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Abstract Monogamy relations characterize the distributions of entanglement in mul-
tipartite systems. We investigate monogamy relations related to the concurrenceC and
the entanglement of formation E . We present new entanglement monogamy relations
satisfied by the α-th power of concurrence for all α ≥ 2, and the α-th power of the
entanglement of formation for all α ≥ √

2. These monogamy relations are shown to
be tighter than the existing ones.
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1 Introduction

Quantum entanglement [1–8] is an essential feature of quantum mechanics. As one of
the fundamental differences between quantum entanglement and classical correlations,
a key property of entanglement is that a quantum system entangled with one of other
subsystems limits its entanglement with the remaining ones. The monogamy relations
give rise to the distribution of entanglement in the multipartite setting. Monogamy is
also an essential feature allowing for security in quantum key distribution [9].

For a tripartite system A, B andC , the usual monogamy of an entanglement measure
E implies that [10] the entanglement between A and BC satisfies EA|BC ≥ EAB+EAC .
Such monogamy relations are not always satisfied by all entanglement measures for
all quantum states. It has been shown that the squared concurrence C2 [11,12] and
the squared entanglement of formation E2 [13] satisfy the monogamy relations for
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multi-qubit states. It is further proved that [14] Cα and Eα satisfy the monogamy
inequalities for α ≥ 2 and α ≥ √

2, respectively.
In this paper, we show that the monogamy inequalities obtained so far can be made

tighter. We establish entanglement monogamy relations for the α-th power of the
concurrence C and the entanglement of formation E which are tighter than those in
[14], which give rise to finer characterizations of the entanglement distributions among
the multipartite qubit states.

2 Tighter monogamy relation of concurrence

We first consider the monogamy inequalities related to concurrence. Let HX denote a
discrete finite dimensional complex vector space associated with a quantum subsystem
X . For a bipartite pure state |ψ〉AB in vector space HA ⊗ HB , the concurrence is given
by [15–17]

C(|ψ〉AB) =
√

2
[
1 − Tr(ρ2

A)
]
, (1)

where ρA is the reduced density matrix by tracing over the subsystem B, ρA =
TrB(|ψ〉AB〈ψ |). The concurrence for a bipartite mixed state ρAB is defined by the
convex roof extension

C(ρAB) = min{pi ,|ψi 〉}
∑
i

piC(|ψi 〉),

where the minimum is taken over all possible decompositions of ρAB =∑
i pi |ψi 〉〈ψi |,

with pi ≥ 0 and
∑

i pi = 1 and |ψi 〉 ∈ HA ⊗ HB .
For an N -qubit pure state |ψ〉AB1...BN−1 ∈ HA⊗HB1 ⊗· · ·⊗HBN−1 , the concurrence

C(|ψ〉A|B1...BN−1) of the state |ψ〉A|B1...BN−1 , viewed as a bipartite state under the
partitions A and B1, B2, . . . , BN−1, satisfies the Coffman–Kundu–Wootters (CKW)
inequality [11,12],

C2
A|B1,B2...,BN−1

≥ C2
A|B1

+ C2
A|B2

+ · · · + C2
A|BN−1

, (2)

where CABi = C(ρABi ) is the concurrence of ρABi = TrB1...Bi−1Bi+1...BN−1

(|ψ〉AB1...BN−1〈ψ |), CA|B1,B2...,BN−1 = C(|ψ〉A|B1...BN−1). It is further proved that
for α ≥ 2, one has [14],

Cα
A|B1,B2...,BN−1

≥ Cα
A|B1

+ Cα
A|B2

+ · · · + Cα
A|BN−1

. (3)

In fact, as the characterization of the entanglement distribution among the sub-
systems, the monogamy inequalities satisfied by the concurrence can be refined and
becomes tighter. Before finding tighter monogamy relations of concurrence, we first
introduce a Lemma.

Lemma 1 For any 2 ⊗ 2 ⊗ 2n−2 mixed state ρ ∈ HA ⊗ HB ⊗ HC, if CAB ≥ CAC,
we have
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Cα
A|BC ≥ Cα

AB + α

2
Cα

AC , (4)

for all α ≥ 2.

Proof For arbitrary 2 ⊗ 2 ⊗ 2n−2 tripartite state ρABC , one has [11,18], C2
A|BC ≥

C2
AB + C2

AC . If CAB ≥ CAC , we have

Cα
A|BC ≥ (C2

AB + C2
AC )

α
2 = Cα

AB

(
1 + C2

AC

C2
AB

) α
2

≥ Cα
AB

⎡
⎣1 + α

2

(
C2

AC

C2
AB

) α
2
⎤
⎦ = Cα

AB + α

2
Cα

AC ,

where the second inequality is due to the inequality (1 + t)x ≥ 1 + xt ≥ 1 + xt x for
x ≥ 1, 0 ≤ t ≤ 1. 	


In the Lemma, without loss of generality, we have assumed that CAB ≥ CAC , since
the subsystems A and B are equivalent. Moreover, in the proof of the Lemma we have
assumed CAB > 0. If CAB = 0 and CAB ≥ CAC , then CAB = CAC = 0. The lower
bound is trivially zero. For multipartite qubit systems, we have the following Theorem.

Theorem 1 For any 2 ⊗ 2 ⊗ · · · ⊗ 2 mixed state ρ ∈ HA ⊗ HB1 ⊗ · · · ⊗ HBN−1 ,
if CABi ≥ CA|Bi+1...BN−1 for i = 1, 2, . . . ,m, and CABj ≤ CA|Bj+1...BN−1 for j =
m + 1, . . . , N − 2, ∀ 1 ≤ m ≤ N − 3, N ≥ 4, we have

Cα
A|B1B2...BN−1

≥ Cα
A|B1

+α

2
Cα

A|B2
+ · · · +

(α

2

)m−1
Cα

A|Bm

+
(α

2

)m+1
(Cα

A|Bm+1
+ · · · + Cα

A|BN−2
)

+
(α

2

)m
Cα

A|BN−1
(5)

for all α ≥ 2.

Proof By using the inequality (4) repeatedly, one gets

Cα
A|B1B2...BN−1

≥ Cα
A|B1

+ α

2
Cα

A|B2...BN−1

≥ Cα
A|B1

+ α

2
Cα

A|B2
+

(α

2

)2
Cα

A|B3...BN−1

≥ · · · ≥ Cα
A|B1

+ α

2
Cα

A|B2
+ · · · +

(α

2

)m−1
Cα

A|Bm
+

(α

2

)m
Cα

A|Bm+1...BN−1
.

(6)
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As CABj ≤ CA|Bj+1...BN−1 for j = m + 1, . . . , N − 2, by (4) we get

Cα
A|Bm+1...BN−1

≥ α

2
Cα

A|Bm+1
+ Cα

A|Bm+2...BN−1

≥ α

2
(Cα

A|Bm+1
+ · · · + Cα

A|BN−2)
+ Cα

A|BN−1
. (7)

Combining (6) and (7), we have Theorem 1. 	

As for α ≥ 2, (α/2)m ≥ 1 for all 1 ≤ m ≤ N − 3, comparing with the monogamy

relation (3), our formula (5) in Theorem 1 gives a tighter monogamy relation with
larger lower bounds. In Theorem 1 we have assumed that some CABi ≥ CA|Bi+1...BN−1

and some CABj ≤ CA|Bj+1...BN−1 for the 2⊗2⊗· · ·⊗2 mixed state ρ ∈ HA ⊗ HB1 ⊗
· · · ⊗ HBN−1 . If all CABi ≥ CA|Bi+1...BN−1 for i = 1, 2, . . . , N − 2, then we have the
following conclusion:

Theorem 2 If CABi ≥ CA|Bi+1...BN−1 for all i = 1, 2, . . . , N − 2, then we have

Cα
A|B1...BN−1

≥ Cα
A|B1

+ α

2
Cα

A|B2
+ · · · +

(α

2

)N−2
Cα

A|BN−1
. (8)

Example 1 Let us consider the three-qubit state |ψ〉 which can be written in the gen-
eralized Schmidt decomposition form [19,20],

|ψ〉 = λ0|000〉 + λ1e
iϕ |100〉 + λ2|101〉 + λ3|110〉 + λ4|111〉, (9)

where λi ≥ 0, i = 0, . . . , 4 and
∑4

i=0 λ2
i = 1. From the definition of concurrence,

we have CA|BC = 2λ0

√
λ2

2 + λ2
3 + λ2

4, CA|B = 2λ0λ2, and CA|C = 2λ0λ3. Set

λ0 = λ1 = λ2 = λ3 = λ4 =
√

5
5 . One gets Cα

A|BC = ( 2
√

3
5 )α , Cα

A|B + Cα
A|C = 2( 2

5 )α ,

Cα
A|B + α

2C
α
A|C = (

1 + α
2

)
( 2

5 )α . The “residual” entanglement from our result is given

by y1 = Cα
A|BC − Cα

A|B − α
2C

α
A|C = ( 2

√
3

5 )α − (
1 + α

2

)
( 2

5 )α and the “residual”

entanglement from (3) is given by y2 = Cα
A|BC − Cα

A|B − Cα
A|C = ( 2

√
3

5 )α − 2( 2
5 )α .

One can see that our result is better than that in [14] for α ≥ 2, see Fig. 1.

We can also derive a tighter upper bound of Cα
A|B1B2...BN−1

for α < 0.

Theorem 3 For any 2 ⊗ 2 ⊗ · · · ⊗ 2 mixed state ρ ∈ HA ⊗ HB1 ⊗ · · · ⊗ HBN−1 with
CABi �= 0, i = 1, 2, . . . , N − 1, we have

Cα
A|B1B2...BN−1

< M̃
(
Cα

A|B1
+ Cα

A|B2
+ · · · + Cα

A|BN−1

)
(10)

for all α < 0, where M̃ = 1
N−1 .
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Fig. 1 y is the “residual” entanglement as a function of α: solid (red) line y1 from our result, dashed (blue)
line y2 from the result in [14] (Color figure online)

Proof Similar to the proof of Theorem 1, for arbitrary tripartite state we have

Cα
A|B1B2

≤ (C2
AB1

+ C2
AB2

)
α
2

= Cα
AB1

(
1 + C2

AB2

C2
AB1

) α
2

< Cα
AB1

,
(11)

where the first inequality is due to α < 0 and the second inequality is due to (1 +
C2
AB2

C2
AB1

)
α
2 < 1. On the other hand, we have

Cα
A|B1B2

≤ (C2
AB1

+ C2
AB2

)
α
2

= Cα
AB2

(
1 + C2

AB1

C2
AB2

) α
2

< Cα
AB2

.
(12)

From (11) and (12) we obtain

Cα
A|B1B2

<
1

2
(Cα

AB1
+ Cα

AB2
). (13)

By using the inequality (13) repeatedly, one gets

Cα
A|B1B2...BN−1

<
1

2

(
Cα

A|B1
+ Cα

A|B2...BN−1

)

<
1

2
Cα

A|B1
+

(
1

2

)2

Cα
A|B2

+
(

1

2

)2

Cα
A|B3...BN−1

(14)
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Fig. 2 y is the “residual” entanglement as a function of α: red line (solid line) from our Theorem 2; blue
line (dashed line) from the result in [14] (Color figure online)

< · · · <
1

2
Cα

A|B1
+

(
1

2

)2

Cα
A|B2

+ · · ·

+
(

1

2

)N−2

Cα
A|BN−2

+
(

1

2

)N−2

Cα
A|BN−1

.

By cyclically permuting the sub-indices B1, B2, . . . , BN−1 in (14) we can get a set of
inequalities. Summing up these inequalities we have (10). 	


As the factor M̃ = 1
N−1 is less than one, the inequality (10) is tighter than the

one in [14]. This factor M̃ depends on the number of partite N . Namely, for larger
multipartite systems, the inequality (10) gets even tighter than the one in [14].

Example 2 Let us consider again the three-qubit state (9). In this case, we have N = 3
and M̃ = 1/2. Taking the same parameters used in Example 1, we have Cα

A|BC =
( 2

√
3

5 )α , Cα
A|B +Cα

A|C = 2( 2
5 )α , M̃(Cα

A|B +Cα
A|C ) = ( 2

5 )α. Comparing the function of

y1 = Cα
A|BC−M̃Cα

A|B−M̃Cα
A|C = ( 2

√
3

5 )α−( 2
5 )α with y2 = Cα

A|BC−Cα
A|B−Cα

A|C =
( 2

√
3

5 )α − 2( 2
5 )α , one can see that our result is better than the one from [14], see

Fig. 2.

Remark In (10) we have assumed that all CABi , i = 1, 2, . . . , N − 1, are nonzero.
In fact, if one of them is zero, the inequality still holds if one removes this term from
the inequality. Namely, if CABi = 0, then one has Cα

A|B1B2...BN−1
< 1

2C
α
A|B1

+ · · · +
( 1

2

)i−1
Cα

A|Bi−1
+ ( 1

2

)i
Cα

A|Bi+1
+ · · · + ( 1

2

)N−3
Cα

A|BN−2
+ ( 1

2

)N−3
Cα

A|BN−1
. Similar

to the analysis in proving Theorem 2, one gets Cα
A|B1B2...BN−1

< 1
N−1 (Cα

A|B1
+ · · · +

Cα
A|Bi−1

+ Cα
A|Bi+1

+ · · · + Cα
A|BN−1

), for α < 0.
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3 Tighter monogamy inequality for EoF

The entanglement of formation (EoF) [21,22] is a well defined important measure of
entanglement for bipartite systems. Let HA and HB be m- and n-dimensional (m ≤ n)

vector spaces, respectively. The EoF of a pure state |ψ〉 ∈ HA ⊗ HB is defined by

E(|ψ〉) = S(ρA), (15)

where ρA = TrB(|ψ〉〈ψ |) and S(ρ) = −Tr(ρ log2 ρ). For a bipartite mixed state
ρAB ∈ HA ⊗ HB , the entanglement of formation is given by

E(ρAB) = min{pi ,|ψi 〉}
∑
i

pi E(|ψi 〉) (16)

with the minimum taking over all possible decompositions of ρAB in a mixture of pure
states ρAB = ∑

i pi |ψi 〉〈ψi |, where pi ≥ 0 and
∑

i pi = 1.

Denote f (x) = H
(

1+√
1−x

2

)
, where H(x) = −x log2(x) − (1 − x) log2(1 − x).

From (15) and (16), one has E(|ψ〉) = f
(
C2(|ψ〉)) for 2 ⊗ m (m ≥ 2) pure state

|ψ〉, and E(ρ) = f
(
C2(ρ)

)
for two-qubit mixed state ρ [23]. It is obvious that f (x)

is a monotonically increasing function for 0 ≤ x ≤ 1. f (x) satisfies the following
relations:

f
√

2(x2 + y2) ≥ f
√

2(x2) + f
√

2(y2), (17)

where f
√

2(x2 + y2) = [ f (x2 + y2)]
√

2.

It has been show that the entanglement of formation does not satisfy the inequality
EAB + EAC ≤ EA|BC [24]. In [25], the authors showed that EoF is a monotonic
function E2(C2

A|B1B2...BN−1
) ≥ E2(

∑N−1
i=1 C2

ABi
). It is further proved that for N−qubit

systems, one has [14]

Eα
A|B1B2...BN−1

≥ Eα
A|B1

+ Eα
A|B2

+ · · · + Eα
A|BN−1

(18)

for α ≥ √
2, where EA|B1B2...BN−1 is the entanglement of formation of ρ in bipartite

partition A|B1B2 . . . BN−1, and EABi , i = 1, 2, . . . , N − 1, is the entanglement of
formation of the mixed states ρABi = TrB1B2...Bi−1,Bi+1...BN−1(ρ). In fact, generally
we can prove the following results.

Theorem 4 For any N-qubit mixed state ρ ∈ HA ⊗ HB1 ⊗ · · · ⊗ HBN−1 , if CABi ≥
CA|Bi+1...BN−1 for i = 1, 2, . . . ,m,andCABj ≤ CA|Bj+1...BN−1 for j = m+1, . . . , N−
2, ∀ 1 ≤ m ≤ N − 3, N ≥ 4, the entanglement of formation E(ρ) satisfies

Eα
A|B1B2...BN−1

≥ Eα
A|B1

+ t Eα
A|B2

· · · + tm−1Eα
A|Bm

+ tm+1(Eα
A|Bm+1

+ · · · + Eα
A|BN−2

)

+ tm Eα
A|BN−1

, (19)

for α ≥ √
2, where t = α/

√
2.
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Proof For α ≥ √
2, we have

f α(x2 + y2) =
(
f
√

2(x2 + y2)
)t

≥
(
f
√

2(x2) + f
√

2(y2)
)t

(20)

≥
(
f
√

2(x2)
)t + t

(
f
√

2(y2)
)t

= f α(x2) + t f α(y2),

where the first inequality is due to the inequality (17), and the second inequality is
obtained from a similar consideration in the proof of the second inequality in (4).

Let ρ = ∑
i pi |ψi 〉〈ψi | ∈ HA ⊗HB1 ⊗· · ·⊗HBN−1 be the optimal decomposition

of EA|B1B2...BN−1(ρ) for the N-qubit mixed state ρ, we have

EA|B1B2...BN−1(ρ)

=
∑
i

pi EA|B1B2...BN−1(|ψi 〉)

=
∑
i

pi f
(
C2

A|B1B2...BN−1
(|ψi 〉)

)

≥ f

(∑
i

piC
2
A|B1B2...BN−1

(|ψi 〉)
)

≥ f

⎛
⎝

[∑
i

piCA|B1B2...BN−1(|ψi 〉)
]2

⎞
⎠

≥ f
(
C2

A|B1B2...BN−1
(ρ)

)
,

where the first inequality is due to that f (x) is a convex function. The second inequality

is due to the Cauchy–Schwarz inequality: (
∑

i x
2
i )

1
2 (

∑
i y

2
i )

1
2 ≥ ∑

i xi yi , with xi =√
pi and yi = √

piCA|B1B2...BN−1(|ψi 〉). Due to the definition of concurrence and that
f (x) is a monotonically increasing function, we obtain the third inequality. Therefore,
we have

Eα
A|B1B2...BN−1

(ρ)

≥ f α(C2
AB1

+ C2
AB2

+ · · · + C2
ABm−1

)

≥ f α(C2
A|B1

) + t f α(C2
A|B2

) · · · + tm−1 f α(C2
A|Bm )

+ tm+1
(
f α(C2

A|Bm+1
) + · · · + f α(C2

A|BN−2
)
)

+ tm f α(C2
A|BN−1

)

= Eα
A|B1

+ t Eα
A|B2

· · · + tm−1Eα
A|Bm

+ tm+1(Eα
A|Bm+1

+ · · · + Eα
A|BN−2

) + tm Eα
A|BN−1

,
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Fig. 3 y is the residual entanglement as a function of α: red (solid) line from our results; blue (dashed)
line from the result in [14] (Color figure online)

where we have used the monogamy inequality in (2) for N−qubit states ρ to obtain the
first inequality. By using (20) and the similar consideration in the proof of Theorem 1,
we get the second inequality. Since for any 2 ⊗ 2 quantum state ρABi , E(ρABi ) =
f
[
C2(ρABi )

]
, one gets the last equality. 	


As the factor t = α/
√

2 is greater or equal to one for α ≥ √
2, (19) is obviously

tighter than (18). Moreover, similar to the concurrence, for the case that CABi ≥
CA|Bi+1...BN−1 for all i = 1, 2, . . . , N−2, we have a simple tighter monogamy relation
for entanglement of formation:

Theorem 5 If CABi ≥ CA|Bi+1...BN−1 for all i = 1, 2, . . . , N − 2, we have

Eα
A|B1B2...BN−1

≥ Eα
A|B1

+ α√
2
Eα
A|B2

+ · · ·

+
(

α√
2

)N−2

Eα
A|BN−1

(21)

for α ≥ √
2.

Example 3 Let us consider the W state, |W 〉 = 1√
3
(|100〉 + |010〉 + |001〉). We have

EAB = EAC = 0.55, EA|BC = 0.92. Let y1 = Eα
A|BC − Eα

A|B − α√
2
Eα
A|C denote the

residual entanglement from our formula (21), and y2 = Eα
A|BC − Eα

A|B − Eα
A|C the

residual entanglement from formula (18). It is easily verified that our results are better
than the one in [14] for α ≥ √

2, see Fig. 3.

4 Conclusion

Entanglement monogamy is a fundamental property of multipartite entangled states.
We have investigated the monogamy relations related to the concurrence and EoF, and
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presented tighter entanglement monogamy relations of Cα and Eα for α ≥ 2 and α ≥√
2, respectively. Monogamy relations characterize the distributions of entanglement

in multipartite systems. Tighter monogamy relations imply finer characterizations
of the entanglement distribution. Our approach may be also used to study further
the monogamy properties related to other quantum entanglement measures such as
negativity and quantum correlations such as quantum discord.
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