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Abstract Representing graphs as quantum states is becoming an increasingly impor-
tant approach to study entanglement of mixed states, alternate to the standard linear
algebraic density matrix-based approach of study. In this paper, we propose a gen-
eral weighted directed graph framework for investigating properties of a large class
of quantum states which are defined by three types of Laplacian matrices associated
with such graphs. We generalize the standard framework of defining density matrices
from simple connected graphs to density matrices using both combinatorial and sign-
less Laplacian matrices associated with weighted directed graphs with complex edge
weights and with/without self-loops. We also introduce a new notion of Laplacian
matrix, which we call signed Laplacian matrix associated with such graphs. We pro-
duce necessary and/or sufficient conditions for such graphs to correspond to pure and
mixed quantum states. Using these criteria, we finally determine the graphs whose cor-
responding density matrices represent entangled pure states which are well known and
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important for quantum computation applications. We observe that all these entangled
pure states share a common combinatorial structure.

Keywords Combinatorial Laplacian · Signless Laplacian · Eigenvalues · Pure and
mixed states · Density matrix · Quantum entanglement

1 Introduction

Quantum mechanics deals with states living in the Hilbert space, allowing for lin-
ear superpositions to be built up, a facility of immense importance for harnessing
the power of quantum mechanics but at the same time making it computationally a
formidable task. This can be most easily appreciated by considering entanglement [1–
3] in higher dimensions as well as in multipartite systems [4], all mathematically and
computationally very formidable tasks. Any tool that would aid in this regard would
be very welcome.

In combinatorics, a graph is a combination of vertices and edges. We draw a vertex
by a bold or labelled point in a paper. Edges are directed or undirected curves joining
these vertices. A digraph is a graph consisting directed edges. A loop is an edge that
joins a vertex with itself. Edge weight is a complex number assigned to an edge. A
graph with weighted edges is called a weighted graph. The theory of graphs is a well-
developed mathematical theory that has found many applications in diverse areas, such
as the spectrum of a discrete Schrödinger operator in a uniform, periodic magnetic
field [5]. Graphs have, by their very construction, the inbuilt feature of visualization.
A pertinent question to ask is whether quantum representation of graphs can be made?
This would enable the incorporation of the mathematical machinery of graphs into the
problems of quantum mechanics and at the same time bring in the attractive feature
of visualization of quantum states.

Attempts have been made in this direction by defining a density matrix associated
with a graph. In this case, the graph is called the graph representation of such a quantum
state. This idea was first introduced in [6] by considering a combinatorial Laplacian
matrix associated with an unweighted undirected graph (simple graph). It was further
extended in [7] for weighted graphs. Combinatorial and signless Laplacian matrices
of a graph are positive semi-definite and Hermitian matrices, defined later.

A criteria of separability of multipartite states represented by the Laplacian of
simple graphs have also developed in [8]. Recently, local unitary transformations on a
density matrix obtained by signless Laplacian matrix associated with a simple graph
have been established as a combinatorial operation which is known as switching of a
graph in [9]. A combinatorial operation has also been introduced for density matrices
defined by Laplacian matrices associated with simple graphs in [10] that act as an
entanglement generator for mixed states arising from partially symmetric graphs.

In this paper, we use both combinatorial and signless Laplacian matrix to define
density matrices associated with a weighted digraph having complex edge weights
and with or without loops. We also introduce a matrix, which we call signed Lapla-
cian matrix associated with a weighted digraph having loops with both positive and
negative weights. In order to relate the topological structure of a weighted digraph and
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properties of the density matrices defined by these Laplacian matrices, we investigate
the rank, zero eigenvalues and positive definiteness of these matrices associated with
such graphs. This leads to a classification of graphs which always provide density
matrices representing pure quantum states and those which determine mixed quantum
states.

Indeed, since pure states comprise a zero-measure subset of mixed states, emphasis
is given on identifying graphs which can produce important classes of pure states. We
also provide graphs which identify a number of well-known entangled pure states by
using the Laplacian matrices associated with such graphs.

A state vector of an entangled state cannot be expressed as a tensor product of
other state vectors. These states play an important role in different tasks of quantum
information theory. We observe that if a graph represents a pure entangled state, then
all the weighted edges are clustered in a subgraph which forms a completely connected
graph and the weight of the self-loops attached to each of the vertices is −(m − 2)

where m is the number of vertices involved in the complete subgraph. This should be
of interest to the quantum information community.

The plan of the paper is as follows. In Sect. 2, we define the required terminologies
of graph theory, and in particular, we investigate the Laplacian matrices and Laplacian
spectra associated with a weighted digraph with or without loops. In Sect. 3, we define
the density matrix associated with a weighted digraph and classify the graphs which
represent pure and mixed states. Finally, we provide graphs which define density
matrices of entangled pure states.

2 Weighted digraphs with/without loops and its Laplacian spectra

Let G = (V, E) be a graph with the vertex set V = {1, 2, . . . , n} and edge set
E ⊆ V × V . A directed graph or digraph G is a graph with a function assigning to
each edge an ordered pair of vertices. The first vertex of the ordered pair is called
the initial vertex of the edge, and the second is the terminal vertex; together, they are
the endpoints. Thus, each edge of a digraph is directed and an undirected edge can
be considered as two-way directed. A weighted graph G is a graph with a function
w : E → C, defined by w(i, j) = wi j , 1 ≤ i, j ≤ n, where C is the set of all
complex numbers. If |wi j | = 1 for all (i, j) ∈ E , such a graph is called a gain graph
[11]. The function w is called an edge-weight function, and wi j is called the weight
of (i, j) ∈ E . An unweighted graph can be considered as an edge-weighted graph
with weight function wi j = 1 if wi j �= 0. A weighted digraph is a graph which is
both weighted and directed. Thus, from now on a graph always is a weighted digraph
unless otherwise mentioned.

2.1 Weighted digraphs with or without loops having nonnegative weights

First, we consider weighted digraphs having loops (at least one loop and maximum one
loop at a vertex) with nonnegative real weights. The adjacency matrix A(G) = (ai j )
associated with G is defined as
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ai j =

⎧
⎪⎪⎨

⎪⎪⎩

wi j , if (i, j) ∈ E;
wi j , if ( j, i) ∈ E;
ri , if (i, i) ∈ E;
0, otherwise

where 0 ≤ ri ∈ R is the weight of the loop at i th vertex and wi j ∈ C. Note that ri = 0
if i th vertex does not have a loop. The weighted degree di of a vertex i ∈ V is given
by di = ∑n

j=1 |ai j |. The Laplacian and the signless Laplacian matrices are defined
by

L(G) = diag
({di }ni=1

) − A(G), (1)

Q(G) = diag
({di }ni=1

) + A(G), (2)

respectively [12–14]. Notice that loops, even though apparent in the adjacency matrix
A(G), do not appear in the Laplacian matrix L(G). The above constructions of L(G)

and Q(G) will lead to diagonally dominant matrices, i.e. a matrix M where |Mi,i | ≥∑
j �=i |Mi, j |.
For a weighted edge from vertex i to j with weight wi j ∈ C, we assume wi j =

ri j eiθi j , ri j > 0, 0 ≤ θ ≤ π. We consider wi j = ri j e−iθi j and −π ≤ θi j ≤ 0, so that,√
wi j = √

ri j eiθi j /2,
√

wi j = √
ri j e−iθi j /2. Thus, (

√
wi j )

2 = wi j and
√

wi j
√

wi j =
ri j .

Theorem 1 Let G = (V, E) be a weighted directed graph without loops. Then L(G)

and Q(G) are Hermitian and positive semi-definite matrices.

Proof: Assume that wi j ∈ C is the weight of an edge (i, j). Then define

(M−)v,e

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

√
wi j , if wi j ∈ C \ R and v is initial vertex of nonloop edge e

−√
wi j , if wi j ∈ C \ R and v is terminal vertex of nonloop edge e√|wi j |, if 0 > wi j ∈ R and v is initial or terminal vertex of nonloop edge e

−√|wi j |, if 0 < wi j ∈ Randv is initial vertex of nonloop edge e√|wi j |, if 0 < wi j ∈ R and v is terminal vertex of nonloop edge e
0, otherwise

and

(M+)v,e

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

√
wi j , if wi j ∈ C \ R and v is initial vertex of nonloop edge e√
wi j , if wi j ∈ C \ R and v is terminal vertex of nonloop edge e√|wi j |, if 0 < wi j ∈ R and v is initial or terminal vertex of nonloop edge e

−√|wi j |, if 0 > wi j ∈ R and v is initial vertex of nonloop edge e√|wi j |, if 0 > wi j ∈ R and v is terminal vertex of nonloop edge e
0, otherwise
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for anyv ∈ V and e ∈ E .Then it is easy to verify that L(G) = M−(M−)† and Q(G) =
M+(M+)† where † denotes conjugate transpose. Therefore, the result follows. 	


From the construction of M+ and M− in Theorem 1, it follows that

x†L(G)x =
∑

i �= j,(i, j)∈E,0<wi j∈R
|wi j ||xi − x j |2 +

∑

i �= j,(i, j)∈E,0>wi j∈R
|wi j ||xi + x j |2

+
∑

i �= j,(i, j)∈E,wi j∈C\R
|√wi j xi − √

wi j x j |2 (3)

x†Q(G)x =
∑

i �= j,(i, j)∈E,0<wi j∈R
|wi j ||xi + x j |2 +

∑

i �= j,(i, j)∈E,0>wi j∈R
|wi j ||xi − x j |2

+
∑

i �= j,(i, j)∈E,wi j∈C\R
|√wi j xi + √

wi j x j |2 (4)

In the following theorem, we provide a necessary and sufficient condition for a
connected loopless weighted digraph having a signless Laplacian eigenvalue zero.
Recall that, a digraph is said to be connected if it is connected without considering the
directions of the edges.

Theorem 2 Let G be a connected weighted digraph without self-loops. The least
eigenvalue of the signless Laplacian matrix of G is 0 if and only if

(−1)p++|P| ∏

(i, j)∈P,wi j∈C\R

wi j

|wi j |

is directed path invariant for any two fixed vertices in G, where p+ and |P| denotes
the number of edges having positive real weights and the number of edges having
nonreal weights in a directed path P between the fixed vertices.

Proof: Assume that the least eigenvalue of the signless Laplacian Q(G) of G has
an eigenvalue zero, that is, xH Q(G)x = 0 for some nonzero vector x . From (4),
it is obvious that for such x, xi = −x j if 0 < wi j ∈ R; xi = x j if 0 > wi j ∈
R; xi = − wi j

|wi j | x j if wi j ∈ C \ R. Let P ≡ (u = i1, i2, . . . , ik1 = v) and P ′ ≡ (u =
i ′1, i ′2, i ′3, . . . , i ′k2

= v) be two distinct directed paths from the vertex u to the vertex v.

Then, for the path P,

xu = (−1)p++|P| ∏

(i, j)∈P,wi j∈C\R

wi j

|wi j | xv;

and for the path P ′,

xu = (−1)p
′++|P ′| ∏

(i j)∈P ′,wi j∈C\R

wi j

|wi j | xv.

Further, xu �= 0 and xv �= 0 since otherwise x = 0 follows from (4) as the graph is
connected. Hence, the desired result follows.
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Conversely, if the given condition is true for any two different directed paths for
any pair of vertices in G, a vector x defined by xi = −x j if 0 < wi j ∈ R; xi = x j if
0 > wi j ∈ R; xi = − wi j

|wi j | x j if wi j ∈ C \ R will satisfy x†Q(G)x = 0. Hence, the
proof. 	

Corollary 1 The least eigenvalue of the signless Laplacian matrix of a loopless con-
nected weighted digraph G having complex unit weights is equal to 0 if and only if
(−1)pW (P) is directed path invariant for any two fixed vertices in G, where p and
W (P) denote the length and the product of the weights of the edges of a directed path
P between the fixed vertices in G. In particular, 0 is a simple eigenvalue.

Corollary 2 Let G be a weighted digraph without loops with n(> 2) vertices. Assume
that 0 is a signless Laplacian eigenvalue of G. Then the multiplicity of 0 as a signless
Laplacian eigenvalue of G is k if and only if the graph is disconnected with k connected
components.

It is shown in [14] that for a unweighted undirected connected graph G without
loops, the least eigenvalue of the signless Laplacian of G is equal to 0 if and only
if the graph is bipartite and 0 is a simple eigenvalue. We mention that the condition
provided in Corollary 2 for existence of zero eigenvalue of weighted directed graph
is a generalized version of the condition obtained for unweighted undirected graph in
[14]. That is, the condition in Corollary 2 is satisfied for an unweighted undirected
connected graph if and only if the graph is bipartite.

The following corollary provides a necessary and sufficient condition for existence
of zero Laplacian eigenvalue of a weighted connected digraph.

Corollary 3 The least eigenvalue of the combinatorial Laplacian matrix of a loopless
connected weighted digraph G is equal to 0 if and only if

(−1)p−
∏

(i, j)∈P,wi j∈C\R

wi j

|wi j |

is directed path invariant for any two fixed vertices in G, where p− denotes the number
of links with negative real weights of a directed path P between the fixed vertices.

Proof: The proof is similar to the proof of Theorem 2. 	

Corollary 4 The least eigenvalue of the combinatorial Laplacian of a loopless con-
nected weighted digraph G having complex unit weights is equal to 0 if and only if
W (P) is directed path invariant for any two fixed vertices in G. In particular, 0 is a
simple eigenvalue.

An alternative proof of the above corollary also can be found in [13].

Corollary 5 Let G be a weighted digraph without loops with n(> 2) vertices. Assume
that 0 is a combinatorial Laplacian eigenvalue of G. Then the multiplicity of 0 as a
combinatorial Laplacian eigenvalue of G is k if and only if the graph is disconnected
with k connected components.
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As we mentioned above, loops with nonnegative weights have no effect on the
combinatorial Laplacian matrix. Thus, we only consider signless Laplacian matrix
when an weighted digraph contains at least one loop with positive real weight. It is
easy to verify that, given an weighted digraph G with at least one loop having positive
real weight, we have

x†Q(G)x = x†Q(Ĝ)x +
∑

(i,i)∈E
ri |xi |2 (5)

where Ĝ is the subgraph of G without considering loops. This also shows that Q(G)

is Hermitian and positive semi-definite.

Theorem 3 Zero can never be a signless Laplacian eigenvalue of a connected
weighted digraph G with loops (at least one vertex contains a loop) having positive
weights.

Proof: Consider a connected weighted digraph G with loops (at least one vertex
contains a loop) having positive weights. If 0 is a signless Laplacian eigenvalue of G,

from (5) we know that there exists an 0 �= x ∈ C
n such that

x†Q(G)x = x†Q
(
Ĝ

)
x +

∑

(i,i)∈E
ri |xi |2 = 0

where Ĝ is the subgraph of G without loops. Assume that the k-th vertex contains the
loop. For x†QGx to be zero, xk has to be zero since rk is positive. Further, since the
graph is connected, kth vertex is linked with m (say) vertices k1, k2, . . . , km for some
m which implies xk j = 0 for j = 1, . . . ,m which further implies that x j = 0 for all
j = 1, . . . , n since k j vertices are linked with other vertices and x†Q(Ĝ)x = 0 for
all (i, j) ∈ E . 	


2.2 Weighted digraphs with loops having at least one loop with negative weight

Recall the definitions of Laplacian and signless Laplacian matrices associated with a
weighted digraph. Observe that loops, even though apparent in the adjacency matrix
A(G), do not reflect in Laplacian matrix when the loops have positive weights, and in
signless Laplacian matrices when the loops have negative weights. Thus, for weighted
digraphs with both nonnegative and negative weighted loops (at least one of the loops
has negative weight), we introduce a new matrix, which we call signed Laplacian,
denoted by L−(G) and L±(G) when G has all the loops with nonpositive weights, and
when G contains loops with positive weights as well as negative weights, respectively,
by

L−(G) = R−(G) + Q(Ĝ),

and L±(G) = R±(G) + Q(Ĝ), (6)
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where R−(G) = R±(G) = diag{r1, r2, . . . , rn}, r j ∈ R denotes the weight of the
loop at j th vertex, j = 1, . . . , n and Q(Ĝ) is the signless Laplacian matrix of the
graph Ĝ constructed from G without considering the loops. Obviously, L−(G) and
L±(G) are Hermitian matrices. In order to simplify the notation, we denote R(G) =
R−(G) = R±(G).

Theorem 4 Given a weighted digraph G with nonpositive loops, L−(G) is semi-
definite if

max
i

|ri | ≤ λminQ(Ĝ)

where ri ≤ 0, i = 1 : n are theweights of the loops present in the graph andλmin Q(Ĝ)

denotes the minimum eigenvalue of Q(Ĝ).

Proof: For any unit vector 0 �= x ∈ C
n, we have

−x†R(G)x ≤ maxi |ri |,
and x†Q(Ĝ)x ≥ λmin(Q(Ĝ)). (7)

In order to show that L−(G) is positive semi-definite, for any nonzero unit vector
x ∈ C

n, we must have x†L−(G)x = x†R(G)x + x†Q(Ĝ)x ≥ 0. If the given
condition is satisfied, the proof follows from (7). 	


Given a weighted digraph, the theorem declares that if the maximum of the modulus
of weights of the loops do not exceed the minimum signless Laplacian eigenvalue of
the graph without considering the loops, then the signed Laplacian corresponding to
the given graph will be positive semi-definite.

Example 1 1. Consider the graph given in Fig. 1. The signed Laplacian matrix with
negative loops associated with G is given by

L−(G) =

⎡

⎢
⎢
⎣

1 1 1 −1
1 1 1 −1
1 1 1 −1

−1 −1 −1 1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

−2 0 0 0
0 −2 0 0
0 0 −2 0
0 0 0 −2

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎣

3 1 1 −1
1 3 1 −1
1 1 3 −1

−1 −1 −1 3

⎤

⎥
⎥
⎦

= R(G) + Q(Ĝ).

Note that, eigenvalues of Q(Ĝ) are 2, 2, 2, 6.

2. Consider the weighted digraph given in Fig. 2. The eigenvalues of L−(G) are given
by 0.0679, 1.8000, 3.5321.

Theorem 5 Let G be aweighted digraph with loops having nonpositive weights. If the
subgraph Ĝ obtained from G by removing the loops has signless Laplacian eigenvalue
zero, then L−(G) is not positive semi-definite.
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Fig. 1 Graph with negative
weighted loops 1−2

1

1
1

2 −2

−1

3−2
−1

−1

4 −2

Fig. 2 Graph with negative
weighted loops 1−0.2

i

i

2 −0.2

3−0.2

i

Proof: Let x be the unit eigenvector corresponding to the zero Laplacian eigenvalue
of Ĝ. Then x†L−(G)x = x†R(G)x < 0 since R contains at least one loop with
negative weight. 	

Theorem 6 Let G be a connected weighted digraph with nonpositive loop weights
and n number of vertices. Let λ be a signless Laplacian eigenvalue of Ĝ of algebraic
multiplicity k. Then the number of zero eigenvalues of L−(G) is k if |ri | = λ for all
i ∈ V (G).

Proof: Consider L−(G) = R(G) + Q(Ĝ). We know that 0 is an eigenvalue of
L−(G) if an only if there exists a unit vector x ∈ C

n such that x†L−(G)x = 0,

which implies x†R(G)x = x†Q(Ĝ)x . Assume that λ is an eigenvalue of Q(Ĝ) with
algebraic multiplicity k. Since Q(Ĝ) is Hermitian, there exists unit orthogonal vectors
x1, x2, . . . , xk such that x†

i Q(Ĝ)xi = λ, i = 1, . . . , k. Set R(G) = −λIn, where In is

the identity matrix of order n. Then x†
i L−(G)xi = 0 for all i. Since xi s are orthonormal

vectors, algebraic multiplicity of eigenvalue 0 of L−(G) is k. 	

Remark 1 Note that, a connected weighted digraph with all negative weighted loops
can have zero signed Laplacian eigenvalues of multiplicity more than one. In particular,
consider any connected weighted complete digraph G where all the loops are present
having weights equal to one of the eigenvalues of Q(Ĝ). For example, consider Fig. 1.

Now we consider weighted digraphs with loops having both positive and negative
weights. Then we have the following theorem.

Theorem 7 Let G be a weighted digraph with loops having at least one negative
and at least one positive weighted loops. Assume that G has n vertices, k are having
positive loop weights, l are having negative loop weights such that k + l ≤ n. Let
r+

1 , . . . , r+
k be the positive weights and r−

k+1, . . . , r
−
l the negative weights such that

r±
j = r j − d j , for some r j ∈ R, j = 1, . . . , k, k + 1, . . . , l, . . . , n where d j is the

degree of j th vertex of Ĝ. Then L±(G) is positive semi-definite if and only if

diag{r1, r2, . . . , rn} + A(Ĝ)
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Fig. 3 Graph G with negative
and positive weighted loops

1−1

−2

2 3 4 2

is positive semi-definite.

Proof: Without loss of generality, assume that the first k vertices are having loops
with positive weights, second l vertices are having loops with negative weights, and
the remaining (if any) vertices have no loops. For any nonzero x ∈ C

n,

x†L±(G)x = x†

⎡

⎣
R+ 0 0
0 R− 0
0 0 R0

⎤

⎦ x + x†Q(Ĝ)x

= x†(diag{r1, r2, . . . , rn} + A(Ĝ))x

where R+ = diag{r+
1 , . . . , r+

k }, R− = diag{r−
1 , . . . , r−

l } and R0 = diag{rl+1, . . . ,

rn}. Hence, the result follows. 	

Theorem 8 Let G be a weighted digraph with loops having both positive and negative
weighted loops. The number of zero eigenvalues of L±(G) is equal to the number of
zero eigenvalues of diag{r1, r2, . . . , rn} + A(Ĝ) where r±

j = r j − d j , j = 1, . . . , n

and r±
j is the weight of the loop at j th vertex.

Proof: The proof follows by Theorem 7. 	

Example 2 Consider the weighted digraph in Fig. 3.The signed Laplacian is

L±(G) =

⎡

⎢
⎢
⎣

1 0 0 −2
0 0 0 0
0 0 0 0

−2 0 0 4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2

⎤

⎥
⎥
⎦ +

⎡

⎢
⎢
⎣

2 0 0 −2
0 0 0 0
0 0 0 0

−2 0 0 2

⎤

⎥
⎥
⎦ .

Note that if the number of zero eigenvalues of a Laplacian matrix is more than
one, the corresponding graph represents a mixed state. We use this in the next section
to determine graphs which represent pure states, that is, the graphs whose Laplacian
eigenvalues are all zeros, except one.

3 Graph structure for pure and mixed states

The approach of identifying the density matrix representations of quantum states by
density matrices of unweighted undirected graphs was introduced in [6] and extended
in [7] for weighted graphs. However, the recent development of signless Laplacian
matrix associated with a graph has not been gainfully used in both [6] and [7] to define
density matrix associated with the graph. Thus, the results in [7] could not capture
interesting connections between the properties of density matrices defined by a graph
and topology of the graph. In this section, we use the Laplacian matrices defined in the
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last section to define density matrix associated with a weighted digraph. Further, we
describe how the topological structure of the graph dictates whether the corresponding
density matrices represent pure or mixed states.

3.1 Pure states and mixed states

Recall that density matrix representation of a quantum state is a Hermitian positive
semi-definite matrix with unit trace. The density matrix σ corresponding to a state is
called pure if Tr(σ 2) = 1 and mixed if Tr(σ 2) < 1. A quantum state, in general, can
also be represented as

σ =
∑

i

pi |ψi 〉〈ψi |, (8)

where 0 �= |ψi 〉 ∈ C
2 with norm one and

∑
i pi = 1, 0 ≤ pi ≤ 1. Thus σ is a convex

combination of rank one matrices, in particular, rank one projections. If σ is just a
projection with rank one then σ is a pure state, otherwise, a mixed state.

We define density matrices associated with a weighted digraph. We denote an
weighted complete bipartite digraph without loops of order n by Kn .

Definition 1 The density matrix σG associated with an weighted digraph G is given
by

σG := 1

Tr(K (G))
K (G) (9)

where

– K (G) = L(G) when G is without a loop
– K (G) = Q(G) when either G is without a loop or having loops with nonnegative

weights
– K (G) = L−(G) when G is with loops having nonpositive weights and L−(G) is

positive semi-definite
– K (G) = L±(G) when G contains loops with positive weights, negative weights

and L±(G) is positive semi-definite.

Recall that, an isolated vertex in a graph is a vertex, not adjacent to any other vertex.

Theorem 9 The density matrix defined by Laplacian or signless Laplacian matrix of
a weighted digraph G without loops has rank one if and only if the graph is K2 or
K̂2 := K2 
 v1 
 v2 
 . . . vn−2., where v1, v2, . . . , vn−2 are isolated vertices.

Proof: Assume that σG has rank one andG containsn vertices. Then σG has eigenvalue
1 with multiplicity one (since trace of σG = 1) and 0 is an eigenvalue of multiplicity
n − 1. If n = 2 then obviously G = K2. If n �= 2 then by Corollary 5, G contains
n − 1 connected components. Thus, G = K̂2.

Conversely, suppose G = K2 or K̂2. Then the eigenvalues of σG are 0 with multi-
plicity n − 1 for G = K̂2 and multiplicity 1 for G = K2, and 1 with multiplicity one.
Hence, the result follows. 	
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Remark 2 We mention that the same result has been obtained in [6] for unweighted
undirected graphs.

Corollary 6 Let G be a weighted digraph without loops isomorphic to K2 or K̂2.

Then σG constructed by L(G) or Q(G) represents a pure state.

Proof: The density matrix σG has a simple eigenvalue 1, and other eigenvalues are
zeros. Since trace of any matrix is sum of the eigenvalues of the matrix, we have
Tr(σG) = 1 and Tr(σ 2

G) = 1. Thus, the result follows. 	

Corollary 7 Let G be a weighted digraph without loops of order n that is not iso-
morphic to K2 and K̂2. Then σG constructed by L(G) or Q(G) represents a mixed
state.

Proof: Let the eigenvalues of σ(G) be λ1 ≤ λ2 ≤ . . . ≤ λn . By the definition of σG ,
we have Tr(σG) = 1 as

∑n
i=1

λi
d(G)

= 1 where d(G) = ∑n
i=1 λi . Then the eigenvalues

of σ 2
G are

λ2
1

d(G)2 ,
λ2

2
d(G)2 , . . . ,

λ2
n

d(G)2 . Thus

Tr(σ 2
G) =

∑n
i=1 λ2

i

d(G)2 = d(G)2 − 2
∑n

i �= j,i, j=1 λiλ j

d(G)2 < 1.

Hence, G represents a mixed state. 	

Example 3 1. Consider the graph in Fig. 4 which represents a pure state.
2. Consider the graph in Fig. 5 which represents a mixed state.

The digraph O1, Fig. 6, denotes a digraph with one vertex, and the vertex contains
a directed weighted loop.

Theorem 10 The density matrix of order n defined by signless Laplacian matrix asso-
ciated with a weighted digraph G with loops having nonnegative weights has rank
one if and only if the graph is Ô1 := O1 
 v1 
 v2 
 . . . vn−1, where v1, v2, . . . , vn−1
are isolated vertices without loops.

Proof: Assume that the density matrix σG of G constructed by the signless Laplacian
of the graph and G contains n vertices with at least one vertex contains a directed
loop. Obviously, the matrix σG has rank 1 if and only if any submatrix of σG of order
≥ 2 is singular. Without loss of generality, assume that the first vertex v1 is attached
with a directed loop. Then the following cases arise.

Fig. 4 Pure state given by K2
along with 4 isolated nodes

w34
1 2 3 4 5 6

Fig. 5 Mixed state with 6
vertices

w23
3 4w43

1 2 5 6

Fig. 6 Pure state given by O1
along with a single loop 1 2 3r3 4 5 6
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Fig. 7 Mixed state with 6
vertices 1r1 2

w23
3

w34
4 5 6

Case-I: The vertex v1 is linked by a directed edge with another vertex say the second
vertex v2. In this case, if we consider the 2 × 2 submatrix of σG constructed by the
intersection of the 1st row, 2nd row, 1st column and 2nd column of σG then this is a
matrix with nonzero determinant. Hence, rank of σG is at least 2.

Case-II: Any two vertices without loops say vi and v j are linked by a directed edge.
In this case, if we consider the 2 × 2 submatrix of σG constructed by the intersection
of the 1st row, i th row, 1st column and i th column of σG then this is a matrix with
nonzero determinant. Hence, rank of σG is at least 2.

Case-III: All the vertices are isolated without loops except two vertices say the 1st
and the 2nd vertex. Then, if we consider the 2 × 2 submatrix of σG constructed by the
intersection of the 1st row, 2nd row, 1st column and 2nd column of σG then this is a
matrix with nonzero determinant. Hence, rank of σG is at least 2.

Case-IV: All the vertices are isolated without loops except the 1st vertex. Then the
density matrix σG is of rank 1.

Hence, the desired result follows. 	

Corollary 8 Let G be a weighted digraph with loops having nonnegative weights and
is isomorphic to Ô1. Then σG defined by the signless Laplacian of G represents a pure
state.

Corollary 9 Let G be a weighted digraph with loops having nonnegative weights of
order n that is not isomorphic to Ô1. Then σG defined by the signless Laplacian of G
represents a mixed state.

Example 4 1. Consider the graph in Fig. 6 which represents a pure state.
2. Consider the graph in Fig. 7 which represents a mixed state.

Remark 3 Realization of 1-qubit by weighted digraph: Consider the graph G = K2
for a pure state with edge weight w ∈ S

+
1 . Then the corresponding density matrix with

respect to the Laplacian matrix is given by

σG = 1

2
L(G) = 1

2

[
1 −w

−w 1

]

,

where w = eiφ, 0 ≤ φ ≤ 2π . The eigenvalues of σG are 0 and 1 corresponding to

eigenvectors |ψ1〉 = 1√
2|z1|

[
z1

wz1

]

and |ψ2〉 = 1√
2|z2|

[
z2

−wz2

]

, respectively, where

0 �= z1, z2 ∈ C. Thus, the pure state is given by σ = |ψ2〉〈ψ2|. Setting z2 =
reiθ , |z2| = r > 0, 0 ≤ θ ≤ 2π, the vector representation of the pure state is given
by
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|ψ〉 = eiθ
(

1√
2
|0〉 − 1√

2
e−iφ |1〉

)

,

≡ 1√
2
|0〉 − 1√

2
e−iφ |1〉

where |0〉 =
[

1
0

]

and |1〉 =
[

0
1

]

.

Further, the density matrix with respect to the signless Laplacian matrix is given
by

σG = 1

2
Q(G) = 1

2

[
1 w

w 1

]

.

Following a similar approach, as above, the corresponding vector representation of
the pure state is given by

|ψ〉 ≡ 1√
2
|0〉 + 1√

2
e−iφ |1〉, 0 ≤ φ ≤ 2π.

Now we consider weighted graphs with loops having nonpositive weights. We
denote Sn, n ≥ 2, a star graph with n vertices.

Theorem 11 Consider a weighted digraph G consisting of a weighted digraph Ĝ
without loops having n number of vertices and loops at each vertex of Ĝ with equal
weights −λ where λ is a signless Laplacian eigenvalue of Ĝ with multiplicity n − 1.

Then σ(G) = 1
Tr(L−(G))

L−(G) represents a pure state.

Proof: By Theorem 4, σ(G) is positive semi-definite. However, n − 1 number of
eigenvalues of L−(G) are zero since λ is an eigenvalue of Q(Ĝ) of algebraic multi-
plicity n − 1. Therefore, rank of σ(G) is one. Hence, the result follows. 	


Corollary 10 Consider a weighted digraph G consists of a weighted digraph Ĝ with-
out loops having n number of vertices and loops at each vertex of Ĝ with equal weights
−λ where λ is a signless Laplacian eigenvalue of Ĝ with multiplicity k < n− 1. Then
σ(G) = 1

Tr(L−(G))
L−(G) represents a mixed state.

Example 5 1. Consider G = Kn along with loops at each vertex of equal weights
−n/(n − 1). Then σ(G) = 1

Tr(L−(G))
L−(G) represents a pure state. For instance,

consider n = 3 in Fig. 8.
2. Consider G = Sn along with loops at each vertex of equal weights −1. Then

σ(G) = 1
Tr(L−(G))

L−(G) represents a mixed state. For example, consider n = 4
in Fig. 9.

Now we consider graphs with both positive and negative weighted loops.

Theorem 12 Let G be a weighted digraph with loops having at least one negative
and at least one positive weighted loops. Assume that G has n vertices, k are having
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Fig. 8 Pure state given by K3,
see Theorem 11, along with
negative weighted loops

1−1.5
1

1

2 −1.5

3−1.5

1

Fig. 9 Mixed state given by S4,
see Corollary 10, along with
negative weighted loops

1−1

1

2−1
1

1

3 −1

4−1

positive loop weights, l are having negative loop weights such that k + l ≤ n. Let
r+

1 , . . . , r+
k be the positive weights and r−

k+1, . . . , r
−
l the negative weights such that

r±
j = r j − d j , j = 1, . . . , k, k + 1, . . . , l, . . . , n where d j is the degree of j th vertex

of Ĝ. Then the density matrix corresponding to L±(G) represents a pure state if and
only if

diag{r1, r2, . . . , rn} + A(Ĝ)

has rank one.

Proof: The proof follows from the construction of L±(G) and Theorem 7. 	

However, we can construct a class of pure states by using the construction mentioned

in the following corollary.

Corollary 11 Consider a digraph Ĝ without loops having n vertices that represents
a pure state obtained by signless Laplacian matrix Q(Ĝ), that is, only two vertices of
G, say i th and jth of Ĝ = (V, E) are linked having edge weight wi j ∈ C, rest of the
vertices are isolated. Define r+

i = r2
i − |wi j | and r−

j = r2
j − |wi j | where ri , r j ∈ R+

such that r2
i +r2

j = 1 and rir j = |wi j |. Then the graph G constructed by Ĝ along with

loops introduced at the i th and jth vertices having weights r+
i and r−

j , respectively,
provides a pure state defined by L±(G).
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Fig. 10 G1 and G2

1
1

2 3 4

1 2
1

3 4

Proof: Note that, all the entries of L±(G) = (l pq) are given by

(L±(G))pq =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

r2
i , if p = q = i
r2
j , if p = q = j

wi j , if p = j, q = j
wi j , if p = j, q = i
0 otherwise.

Obviously, L±(G) is Hermitian, positive semi-definite and Tr(L±(G)) = 1. Further,
rank of L±(G) = 1. Therefore, G represents a pure state. 	


4 Graph structure of entangled pure states

In this section, we provide weighted digraphs whose density matrices represent entan-
gled pure states. Because of the potential applications offered by pure entangled states,
they are of immense importance in quantum information and computation. This forms
the basis for studying the properties of such states from a graph theoretic approach.

1. Bell States: For two-qubit systems, Bell states [1,2] are maximally entangled states
represented as

|φ〉±12 = 1√
2

[ |00〉12 ± |11〉12
]
,

|ψ〉±12 = 1√
2

[ |01〉12 ± |10〉12
]

. (10)

For example, consider the graphs with four vertices in Fig. 10. The density matrices
are given by σ(Gi ) = K (Gi )

Tr(K (Gi ))
; K (Gi ) ∈ {L(Gi ), Q(Gi )} where σ(G1) =

|φ〉+12 〈φ|+12 and σ(G2) = |ψ〉+12 〈ψ |+12. In order to produce the Bell states of the
form 1√

2

[|00〉 + eiδ|11〉] and 1√
2

[|01〉 + eiδ|10〉] using G1 and G2, one has to

replace the edge weights by a factor eiδ and edge will be unidirectional.
2. General 2-qubit and 3-qubit entangled states: Consider the graph in Fig. 11 for the

general two-qubit state |	〉 = a |00〉+b |11〉, wherea, b ∈ C\{0} and |a|2+|b|2 =
1. The density matrix associated with G is given by σ(G) = L±(G)

Tr(L±(G))
= |	〉 〈	|.

The graph for a general 3-qubit state, |
〉 = a |000〉+b |111〉, will follow similarly
by considering 8 vertices where only the first and the last vertices will be linked.

3. Three-qubit GHZ and W States: Three-qubit states can be separated into two
inequivalent classes, namely GHZ class and W class [16,17]. These classes
have distinct properties and cannot be converted into one another by performing
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1|a|2−|ab|
ab

2 3 4 |b|2−|ab|

Fig. 11 Graph G

Stochastic Local Operations and Classical Communication (SLOCC). We have
already shown that the graph of a general three-qubit GHZ state will be similar to
Fig. 11. For specific cases of a = b = 1√

2
, the eight orthogonal GHZ states are,

|ψ〉(1),(2)
123 = 1√

2
[ |000〉 ± |111〉 ] ,

|ψ〉(3),(4)
123 = 1√

2
[ |001〉 ± |110〉 ] ,

|ψ〉(5),(6)
123 = 1√

2
[ |010〉 ± |101〉 ] ,

|ψ〉(3),(4)
123 = 1√

2
[ |011〉 ± |100〉 ] ,

(11)

The graphs corresponding to Eq. (12) are given in Figs. 12, 13, 14, 15. and the
density matrices associated with G1,G2,G3,G4 are given σ(Gi ) = K (Gi )

Tr(K (Gi ))

where K (Gi ) ∈ {L(Gi ), Q(Gi )}, and σ(G1) = |ψ〉(1),(2)
123 〈ψ |(1),(2)

123 , σ (G2) =
|ψ〉(3),(4)

123 〈ψ |(3),(4)
123 , σ (G3) = |ψ〉(5),(6)

123 〈ψ |(5),(6)
123 , σ (G4) = |ψ〉(7),(8)

123 〈ψ |(7),(8)
123 .

The general three-qubit W state is given as |ψ〉W123 = a|001〉 + b|010〉 + c|100〉
where |a|2 +|b|2 +|c|2 = 1. The graph representation of |ψ〉W123 is given in Fig. 16.

The density matrix for the W class of states can be expressed as σ(G) = L−(G)
Tr(L−(G))

.

1
1

2 3 4 5 6 7 8

Fig. 12 G1

1 2
1

3 4 5 6 7 8

Fig. 13 G2

1 2 3
1

4 5 6 7 8

Fig. 14 G3

1 2 3 4
1

5 6 7 8

Fig. 15 G4
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2|a|(|a|−|b|−|c|) ab

ac

4 |b|(|b|−|a|−|c|)

5|c|(|c|−|a|−|b|)
cb

1 3 6 7 8

Fig. 16 G

For a specific case where a = b = c = 1√
3

, Fig. 17 represents the graphical
representation for a standard W state. It is evident that the graphs for GHZ and
W classes are completely distinct from each other. Therefore, using our approach
one can easily identify whether a given three-qubit state belongs to a GHZ class
or W class.
Similar to Gi , i = 1, . . . , 4 graphs with 8 vertices, graphs with 16 vertices can
be produced which will provide the GHZ states with 4-qubits. By similar graphs,
we mean graphs with 16 nodes, one edge which connects the i th and (17 − i)th
vertices, i = 1, . . . , 8 having edge weight 1. Similarly, one can also obtain the
graph for a four-qubit W state.

4. Cluster and Chi states: The four-qubit cluster [18] and Chi [19] states are given
by |ψ〉1234 = 1

2 (|0000〉) + |0101〉 + |1010〉 − |1111〉) and |φ〉1234 = 1
2 (|0000〉) +

|0101〉 + |1011〉 − |1110〉), respectively. The corresponding graphs for these two
states are given in Figs. 18 and 19, respectively.The two states are different as
evident from the edge weights. Similarly, the density matrices corresponding to

2−1
1

1

4 − 1◦ 3◦ 6◦ 7◦ 8◦

5−1

1

Fig. 17 G

12
1

1
1

6 2

1

2 3 4 5 7 8

112
1

1

16 2 9 10 12 13 14 15

Fig. 18 G

12
1

1
1

6 2

1

2 3 4 5 7 8

122
1

1

15 2 9 10 11 13 14 16

Fig. 19 G
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Fig. 20 G

1◦ 4◦

14◦ 15◦

21◦ 24◦

26◦ 27◦

Cluster and Chi states are represented by σ(Gi ) = L−(Gi )
Tr(L−(Gi ))

where σ(G1) =
|ψ〉1234 〈ψ |1234, and σ(G2) = |φ〉1234 〈φ|1234.

5. Brown State: Consider the graph G with 32 vertices given in Fig. 20. The isolated
vertices are not shown in the graph, and the weights of the edges and loops are as
given below.

wi j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, i = 1, j = 4, 15
1, i = 1, j = 14, 21, 24, 26, 27
−1, i = 4, j = 14, 21, 24, 26, 27
1, i = 4, j = 15
−1, i = 14, j = 15
1, i = 14, j = 21, 24, 26, 27
−1, i = 15, j = 21, 24, 26, 27
1, i = 21, j = 24, 26, 27
1, i = 24, j = 26, 27
1, i = 26, j = 27
−6, i = j, i = 1, 4, 14, 15, 21, 24, 26, 27.

(12)

The graph in Fig. 20 represents a five-qubit Brown state [20], namely

|ψ〉12345 = 1

2
√

2
[|00000〉 − |00011〉 + |01101〉 − |01110〉 + |10100〉

+ |10111〉 + |11001〉 + |11010〉] (13)

In comparison with other non-equivalent classes of five-qubit entangled states,
Brown states are said to be more entangled. The reason is evident from the property
that all the bipartitions of Brown states are maximally mixed which is not the case
with GHZ, Cluster or Chi type of states.
The density matrix associated with the graph for Brown state is

σ(G) = 1

Tr(L−(G))
L−(G) = |ψ〉12345 〈ψ |12345 .
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Fig. 21 G

1◦ 8◦

11◦ 14◦

20◦ 21◦

26◦ 31◦

6. 5-qubit Chi state: The five-qubit Chi state [21] can be represented as

|φ〉12345 = 1

2
[|00000〉 + |00111〉 + |01010〉 − |01101〉 − |10011〉 + |10100〉

+ |11001〉 + |11110〉] . (14)

The graph and weights of edges for the five-qubit Chi state are given by Fig. 21
and Eq. (14), respectively.

wi j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1, i = 1, j = 14, 20
1, i = 1, j = 8, 11, 21, 26, 31
−1, i = 8, j = 14, 20
1, i = 8, j = 11, 21, 26, 31
−1, i = 11, j = 14, 20
1, i = 11, j = 21, 26, 31
−1, i = 14, j = 21, 26, 31
1, i = 14, j = 20
−1, i = 20, j = 21, 26, 31
1, i = 26, j = 31
−6, i = j, i = 1, 4, 14, 15, 21, 24, 26, 27.

(15)

The density matrix, therefore, can be given as σ(G) =
1

Tr(L−(G))
L−(G) = |φ〉12345 〈φ|12345.

Although the difference between Brown and Chi states can be characterized from
the edge weights, for a meaningful classification of such states using a graph theo-
retical approach, one needs to quantify a graph theoretic measure for entanglement.
Such a measure will classify quantum states in different classes and provide deeper
physical insight into the complex nature of multiqubit entanglement.

Remark 4 Observe that in the graph representation of entangled pure states mentioned
above, all the existing weighted edges are clustered in a completely connected subgraph
of the original graph. Further, the weight of the loops attached at each of the vertices of
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the subgraph is −(m − 2) where m is the number of vertices involved in the complete
subgraph.

5 Conclusion

We define combinatorial, signless and signed Laplacian matrices associated with a
weighted digraph having complex edge weights with or without loops. We determine
the connection between the existence of zero Laplacian eigenvalues of a weighted
digraph and the topological structure of the graph. Using these Laplacian matrices,
we define density matrices corresponding to a weighted digraph. We have classified
graphs which represent pure and mixed density matrices of quantum states by using
the topological structure of the graphs. In particular, it is observed that for entangled
pure states, the weighted edges are clustered in a completely connected subgraph of
the original graph. Also, the weight of the loops attached at each of the vertices of the
subgraph is −(m − 2) where m is the number of vertices involved in the complete
subgraph. This work initiates a number of directions to the combinatoric visualization
of quantum mechanical phenomena. Some of them are listed below.

1. A state is called separable if the density matrix,

ρ =
∑

i

piρ
(A)
i ⊗ ρ

(B)
i .

Here, ρ
(A)
i and ρ

(B)
i denotes density matrix of subsystems A and B, where ⊗

denotes a tensor product. We denote tensor product of matrices by ⊗. The state is
entangled otherwise. We have deduced the graphs for several well-known entan-
gled pure states. We have demonstrated that the three-qubit entangled systems can
be classified into GHZ and W class using a graph theoretic approach. A criteria
of separability of states represented by the Laplacian of simple graphs has been
developed in [8]. A combinatorial operation has also been introduced for density
matrices defined by Laplacian matrices associated with simple graphs in [10] that
act as an entanglement generator for mixed states arising from partially symmetric
graphs. These works introduce new results for the separability of density matrices
corresponding to weighted digraphs.

2. In order to develop further insight into the entanglement properties of multiqubit
systems, it would be interesting to define a graph theoretic measure for quantifi-
cation and classification of entanglement in such systems. This would allow us to
interpret entanglement topologically for this class of states.

3. Recently, local unitary transformations on a density matrix obtained by signless
Laplacian matrix associated with a simple graph have been established as a combi-
natorial operation which is known as switching of a graph in [9]. This work sheds
further light to the problem of unitary equivalence and state classification for the
states related to weighted digraphs.

This work is, we hope, a contribution towards a new direction in the field of quantum
information.
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