagonal states [17,25,26], for
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these states all optimal measurements M and in consequence all classical-quantum
states M (p) have not yet been identified.

It can be shown that in the case of two-qubit Bell diagonal states and the mea-
surement M described by {I11} the Schatten 1-norm of operators p — M(p) and
M(p) — M(m,) is given by

1
llo =M@l = 5 (cF 4+ + ¢ = clnf = 3nd — 3n3

1N 2
2
-2 (c‘%cgn% + C%C%n% + C%C%n%) >

1
2, 2,2 22 22 272
+ _<C1 +¢; + ¢35 —cin] — c;n; — c3n3

2
1
% 2
+2 (c%c%n% + cfeind + c%c%n%) ) , (18)
1
IM(p) — M(m,)|l1 = (c%n% +c§n§+c§n§)2. (19)

The explicit expressions for |[|[M (p) — M (7,)||1 and ||p — M (p)||1 make it possible
to obtain geometric classical and quantum correlations for two-qubit Bell diagonal
states under the two natural strategies of choosing the measurement M.

3.1 Strategy 1

In the framework of the first strategy, for a given two-qubit Bell diagonal state (5) we
first identify the measurements M that minimize the geometric quantum correlations
(16) and then we use these optimal measurements to compute the geometric classical
correlations (17). In other words, for a given point (cy, 2, c3) of tetrahedron (6) we first
identify unit vectors (n1, np, n3) that minimize ||p — M (p)||; given by Eq. (18) and
then we use these optimal vectors to compute ||M (p) — M (7,)||1 given by Eq. (19).
It can be shown that under this strategy
2

o if 01‘2 =c; = c,% where i # j # k, then all measurements M are optimal, and

geometric quantum and classical correlations are given by

Qr(p) = Icjl, (20a)
Cr(p) = lexl, (20b)

o if cl.2 = c? < c,% where i # j # k, then only measurements M with ”12 = n? =0

and n,% = 1 are optimal, and geometric quantum and classical correlations are
given by Eqgs. (20),
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Fig.1 (Color online) The Schatten 1-norm of operators p — M (p) and M (p) — M (7)) as a function of n;
for two-qubit Bell diagonal state with ¢; = 1/5, ¢y = 1/4 and c3 = 1/4 (the third case of the first strategy).
For this state, all measurements M are optimal and ||[M (p) — M (1p)||1 cannot be uniquely determined

o if cl.2 < c? = c,% where i # j # k, then all measurements M are optimal, and

geometric quantum and classical correlations are given by (see Fig. 1)

or(p) = lcjl, (21a)
Cr(p) = \/c} + (¢} — chHn?, (21b)
2

o if cl.2 <¢ < c,% where i # j # k, then only measurements M with 0 < ”12 <

(c? — cl.z) / (c,% — ciz), n? = 0and n% =1- ”12 are optimal, and geometric quantum

and classical correlations are given by (see Fig. 2)

Qr(p) = Icjl, (22a)

Cr(p) = /ci + (¢} — chn?. (22b)

The above results show that for a wide class of two-qubit Bell diagonal states we have
more than one optimal measurement M which means that for those states the classical-
quantum state M (p) and in consequence ||M(p) — M(7,)||1 cannot be uniquely
determined, contrary to recent claims made in [17,26] where for a given Bell diagonal
state only one optimal measurement M has been identified. In other words, the above
results show explicitly that in the framework of the first strategy of choosing mea-
surement M the non-uniqueness of M (p) implies the non-uniqueness of geometric
classical correlations based on the trace distance for a wide class of two-qubit Bell
diagonal states. The first explicit example of such ambiguities was given in [27] where
a different method of constructing meaningful measures of correlations based on their
independency was proposed to avoid this problem.

Let us note that the Broduch and Modi method can always result in uniquely
determined measures of classical correlations under the first strategy of choosing
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Fig. 2 (Color online) The Schatten 1-norm of operators p — M(p) and M (p) — M (7)) as a function of
n1 for two-qubit Bell diagonal state with ¢y = 0, co = 1/4 and ¢3 = 1/2 (the fourth case of the first
strategy). For this state, only measurements M with 0 < n% < 1/4, n% = 0and n% =1 — n7 are optimal
and [|[M(p) — M (7p)||1 cannot be uniquely determined

measurement M, provided that we modify this strategy in the following way. If the
classical correlations C(p) are not uniquely determined by the minimization pro-
cedure, then the classical correlations C(p) are additionally maximized over the all
measurements M that minimizes the quantum correlations Q (p). Interestingly, a simi-
lar way of determining classical correlations was proposed in [23] where an alternative
approach to geometric classical and quantum correlations based on the Bures distance
was considered in the case of two-qubit Bell diagonal states.
It is worth noting here that under the modified version of the first strategy

o if 01‘2 = c? = c,% where i # j # k, then all measurements M are optimal, and
geometric quantum and classical correlations are given by

Or(p) = |cjl, (23a)
Cr(p) = lckl, (23b)

o if Ci2 = c? < c,% where i # j # k, then only measurements M with nl2 = n3 =0
and n,% = 1 are optimal, and geometric quantum and classical correlations are
given by Egs. (23),

o if cl.2 < c? = c,% where i # j # k, then only measurements M with ”12 = 0 and
n? + n% = 1 are optimal, and geometric quantum and classical correlations are
given by Eqgs. (23),

o if cl.2 < c? < c,% where i # j # k, then only measurements M with ”12 = n? =0
and n,% = 1 are optimal, and geometric quantum and classical correlations are

given by Eqgs. (23).
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3.2 Strategy 2

In the framework of the second strategy, for a given two-qubit Bell diagonal state (5) we
first identify the measurements M that maximize the geometric classical correlations
(17) and then we use these optimal measurements to compute the geometric quantum
correlations (16). In other words, for a given point (cy, ¢, ¢3) of tetrahedron (6) we
first identify unit vectors (n1, n2, n3) that maximize |[M(p) — M(,)||1 given by
Eq. (19) and then we use these optimal vectors to compute ||[p — M (p)||1 given by

Eq. (18).
It can be shown that under this strategy
o if cl.2 = c? = c,% where i # j # k, then all measurements M are optimal, and

geometric quantum and classical correlations are given by

Qr(p) = Icjl, (242)
Cr(p) = lexl, (24b)
2

o if cl.2 =cj < c,% where i # j # k, then only measurements M with ”12 = n? =0

and n,% = 1 are optimal, and geometric quantum and classical correlations are
given by Eqgs. (24),

o if cl.2 < c? = c,% where i # j # k, then only measurements M with ”,2 = 0 and

n% + n% = 1 are optimal, and geometric quantum and classical correlations are

given by Eqs. (24),

o if Ci2 < c? < c,% where i # j # k, then only measurements M with nl2 = n? =0
and n,% = 1 are optimal, and geometric quantum and classical correlations are
given by Eqs. (24).

The above results show that both [|M (p) — M (7,)||1 and ||p — M (p)|] are uniquely

determined, despite the fact that for a wide class of two-qubit Bell diagonal states we

have more than one optimal measurement M. Moreover, it is worth noting here that
the above expressions for classical and geometric quantum correlations based on the
trace distance remarkably coincide with those one can obtain in the framework of the

modified version of the first strategy of choosing measurement M.

The question whether the Brodutch and Modi method always results in uniquely
determined measures of quantum correlations under the second strategy of choosing
measurement M remains open for the future research. However, if the answer will be
negative, then the second strategy of choosing measurement M should be modified
in the following way. If the quantum correlations Q(p) are not uniquely determined
by the maximization procedure, then the quantum correlations Q(p) are additionally
minimized over the all measurements M that maximizes the classical correlations

C(p).

4 Conclusions

In the framework of the Brodutch and Modi method, quantum correlations are quanti-
fied by a distance between a given multipartite state p and the classical-quantum state
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M (p) emerging from a measurement M performed on the considered state. How-
ever, classical correlations are quantified by a distance between the post-measurement
classical-quantum state M (p) and the completely separable state M (i) resulting
from the same measurement performed on the tensor product of the states of the indi-
vidual subsystems. Within this method, there are two natural strategies of choosing
a measurement M that provide meaningful measures of classical and quantum cor-
relations present in a multipartite state p. In both strategies, M is a non-selective
projective measurement performed on one subsystem of the multipartite system in a
state p. However, the measurement M minimizes quantum correlations according to
the first strategy, and it maximizes classical correlations according to the second one.

In this work, we have applied the Brodutch and Modi method to obtain for the first
time geometric classical and quantum correlations based on the Bures distance under
the two natural strategies of choosing the measurement M performed on the first qubit
of the two-qubit system in a Bell diagonal state. Under the first strategy, we first identi-
fied the measurements M that minimize the geometric quantum correlations and then
we used these optimal measurements to compute the geometric classical correlations,
while under the second one, we first identified the measurements M that maximize
the geometric classical correlations and then we used these optimal measurements to
compute the geometric quantum correlations. For the both strategies, we have identi-
fied not only all optimal measurements M but also all two-qubit Bell diagonal states
for which there exists more than one optimal measurement M. However, the non-
uniqueness of M (p) does not affect the geometric classical and quantum correlations
for the first and the second strategy, respectively. Remarkably, it turned out that the
both strategies provide the same results with regard to the geometric classical and
quantum correlations and the optimal measurements.

Moreover, we have shown that the Brodutch and Modi method should be modified
as in general it may provide non-unique results. As an explicit example, we have
applied the Brodutch and Modi method to obtain geometric classical and quantum
correlations based on the trace distance under the two natural strategies of choosing
the measurement M performed on the first qubit of the two-qubit system in a Bell
diagonal state. For the both strategies, we have computed the geometric classical and
quantum correlations, although the geometric quantum correlations under the first
strategy had been studied in the literature. Moreover, for the both strategies, we have
identified not only all optimal measurements M but also all two-qubit Bell diagonal
states for which there exists more than one optimal measurement M. Remarkably, it
turned out that for the first strategy the non-uniqueness of M (p) results in the non-
uniqueness of geometric classical correlations, and therefore, the Brodutch and Modi
method should be modified. Finally, we have shown how to modify the Brodutch and
Modi method to avoid the problem of non-unique results with regard to classical and
quantum correlations in the general case.
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