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Abstract Constacyclic BCH codes have been widely studied in the literature and
have been used to construct quantum codes in latest years. However, for the class
of quantum codes of length n = q2m + 1 over Fq2 with q an odd prime power,
there are only the ones of distance δ ≤ 2q2 are obtained in the literature. In this
paper, by a detailed analysis of properties of q2-ary cyclotomic cosets, maximum
designed distance δmax of a class of Hermitian dual-containing constacyclic BCH
codes with length n = q2m + 1 are determined, this class of constacyclic codes
has some characteristic analog to that of primitive BCH codes over Fq2 . Then we
can obtain a sequence of dual-containing constacyclic codes of designed distances
2q2 < δ ≤ δmax. Consequently, new quantum codes with distance d > 2q2 can
be constructed from these dual-containing codes via Hermitian Construction. These
newly obtained quantum codes have better code rate compared with those constructed
from primitive BCH codes.

Keywords Negacyclic code · Constacyclic code · Quantum code · Cyclotomic coset

1 Introduction

The theory of quantum error-correcting codes (QECCs, for short) has been extensively
studied in the literature, see [1–11]. The most widely studied class of quantum codes
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are stabilizer codes, which can be constructed from classical codes over finite fields
Fq or Fq2 with certain self-orthogonal properties [3,4,8–10].

As in the classical case, construction of quantum codes from classical codes with
special structure has become a central topic for quantum codes in the past decades,
see [12–25]. Many classes of quantum codes have been constructed by using cyclic
codes, BCH codes, negacyclic codes, and constacyclic codes [12–25]. The following
theorem is one of the most frequently used construction methods.

Theorem 1.1 ([8,9] Hermitian Construction) If there is a classic linear code C =
[n, k, d]q2 over Fq2 such that C⊥h ⊆ C, then there exists a q-ary [[n, 2k − n,≥ d]]q
quantum code, where C⊥h is the Hermitian dual code of C.

To obtain q-ary quantum codes by the Hermitian construction, Theorem 1.1 implies
that one only need to find linear codes C over Fq2 such that C⊥h ⊆ C. From this
idea, in [14,15], Aly et.al studied Hermitian dual-containing BCH codes, presented
necessary and sufficient conditions for Hermitian dual-containing BCH codes by their
designed distances, and constructed many q-ary quantum BCH codes. The necessary
and sufficient conditions for a primitive narrow-sense BCH code over Fq2 contain its
Hermitian dual which are as follows:

Theorem 1.2 ([14] Theorem 4) A primitive, narrow-sense BCH code of length q2m-
1 over Fq2 , where m �= 2, contains its Hermitian dual code if and only if its designed
distance δ satisfies δ ≤ δmax = qm+[m even]−1−(q2−2)[m even], where [m even] =
1 if m is even and [m even] = 0 if m is odd.

For m = 2, the maximal designed distance δmax of primitive, narrow-sense BCH
code of length q2m- 1 over Fq2 was determined by Li et al. in [18].

Proposition 1.3 ([18] Theorem 3.2) A primitive, narrow-sense BCH code of length
q4-1 over Fq2 contains its Hermitian dual code if and only if its designed distance δ

satisfies δ ≤ δmax = q3 − q2 + q − 1.

The class of constacyclic codes, which contains the well-known class of cyclic and
negacyclic codes, has been investigated in the literature [19–29]. A class of consta-
cyclic codes called constacyclic BCH codes in [23], which is analog to cyclic BCH
codes, have some properties similar to that of BCH code, see [21–25]. In [22], Chen
et.al. presented elementary number-theoretic conditions for the existence of dual-
containing constacyclic codes; for more details, see Theorem 2.11 and Theorem 2.12
in [22].

In [19] and [21], for odd q ≡ 1(mod 4) and q ≡ 3(mod 4), the authors,
respectively, showed that some negacyclic codes (special constacyclic BCH codes)
and constacyclic BCH codes of length n = q2m + 1 over Fq2 with designed distance
δ ≤ 2q2 are Hermitian dual-containing codes, their results are as follows:

Theorem 1.4 ([19] Lemma 3.7) Assume that q ≡ 1(mod 4). Let n = q2m + 1 where
m ≥ 2, and let s = n/2. If C is a negacyclic code over Fq2 of length n with define set
Z = Cs−2l ∪Cs−2(l−1) ∪ · · · ∪Cs−2 ∪Cs, where 1 ≤ l ≤ q2 − 1, then C contains its
Hermitian dual code.
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Theorem 1.5 ([21] Lemma 3.4) Assume that q ≡ 3(mod 4). Let n = q2m + 1 where
m ≥ 2, and let s = n/2. If C is a constacyclic code over Fq2 of length n with define
set Z = Cs−(q+1)l ∪Cs−(q+1)(l−1) ∪ · · · ∪Cs−(q+1) ∪Cs where 1 ≤ l ≤ q2 − 1, then
C contains its Hermitian dual code.

Inspired by these latter works, in this paper, we discuss a class of Hermitian dual-
containing constacyclic BCH codes of length n = q2m + 1 over the finite field Fq2 ,
where q is an odd prime power. We will show that one can also deduce from the design
parameters whether or not a class constacyclic BCH code contains its Hermitian dual
code. Our results on designed distance for Hermitian dual-containing constacyclic
BCH codes present analog results for that of primitive BCH codes in [14] and gen-
eralize the above Theorems 1.4 and 1.5. Then we make some observations about
cyclotomic cosets in the defining set of Hermitian dual-containing constacyclic BCH
codes and exactly determine the dimensions of these Hermitian dual-containing codes.
Based on the above results, we derive new quantum codes from these constacyclic BCH
codes. These quantum codes have good parameters compared with the ones available
in the literature.

This paper is organized as follows. In Sect. 2, basic concepts on q2-cyclotomic
cosets and η-constacyclic codes are reviewed. In Sect. 3, some useful properties of
q2-ary cyclotomic coset modulo rn will be given. For r = 2 and q + 1, the maximum
designed distances of Hermitian dual-containing negacyclic and constacyclic codes
are determined. In Sect. 4, new quantum negacyclic and constacyclic codes are con-
structed. In Sect. 5, some new quantum codes are exhibited, and the parameters of the
constructed quantum codes are compared with the ones available in the literature, and
the final remarks are drawn.

2 Preliminaries

In this section, we introduce some basic knowledge on Hermitian dual-containing
codes, η-constacyclic codes, and cyclotomic cosets for the purpose of this paper. For
more details, see [27–30].

Let q be a power of an odd prime, Fq2 denote the finite field with q2 elements, and
F∗
q2 be the multiplicative group of Fq2 . For any α ∈ Fq2 , the conjugation of α is denoted

by α = αq . Given two vectors x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) ∈ Fn
q2 ,

their Hermitian inner product is defined as

(x, y)h =
∑

xi yi = x1y1 + x2y2 + · · · + xn yn .

For a linear code C over Fq2 of length n, the Hermitian dual code of C is denoted
as C⊥h , where C⊥h is defined as

C⊥h = {x ∈ Fn
q2 |(x, y)h = 0,∀y ∈ C}.

If C⊥h ⊆ C, then C is called a Hermitian dual-containing code, and C⊥h is called a
Hermitian self-orthogonal code.
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For any vector (c0, c1, · · · , cn−1) ∈ Fn
q2 and a nonzero element η ∈ Fq2 , an η-

constacyclic shift τη on Fn
q2 is the shift

τη(c0, c1, · · · , cn−1) = (ηcn−1, c0, · · · , cn−2).

A q2-ary linear code C of length n is called η-constacyclic if it is invariant under the η-
constacyclic shift τη on Fn

q2 . When η = 1 , η-constacyclic codes are cyclic codes, and
when η = −1, η-constacyclic codes are negacyclic codes. For an η-constacyclic code
C, each codeword c = (c0, c1, · · · , cn−1) is customarily represented in its polynomial
form: c(x) = c0 + c1x + · · · + cn−1xn−1, and the code C is in turn identified with the
set of all polynomial representations of its codewords.

From [19,20,26,27], we know a linear code C of length n over Fq2 is η-constacyclic
if and only if C is an ideal of the quotient ring Rn = Fq [x]/(xn − η), and xc(x)
corresponds to an η-constacyclic shift of c(x) in the ring Rn . It follows that C is
generated by monic factor of (xn − η), i.e., C = 〈g(x)〉 and g(x)|(xn − η). The
g(x) is called the generator polynomial of C. The dimension of C is n − k, where
k = deg(g(x)). It can be verified that the Hermitian dual C⊥h of an η-constacyclic
code C over Fq2 is an η̄−1-constacyclic code [19,20].

Let ω be a primitive element of Fq2 , we assume gcd(n, q) = 1 and take η = ωυ(q−1)

for some υ ∈ {0, 1, . . . , q}. In this case, we have ηη̄ = 1, so the Hermitian dual C⊥h

of an η-constacyclic code over Fq2 is η-constacyclic. In particular, if υ = 0, the class
of η-constacyclic codes is cyclic codes; if q is an odd prime power and υ = (q+1)/2,
the class of η-constacyclic codes is negacyclic codes. As ηq+1 = 1, the order r of
η in F∗

q2 is equal to q+1
gcd(υ,q+1)

. Let ζ be a primitive rn-th root of unity in some

extension field of Fq2 such that ζ n = η. Let ξ = ζ r . Then ξ is a primitive n-th root
of unity. It follows that the roots of xn − η are ζ ξ j = ζ 1+ jr for 0 ≤ j ≤ n − 1. Set

 = 
r,n = {1 + jr |0 ≤ j ≤ n − 1}. The defining set T of a constacyclic code
C = 〈g(x)〉 of length n is the set T = { j ∈ 
 | ζ j is a root of g(x)}. For each i ∈ 
,
let Ci = {i, iq2, i(q2)2, ..., i(q2)k−1}(mod rn), where k is the smallest positive
integer such that (q2)ki ≡ i(mod rn), Ci is called the q2-cyclotomic coset modulo rn
containing i . It is easy to see that the defining set T is a union of some q2-cyclotomic
cosets modulo rn (see [20,27]).

The minimal polynomial of ζ j over Fq2 is denoted by M ( j)(x), and it is given by
M ( j)(x) = ∏

i∈C j
(x − ζ i ). Now one can give the concept of η-constacyclic BCH

(CBCH, for short) codes.

Definition 2.1 Let q be a prime power with gcd(n, q) = 1. Let ζ be a primitive rn-th
root of unity in Fq2 . For some b = 1 + ri , we have

g(x) = lcm{M (b)(x), M (b+r)(x), · · · , M (b+(δ−2)r)(x)},

i.e., g(x) is the monic polynomial of smallest degree over Fq2 having ζ b, ζ b+r , · · · ,

ζ b+(δ−2)r as zeros. An η-constacyclic code C = 〈g(x)〉 of length n over Fq2 is a CBCH
code with designed distance δ.
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From Definition 2.1, it follows that an η-constacyclic code C = 〈g(x)〉 is a CBCH

code if and only if its defining set T =
b+δ−2⋃
i=b

Cs+ir with designed distance δ.

Similar to cyclic codes, there exists the following BCH bound for η-constacyclic
codes (see [26,27]). According to this lemma, a CBCH code of designed distance δ

has minimum distance d ≥ δ.

Lemma 2.1 (The BCH bound for η-constacyclic codes) Let C be a q2-ary η-
constacyclic code of length n with generator polynomial g(x). If g(x) has the elements
{β1+ri |0 ≤ i ≤ δ − 2} as the roots, where β is a primitive rn-th root of unity, then the
minimum distance d of code C is at least δ.

It is well known that there is a close relation between cyclotomic cosets and
cyclic codes, see [28–32]. The definitions of symmetric coset and asymmetric coset
pairs for 2-cyclotomic cosets were first given in [32] to characterize binary cyclic
self-dual codes, and were generalized further in [17,18] to characterize q2-ary Her-
mitian self-orthogonal cyclic codes. Now we give definition for skew-symmetric
property of cyclotomic cosets. For each i ∈ 
, let Ci be the q2-cyclotomic coset
modulo rn containing i . A cyclotomic coset Ci is called skew symmetric if −qi
(mod rn) ∈ Ci , otherwise skew asymmetric. Skew-asymmetric cosets Ci and C−qi

come in pair, we use (Ci ,C−qi ) to denote such a skew-asymmetric pair (SAP,
for short). In [20] Lemma 2.2, Kai et.al have shown that an η-constacyclic code C
with defining set T contains its Hermitian dual if and only if T ∩ T−q = ∅, where
T−q = {−qi(mod rn) | i ∈ T }. Using terminology of symmetric coset and asym-
metric cosets pair, an equivalent statement can be given as in Lemma 2.2 [17]. We list
these two equivalent statement as the following lemma for later use.

Lemma 2.2 If C is an η-constacyclic code of length n over Fq2 with defining set T ,
then C⊥h ⊆ C if and only if one of the following holds:

(1) T ∩ T−q = ∅, where T−q = {−qi mod rn | i ∈ T }.
(2) For each i ∈ T , Ci is a skew-asymmetric coset; if j ∈ T and j /∈ Ci , then C j

and Ci cannot form a skew-asymmetric cosets pair.

Notations: (1) To save space and simplify statements of the following two sections,
we use [1, n−1] to denote the set {1, 2, ..., n−1}, and call the set {e, e+1, , ..., f −1, f }
as interval [e, f ].

(2) From now on till the end of this paper, we assume that q is an odd prime power,
for given m ≥ 2, let n = n(q,m) = q2m + 1 and s = n

2 . If q ≡ 1(mod 4), we
set r = 2, and if q ≡ 3(mod 4), we set r = q + 1. Let η be an r th root of unity,
for j ∈ 
r,n , the q2-cyclotomic cosets modulo rn containing j is denoted as C j . For
Ti = Cs ∪ Cs+r ∪ Cs+2r ∪ · · · ∪ Cs+ir , we denote Ti = T<s,s+ir>. We define

δmax = δmax(n) =
⎧
⎨

⎩

q3 − q2 + q + 1 if m = 2;
qm+1 − q2 + 2 if m = 2l ≥ 4;
qm + 1 if m = 2l + 1 ≥ 3.

Theorem 2.3 Let q,m, n, s and δmax be given as above. If 0 ≤ i ≤ δmax−2
2 , then

Cs = {s} and Cs−ir = Cs+ir .

123



66 Page 6 of 16 Y. liu et al.

Proof Since sq2 = s(q2 − 1) + s = (q+1)(q−1)n
2 + s ≡ s(mod rn), obviously,

Cs = {s}. Further, we can infer s ≡ sq2 · · · ≡ sq2(m−1) ≡ sq2m(mod rn). It follows
that (s + ir)q2m ≡ s + irq2m ≡ s − ir(mod rn), so s − ir ∈ Cs+ir . Thus, the
theorem holds.

By Theorem 2.3, it is obvious that

Ti = Cs−ir · · · ∪ Cs−r ∪ Cs · · · ∪ Cs−ir =
i⋃

j=−i

Cs+ jr .

Since Cs−(i+1)r may be contained by Ti for some i ≤ δmax−2
2 (for details, see Sect. 4),

combining the BCH bound for η-constacyclic codes, it follows that the designed
distance δi of a CBCH code with defining set Ti is greater than or equal to 2i + 2. We
will use C(n, q2; δi ) to denote such a code in the rest of this paper. It will be shown
that these CBCH codes are Hermitian dual-containing, and parameters of them will
be presented in the following sections. ��

3 Hermitian dual-containing condition of CBCH codes

Since the q2-cyclotomic coset is the core tool by which we study Hermitian dual-
containing condition and exactly calculate dimensions of codes below, some useful
properties of cyclotomic coset will be firstly given in this section.

Lemma 3.1 Let q, n, s, r be given above. If h ≡ 0(mod 2) and h ≥ 2, then sqh ≡
s(mod rn); if h ≡ 1(mod 2), then sqh ≡ (r − 1)s(mod rn).

Proof If h = 2l, then (q2 − 1)|(qh − 1) and 2(q + 1)|(qh − 1). Hence s(qh − 1) =
n(q + 1)a ≡ 0(mod rn) for some integer a, and qhs ≡ s(mod rn) holds.

If h = 2l + 1, we have sq2l+1 = q × sq2l ≡ qs ≡ [(q + 1) − 1]s(mod rn).

When q ≡ 3(mod 4), then r = q + 1, we get

sq2l+1 = [(q + 1) − 1]sq2l(mod rn) ≡ (r − 1)s(mod rn).

When q ≡ 1(mod 4) and r = 2, let q = 4u + 1. Then we have

sq2l+1 ≡ [(q + 1) − 1]s(mod 2n) = [(4u + 2) − 1]s ≡ (2 − 1)s(mod 2n).

The desired conclusion then follows from the discussion.
By Lemma 3.1, we can further obtain the following Theorem 3.2. ��

Theorem 3.2 For given q and m, let 0 ≤ i, j ≤ δmax−2
2 . Then

(1) Cs+ir = Cs+ jr if and only if there exists a t ∈ [0, �m
2 �] such that i ± jq2t ≡

0(mod n) or j ± iq2t ≡ 0(mod n).
(2) If i �= j , then (Cs+ir , Cs+ jr ) is a skew-asymmetric pair (SAP) if and only if there

exists a t ∈ [0, �m
2 �] such that i± jq2t+1 ≡ s(mod n) or j±iq2t+1 ≡ s(mod n).
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(3) Cs+ir is skew symmetric if and only if there exists a t ∈ [0, �m
2 �] such that

i(1 ± q2t+1) ≡ s(mod n).

Proof (1) It is obvious Cs+ir = Cs+ jr if and only if there is an l ∈ [0, 2m − 1] such
that s+ ir ≡ (s+ jr)q2l(mod rn). From s+ ir ≡ (s+ jr)q2l ≡ s+ jrq2l(mod rn),
one has s + ir ≡ (s + jr)q2l(mod rn) if and only if ri ≡ r jq2l(mod rn), which is
also equivalent to i ≡ jq2l(mod n). Hence we can deduce that

Cs+ir = Cs+ jr ⇔ i ≡ jq2l(mod n).
Now we will show that

i ≡ jq2l(mod n) ⇔ i ± jq2t ≡ 0(mod n) or j ± iq2t ≡ 0(mod n) (3.1)

for some t ∈ [0, �m
2 �].

Since q2m ≡ −1(mod n), it is obviously that if i − jq2t ≡ 0(mod n) or j +
iq2t ≡ 0(mod n), then there is i ≡ jq2l(mod n). Since q4m ≡ 1(mod n), when
i + jq2t ≡ 0(mod n) or j − iq2t ≡ 0(mod n), there is also i ≡ jq2l(mod n) holds.
Hence, the right-hand side of (3.1) can deduce the left-hand side of (3.1). So, to prove
(3.1), we only need to check the left-hand side of (3.1) can implies the right-hand side
of (3.1).

Case 1.1: If l ∈ [0, �m
2 �], let t = l, then we have i ≡ jq2t (mod n).

Case 1.2: If m ≥ 3 and l ∈ [�m
2 � + 1,m − 1], then

i ≡ jq2l(mod n) ⇔ iq2(m−l) ≡ jq2lq2(m−l) ≡ j (q2m + 1 − 1) ≡ − j (mod n).
Let t = m − l, then t ∈ [1, �m−1

2 �]. That is to say that there is a t ∈ [1, �m−1
2 �] ⊂

[0, �m
2 �], such that j ≡ −iq2t (mod n).

Case 1.3: If l ∈ [m, 2m − 1], denote l ′ = l − m, then l ′ ∈ [0,m − 1] such that
i ≡ jq2l = jq2l ′+2m = jq2l ′(q2m + 1 − 1) ≡ − jq2l ′ (mod n). From the above two
cases, one can deduce that there is a t ∈ [0, �m

2 �] such that i ≡ − jq2t (mod n) or
j ≡ iq2t (mod n).

Summarizing the previous three cases and the above discussion, we have showed
(3.1) holds, Thus (1) follows.

(2) By the definition of a SAP, (Cs+ir ,Cs+ jr ) forms a SAP if and only if there is
an l ∈ [0, 2m − 1] such that s + ir ≡ −(s + jr)q2l+1(mod rn). Since sq2l+1 ≡
(r − 1)s(mod rn), it follows that (s + jr)q2l+1 ≡ (r − 1)s + jrq2l+1(mod rn),
s + ir ≡ −(s + jr)q2l+1 ≡ −(r − 1)s − jrq2l+1(mod rn), and

s + ir ≡ −(s + jr)q2l+1(mod rn) ⇔ i ≡ − jq2l+1 + s(mod n).

Thus, we can deduce that (Cs+ir ,Cs+ jr ) is a SAP if and only if i ≡ − jq2l+1 +
s(mod n). Next, we can show

i ≡ − jq2l+1 + s(mod n) ⇔ i ± jq2t ≡ s(mod n) or j ± iq2t ≡ s(mod n)(3.2)

for some t ∈ [0, �m
2 �].

Similar to the discussion of (1), one can show (2) holds.
(3) A coset Cs+ir is skew symmetric if and only if there exists an l ∈ [0, 2m − 1]

such that s + ir ≡ −(s + ir)q2l+1(mod rn). It is not difficult to deduce that s + ir ≡
−(s + ir)q2l+1(mod rn) if and only if i(1 + q2l+1) ≡ s(mod n). Analog to the
discussion of (1), one can show

123



66 Page 8 of 16 Y. liu et al.

i(1 + q2l+1) ≡ s(mod n) ⇔ i(1 ± q2t+1) ≡ s(mod n) for some t ∈ [0, �m
2 �].

Thus, (3) holds.
For proving our main result Theorem 3.6 which refers to maximum designed

distances of Hermitian dual-containing condition for CBCH codes with defining set
Ti , we first give Lemma 3.3, Corollary 3.4, and Lemma 3.5. ��

Lemma 3.3 If 0 ≤ i, j ≤ δmax−2
2 and t ∈ [0, �m

2 �], then i ± jq2t+1 �≡ s(mod n).

Proof We give our discussion in the following three cases:
Case 1: If m = 2l ≥ 4, then [0, �m

2 �] = [0, m
2 ].

Case 1.1: For t ∈ [0, m
2 − 1], then we have 0 ≤ |i ± jq2t+1| <

qm+1−q2

2 (qm−1 +
1) < s, hence i ± jq2t+1 �≡ s(mod n).

Case1.2:For t = m
2 , let j = qm−1α+β whereβ ∈ [0, qm−1−1] ifα ∈ [0,

q2

2 −2]
and β ∈ [0, qm−1 − q2

2 − 1] if α = q2

2 − 1.
Since i + jqm+1 = i + (qm−1α + β)qm+1 ≡ i + βqm+1 − α(mod n) and

i − jqm+1 = i − (qm−1α + β)qm+1 ≡ n + i − (βqm+1 − α)(mod n), then we can
further deduce that:

i) If 0 ≤ β ≤ qm−1−1
2 . Then i+βqm+1 −α ≤ qm+1−q2

2 + q2m−qm+1

2 = s− q2+1
2 < s

and n+i−(βqm+1−α) ≥ q2m+1+ qm+1−q2

2 − q2m−qm+1

2 = s+qm+1− q2−1
2 > s.

ii) If β ≥ qm−1+1
2 . Then i+βqm+1−α ≥ qm+1−q2

2 + q2m+qm+1

2 = s+qm+1− q2+1
2 >

s and n + i − (βqm+1 − α) ≤ q2m + 1 + qm+1−q2

2 − q2m+qm+1

2 = s − q2−1
2 < s.

According to the discussions in (i) and (ii), it can be inferred that i ± jq2t+1 �≡
s(mod n) for t = m

2 .
Case 2: If m = 2, then [0, �m

2 �] = [0, 1]. For t = 0, one can deduce 0 ≤
|i ± jq2t+1| ≤ q3−q2+q−1

2 (q + 1) = s − 1 < s, hence i ± jq �≡ s(mod n).

For t = 1, let j = qα + β where β ∈ [0, q − 1] if α ∈ [0,
q2−q

2 − 1] and

β ∈ [0,
q
2 − 2] if α = q2−q

2 . Similar to the proof of Case 1, one can infer that
i ± jq2t+1 �≡ s(mod n).

Case 3: If m = 2l + 1 ≥ 3, then [0, �m
2 �] = [0, m−1

2 ]. For t ∈ [0, m−1
2 ], one can

check 0 ≤ |i+ jq2t+1| <
qm−1

2 (qm +1) = s−1 < s, hence i± jq2t+1 �≡ s(mod n).
Concluding the previous three cases, we have proved the lemma. ��

Corollary 3.4 If Ti ⊆ T δmax−2
2

, then Ti
⋂

T−q
i = ∅.

Proof To prove the corollary, it is enough to prove T δmax−2
2

⋂
T−q

δmax−2
2

= ∅. According

to Theorem 3.2 and Lemma 3.3, we can derive that there does not exist skew-symmetric
cyclotomic cosets or any SAP in T δmax−2

2
. Thus, one can deduce T δmax−2

2

⋂
T−q

δmax−2
2

= ∅
and the corollary follows. ��
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Lemma 3.5 The following cyclotomic coset pairs are skew-asymmetric pairs:

⎧
⎪⎨

⎪⎩

(Cs+ δmax
2 r ,Cs+ δmax−2

2 r ) if m = 2;
(Cs+ δmax

2 r ,Cs+( δmax
2 − 2qm−1−q2−1

2 )r
) if m = 2l ≥ 4;

(Cs+ δmax
2 r ,Cs+ δmax−2

2 r ) if m = 2l + 1 ≥ 3;

Proof According to Lemma 3.1, if h is odd, then sqh ≡ (r − 1)s(mod rn), hence
one can attain the following results:

(1) If m = 2, we get

−(s + δmax − 2

2
r)q = −sq − q4 − q3 + q2 − q

2
r

≡ −(r − 1)s − q4 − q3 + q2 − q

2
r

≡ s + q3 − q2 + q + 1

2
r(mod rn)

= s + δmax

2
r

It follows that Cs+ δmax
2 r and Cs+ δmax−2

2 r form a SAP.

(2) If m = 2l ≥ 4, we have

−(s + δmax

2
r)qm−1 = −sqm−1 − qm+1 − q2 + 2

2
qm−1r

≡ −(r − 1)s − qm+1 − q2 + 2

2
qm−1r

≡ s + qm+1 − q2 + 2 − 2qm−1 + q2 − 1

2
r(mod rn)

= s + (
δmax

2
− 2qm−1 − q2 − 1

2
)r

Hence Cs+ δmax
2 r and C

s+( δmax
2 − 2qm−1−q2−1

2 )r
form a SAP.

(3) If m = 2l + 1 ≥ 3, we obtain

−(s + δmax − 2

2
r)qm = −sqm − qm − 1

2
qmr

≡ −(r − 1)s − qm − 1

2
qmr

≡ s + qm + 1

2
r(mod rn)

= s + δmax

2
r.

It implies Cs+ δmax
2 r and Cs+ δmax−2

2 r form a SAP. ��

123



66 Page 10 of 16 Y. liu et al.

Theorem 3.6 Let q,m, n, δmax be given as above. If δi is even and C(n, q2; δi ) is
the CBCH code with defining set Ti , then C(n, q2; δi )

⊥h ⊆ C(n, q2; δi ) if and only if
2 ≤ δi ≤ δmax.

Proof (1) If δi is even and δi ≤ δmax, then T δi−2
2

⊆ T δmax−2
2

. It follows that

T δi−2
2

⋂
T−q

δi−2
2

= ∅ from Corollary 3.4 above, hence C(n, q2; δi )
⊥h ⊆ C(n, q2; δi )

by Lemma 2.2, the sufficiency holds.
(2) If δi > δmax, then Cs+ δmax

2 r ⊆ T δi−2
2 r

. Thus we can infer T δi−2
2

⋂
T−q

δi−2
2

�= ∅
from Lemma 2.2 and Lemma 3.5 above, so C(n, q2; δi )

⊥h � C(n, q2; δi ) from
Lemma 2.2, the necessity holds.

��

4 Dimensions of CBCH codes and new quantum codes

ConsiderC(n, q2; δi ) is the CBCH code with defining set Ti , according to Theorem 3.6,
C⊥h ⊆ C when 0 < i ≤ δmax−2

2 . While Theorem 3.6 above and Hermitian Construction
are sufficient to tell us one can construct some new quantum CBCH codes, they are
still unsatisfactory because one does not know the dimension of these codes and their
designed distances. In order to exactly calculate these parameters, we will first study
the cardinality of each cyclotomic coset in Ti by Lemma 4.1 and talk about which
cyclotomic cosets are equal to another in Ti by Lemmas 4.2 and 4.3.

Lemma 4.1 Let n, s, r, δmax be given above. If 0 < i ≤ δmax−2
2 , then |Cs+ir | = 2m.

Proof If |Cs+ir | = t < 2m, then t |2m and s+ ir ≡ (s+ ir)q2t ≡ s+ irq2t (mod rn)

⇒ i(q2t − 1) ≡ 0(mod n). From t |2m, we have t = 2m
2 , t = 2m

3 , t = 2m
4 or t ≤ 2m

5 .

i) If t = 2m
2 = m, then (q2t − 1, n) = (q2m − 1, q2m + 1) = 2. Since i < n

2 , one
can deduce i(q2t − 1) �≡ 0(mod n), a contradiction.

ii) If m ≡ 0(mod 3) and t = 2m
3 , then (q2t − 1, n = q2m + 1) = q

2m
3 + 1 and

1 ≤ i ≤ δmax−2
2 < n

q
2m
3 +1

= (q
4m
3 − q

2m
3 + 1). Thus i(q2t − 1) �≡ 0(mod n), a

contradiction.
iii) If m ≡ 0(mod 2) and t = 2m

4 = m
2 , then (q2t − 1, n) = (qm − 1, q2m + 1) = 2.

Since i < n
2 , i(q2t − 1) �≡ 0(mod n), a contradiction.

iv) If t ≤ 2m
5 , then i(q2t −1) ≤ δmax−2

2 (q
4m
5 −1) < n. Thus i(q2t −1) �≡ 0(mod n),

a contradiction. ��
Summarizing the previous discussions, thus the lemma holds.

Lemma 4.2 Let n, s, r be given above. If m = 2l + 1 > 3, δmax = qm + 1 and
0 ≤ j < i ≤ δmax−2

2 , thenCs+ir = Cs+ jr if and only if i = jq2t for some t ∈ [1, m−1
2 ].

Proof According to (1) of Theorem 3.2, Cs+ir = Cs+ jr ⇔ ∃t ∈ [0, m−1
2 ] such that

j ± iq2t ≡ 0(mod n) or i ± jq2t ≡ 0(mod n).
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From t ∈ [0, m−1
2 ], we have 0 < i + jq2t ≤ δmax−2

2 (qm−1 + 1) = qm−1
2 (qm−1 +

1) < n, and 0 ≤ |i − jq2t | ≤ qm−1
2 (qm−1 +1) < n. Thus, one can deduce i ± jq2t ≡

0(mod n) ⇔ i = jq2t . Since j < i , it can be easily checked that j±iq2t �≡ 0(mod n).
Then the desired conclusion follows. ��

Lemma 4.3 Let n, s, r, δmax be given above. If m = 2l ≥ 2, 1 ≤ β ≤ q−1
2 and

0 ≤ j < i ≤ δmax−2
2 , then Cs+ir = Cs+ jr if and only if i and j satisfy the following

conditions:

(1) 1 ≤ i < qm, i = jq2t for some t ∈ [0, m−2
2 ];

(2) i = βqm = jq2t for some t ∈ [0, m
2 ].

(3) i = βqm − α and j = αqm + β(1 ≤ α < β).
(4) i = βqm + α and j = αqm − β(1 ≤ α ≤ β).
(5) β(qm + 1) + 1 ≤ i ≤ (β + 1)(qm − 1) − 1 with 1 ≤ β ≤ q−3

2 , i = βqm + γ q2

and j = i/q2 = βqm−2 + γ where 1 ≤ γ ≤ qm−2 − 1.
(6) β(qm + 1) + 1 ≤ i ≤ δmax−2

2 with β = q−1
2 , i = βqm + γ q2 and j = i/q2 =

βqm−2 + γ where 1 ≤ γ ≤ δmax−2
2q2 .

Proof We only give the proof for m ≥ 4, the situation for m = 2 can be given
Similarly. According to (1) of Theorem 3.2, Cs+ir = Cs+ jr ⇔ ∃t ∈ [0, m

2 ] such that
j ± iq2t ≡ 0(mod n) or i ± jq2t ≡ 0(mod n). Now we manage to determine the
equal cosets Cs+ir = Cs+ jr step by step.

Step 1: If 1 ≤ j < i < qm , we can derive i = jq2t as we did in Lemma 4.2.
Step 2: If qm ≤ i ≤ δmax−2

2 , one can denote i = βqm + α, where α ∈ [0, qm − 1].
When t ∈ [0, m

2 − 1], from 0 < j < i , similar to the proof of Lemma 4.2, we can
deduce i = jq2t .

When t = m
2 , from i ± jqm ≡ 0(mod n) or j ± iqm ≡ 0(mod n), one has

βqm + α ± jqm ≡ 0(mod n) or j ± (βqm + α)qm ≡ 0(mod n). Since (qm, n) = 1,
we can derive βq2m+αqm± jq2m ≡ (αqm−β)∓ j ≡ 0(mod n) or j±βq2m+αqm ≡
j±(αqm −β) ≡ 0(mod n). Thus, one can attain j = αqm −β or j = n−(αqm −β).
Thus we study the case for t = m

2 by following three steps:
Step 2.1: If α = 0 and i = βqm , we have j∓β �≡ 0(mod n), from 1 ≤ j+β < n

and 0 ≤ j − β < n, one can attain j = β.
Step 2.2: If 1 ≤ α ≤ β, Since 0 ≤ j < i ≤ δmax−2

2 , we have j = αqm − β.

Step 2.3: If qm − q−1
2 ≤ α ≤ qm − 1, from 0 ≤ j < i ≤ δmax−2

2 , we have
j = n− (αqm −β) = (qm −α)qm +β +1. We assume β ′ = β +1 and α′ = qm −α,
where β ′ ∈ [1,

q−1
2 ] and α′ ∈ [0,

q−1
2 ]. It follows that i = β ′qm −α′, j = α′qm +β ′,

which is equivalent to that i = βqm − α and j = αqm + β(1 ≤ α ≤ β).
Step 2.4: If β < α < qm − q−1

2 , let α = γ q2 + λ and γ , j be given in (5) and
(6), it is easily verified that Cs+ir = Cs+ jr where i = jq2 = βqm + γ q2 with λ = 0.

Next, we will show there exists no j < i such that Cs+ir = Cs+ jr for 1 ≤ λ ≤
q2 − 1. The reason is that:

from 0 < j < i < δmax−2
2 , similar to the proof of Lemma 4.2, since i �≡ 0mod q2,

we can deduce 0 < |i± jq2t | <
qm+1−q2

2 (1+qm−2) < n and 0 < | j±iq2t | < n when
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t ∈ [0, m−2
2 ]. As for t = m

2 , according to the discussion of Step 2 for t = m
2 , when

β < α < qm − q−1
2 , we can infer i ± jq2t �≡ 0(mod n) and j ± iq2t �≡ 0(mod n).

According to the previous two steps, one can see the lemma follows.
By these above results about q2-cyclotomic cosets modulo rn, it is feasible to

analyze the parameters of Hermitian containing CBCH codes, and one can derive new
quantum CBCH codes from them via Hermitian Construction. We will show these
results in the following Theorems 4.4 and 4.5. ��
Theorem 4.4 Let m = 2l + 1 ≥ 3, n, s, r, δmax be given above. If i ∈ [0, δmax−2

2 ], let
δi = 2i + 2 for i + 1 �≡ 0(mod q2), let δi = 2i + 4 for i + 1 ≡ 0(mod q2). Then

(1) there exists a Hermitian dual-containing CBCH code with parameters [n, n −
|Ti |,≥ δi ]q2 where |Ti | = 2m�i(1 − q−2)� + 1.

(2) there exists a quantum CBCH code with parameters [[n, n − 2|Ti |,≥ δi ]]q .
Proof (1) Let Ti = Cs ∪ Cs+r ∪ Cs+2r ∪ · · · ∪ Cs+ir for i ∈ [0, δmax−2

2 ]. Then

Ti =
i⋃

j=−i
Cs+ jr according to Theorem 2.3. If i + 1 �≡ 0(mod q2), then Ti �= Ti+1,

and the CBCH code with defining set Ti has designed distance δ = 2i + 2. If i + 1 ≡
0(mod q2), then Ti = Ti+1 =

i+1⋃
j=−(i+1)

Cs+ jr according to Lemma 4.2, and the CBCH

code with defining set Ti has designed distance δ = 2(i + 1) + 2.
If 1 ≤ i ≤ δmax−2

2 and i is a multiple of q2, then Cs+ir = Cs+ir/q2 . Therefore, the
number of cosets is reduced by �i/q2�. By lemma 4.2, if i �= j and i, j �≡ 0(mod q2),
thenCs+ir �= Cs+ jr . Thus, Ti is the union of i−�i/q2�+1 = �i(1−q−2)�+1 distinct
cyclotomic cosets. By Theorem 2.3 and Lemma 4.1, all these cosets have cardinality
2m besides Cs = {s}, then we can deduce |Ti | = 2m�i(1 − q−2)� + 1, which proves
our claim about the parameters of the code.

(2) By Hermitian construction, one can construct a quantum CBCH code with
parameters [[n, n − 2|Ti |,≥ δi ]]q from a Hermitian dual-containing CBCH code of
(1), hence (2) holds. ��
Theorem 4.5 Let m = 2l ≥ 2, n, s, r, δmax be given above. If i ∈ [0, δmax−2

2 ], let
δi = 2i + 2 for i + 1 �≡ 0(mod q2), let δi = 2i + 4 for i + 1 ≡ 0(mod q2). Then
the following hold:

(1) If 1 ≤ i ≤ qm − 2, then there exists a Hermitian dual-containing CBCH code
with parameters [n, n − 2|Ti |,≥ δi ]q2 where |Ti | = 2m�i(1 − q−2)� + 1.

(2) If β(qm +1) ≤ i ≤ (β+1)(qm −1)−1with β ∈ [1,
q−3

2 ], or q−1
2 (qm +1) ≤ i ≤

δmax−2
2 , then there exists aHermitiandual-containingCBCHcodewith parameters

[n, n − 2|Ti |,≥ δi ]q2 where |Ti | = 2m(�i(1 − q−2)� − �iq−m�2) + 1.
(3) If i and δi are given as above, then there exists a quantumCBCH codewith param-

eters [[n, n − 2|Ti |,≥ δi ]]q , where |Ti | is given as in (1) and (2), respectively.

Proof Let Ti = Cs ∪ Cs+r ∪ Cs+2r ∪ · · · ∪ Cs+ir .

(1) If 1 ≤ j ≤ i ≤ qm − 2, then Cs+ jr = Cs+ir if and only if i = jq2t according to
Lemma 4.3. Similar to the discussion given in the proof of (1) of Theorem 4.4,
we can derive (1) holds.
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(2) From Lemma 4.3, if β ∈ [1,
q−1

2 ], we can deduce

Tqm−1 = Tqm = Tqm+1,

T2(qm−1) = T2qm−1 = T2qm = T2qm+1 = T2(qm+1),

...

Tβ(qm−1) = Tβqm−β+1 = · · · = Tβqm = · · · = Tβqm+β−1 = Tβ(qm+1).

Hence, if

{
β(qm + 1) ≤ i ≤ (β + 1)(qm − 1) − 1 β ∈ [1,

q−3
2 ];

β(qm + 1) ≤ i ≤ δmax−2
2 β = q−1

2 ,

then the number of different cosets contained in Ti is ui , where

ui = 1 + (i − �i/q2�) − (1 + 3 + · · · + 2β − 1)

= 1 + �i(1 − q−2)� − β2

= 1 + (�i(1 − q−2)� − �iq−m�2).

Thus, similar to Theorem 4.4, we can obtain

|Ti | = 2m(�i(1 − q−2)� − �iq−m�2) + 1.

Furthermore, if i + 1 �≡ 0(mod q2), then Ti defines a CBCH code with designed
distance δi = 2i + 2; if i + 1 ≡ 0(mod q2), then Ti = Ti+1 defines a CBCH
code with designed distance δi = 2i + 4. ��

Summarizing the above, we have showed (2) holds.
(3) Using the Hermitian dual-containing CBCH codes presented in (1) and (2), we

get the conclusion of (3).

Table 1 New quantum constacyclic code for q = 3

m n δ ≡ 0(mod 2) [[n, k, d]]q
2 82 2 ≤ δ ≤ 16 [[82, 88 − 4δ, ≥ δ]]3 in [21]

2 82 22 [[82, 16, ≥ δ]]3
3 730 2 ≤ δ ≤ 16 [[730, 740 − 6δ, ≥ δ]]3 [21]

3 730 20 ≤ δ ≤ 28 [[730, 752 − 6δ, ≥ δ]]3
4 6562 2 ≤ δ ≤ 16 [[6562, 6576 − 8δ, ≥ δ]]3[21]

4 6562 18α + 2 ≤ δ ≤ 18α + 16(α ∈ [1, 7]) [[6562, 6576 − 8δ + 16α,≥ δ]]3
4 6562 146 ≤ δ ≤ 160 [[6562, 6704 − 8δ, ≥ δ]]3
4 6562 166 ≤ δ ≤ 178 [[6562, 6736 − 8δ, ≥ δ]]3
4 6562 18α + 164 ≤ δ ≤ 18α + 178(α ∈ [1, 3]) [[6562, 6736 − 8δ + 16α,≥ δ]]3
4 6562 236 [[6562, 4912,≥ δ]]3
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Table 2 New quantum negacyclic code for q = 5

m n δ ≡ 0(mod 2) [[n, k, d]]q
2 626 2 ≤ δ ≤ 48 [[626, 632 − 4δ, ≥ δ]]5 in [19]

2 626 54 ≤ δ ≤ 96 [[626, 648 − 4δ,≥ δ]]5
2 626 106 [[626, 256,≥ δ]]5
3 15626 2 ≤ δ ≤ 48 [[15626, 15636 − 6δ, ≥ δ]]5 in [19]

3 15626 52 ≤ δ ≤ 98 [[15626, 15648 − 6δ, ≥ δ]]5
3 15626 102 ≤ δ ≤ 126 [[15626, 15660 − 6δ, ≥ δ]]5
4 390626 2 ≤ δ ≤ 48 [[390626, 390640 − 8δ, ≥ δ]]5 in [19]

4 390626 50α + 2 ≤ δ ≤ 50α + 48(α ∈ [1, 23]) [[390626, 390640 − 8δ + 16α,≥ δ]]5
4 390626 1202 ≤ δ ≤ 1248 [[390626, 391024 − 8δ, ≥ δ]]5
4 390626 1254 ≤ δ ≤ 1298 [[390626, 391056 − 8δ,≥ δ]]5
4 390626 50α + 1252 ≤ δ ≤ 50α + 1298(α ∈ [1, 23]) [[390626, 391056 − 8δ + 16α,≥ δ]]5
4 390626 2452 ≤ δ ≤ 2496 [[390626, 391440 − 8δ, ≥ δ]]5
4 390626 2506 ≤ δ ≤ 2598 [[390626, 391504 − 8δ, ≥ δ]]5
4 390626 50α + 2502 ≤ δ ≤ 50α + 2548(α ∈ [1, 11]) [[390626, 391504 − 8δ + 16α,≥ δ]]5
4 390626 3102 [[390626, 366880,≥ δ]]5

Table 3 Codes comparisons for q = 5 and m = 2

New quantum codes QBCH codes in [15] New quantum codes QBCH codes in [15]

[[626, 432,≥ 54]]5 [[624, 420,≥ 54]]5 [[626, 336,≥ 78]]5 [[624, 328,≥ 78]]5
[[626, 424,≥ 56]]5 [[624, 412,≥ 56]]5 [[626, 328,≥ 80]]5 [[624, 320, ≥ 80]]5
[[626, 416,≥ 58]]5 [[624, 404,≥ 58]]5 [[626, 320, ≥ 82]]5 [[624, 312, ≥ 82]]5
[[626, 408,≥ 60]]5 [[624, 396,≥ 60]]5 [[626, 312, ≥ 84]]5 [[624, 304,≥ 84]]5
[[626, 400,≥ 62]]5 [[624, 388,≥ 62]]5 [[626, 304,≥ 86]]5 [[624, 296,≥ 86]]5
[[626, 392,≥ 64]]5 [[624, 380,≥ 64]]5 [[626, 296,≥ 88]]5 [[624, 288,≥ 88]]5
[[626, 384,≥ 66]]5 [[624, 372,≥ 66]]5 [[626, 288,≥ 90]]5 [[624, 280, ≥ 90]]5
[[626, 376,≥ 68]]5 [[624, 364,≥ 68]]5 [[626, 280, ≥ 92]]5 [[624, 272, ≥ 92]]5
[[626, 368,≥ 70]]5 [[624, 356,≥ 70]]5 [[626, 272, ≥ 94]]5 [[624, 264,≥ 94]]5
[[626, 360,≥ 72]]5 [[624, 348,≥ 72]]5 [[626, 264,≥ 96]]5 [[624, 256,≥ 96]]5
[[626, 352,≥ 74]]5 [[624, 340,≥ 74]]5 [[626, 256,≥ 106]]5 [[624, 220, ≥ 106]]5
[[626, 344,≥ 76]]5 [[624, 336,≥ 76]]5

5 Conclusion and discussion

We have explored the Hermitian dual-containing condition and determined the max-
imum designed distances of CBCH codes with length n = q2m + 1, the dimensions
and designed distances of these dual-containing codes are completely settled. Based
on these, we constructed a class of new quantum CBCH codes of length n = q2m + 1
and determined the parameters of quantum CBCH codes from the designed distances
of CBCH codes.
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For clarity to show our results, we list a lot of new quantum constacyclic codes for
q = 3 in Table 1 and quantum negacyclic codes for q = 5 in Table 2, respectively.
Further, in Table 3, we extract a small part of quantum negacyclic codes from Table 2
and compare them with some of quantum BCH (QBCH) codes derived from primitive
BCH codes in Theorem 13 of [15] for 54 ≤ δ ≤ 106. From Table 3, one can see that for
given designed distance δ, our new quantum codes [n+2, k,≥ δ] use two more qubits
than [n, k′,≥ δ] QBCH of the same minimum distance derived from primitive BCH
codes but have much higher code rate than the QBCH codes of the same minimum
distance (k − k′ ≥ 8). Hence our codes are much more efficient than those QBCH
codes of the same designed distances.
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