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Abstract We propose a quantum secret sharing scheme that uses an orthogonal pair
of n-qudit GHZ states and local distinguishability. In the proposed protocol, the par-
ticipants use an X -basis measurement and classical communication to distinguish
between the two orthogonal states and reconstruct the original secret. We also present
(2, n)-threshold and generalized restricted (2, n)-threshold schemes that enable any
two cooperating players from two disjoint groups to always reconstruct the secret.
Compared to the existing scheme by Rahaman and Parker (Phys Rev A 91:022330,
2015), the proposed scheme is more general and the access structure contains more
authorized sets.

Keywords Quantum secret sharing · Local distinguishability · GHZ state · Orthogonal
pair

1 Introduction

Secret sharing, first introduced by Shamir [1] and Blakley [2], plays a significant
role in the cryptography. It is an important protocol to distribute a piece of secret
information (called the secret) among a finite set of players P such that only qualified
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subsets can collaboratively recover the secret. Traditionally, both secret and shares
were classical information. Several researchers [3–6] extended the classical protocol
to the quantum field. Quantum secret sharing (QSS) is also a cryptographic protocol
to distribute a secret among a group of players P such that only authorized subsets
of P can reconstruct the secret. While the secret in a quantum scheme may be either
an unknown quantum state or a classical one, in this case the players are comprised
of quantum systems and quantum communication is allowed between the dealer and
the players. Compared to the classical secret sharing, QSS is more secure due to the
excellent properties of quantum theory.

In 1999, Hillery et al. [3] firstly introduced a protocol of QSS by using GHZ states.
At the same year, Karlsson et al. [7] showed how a QSS protocol can be implemented
using two-particle quantum entanglement and discussed how to detect eavesdropping
or a dishonest participant. In 2004, Xiao et al. [8] generalized the QSS of Hillery et
al. into arbitrary multiparty. From then on, various QSS schemes have been proposed
[9–21]. For example, Liao et al. [22] used the GHZ state to design a dynamic quan-
tum secret sharing protocol. Rahaman and Parker [23] proposed the quantum secret
sharing based on local distinguishability (LOCC-QSS). Gheorghiu and Sander [24]
constructed accessing quantum secret via local operations and classical communica-
tion. Moreover, with the development and application of quantum communication, it is
a good idea for quantum communication to design the protocol with high-dimensional
quantum systems, such as quantum secure direct communication [25] and controlled
teleportation [26]. For QSS, Tavakoli et al. [27] introduced the secret sharing with a
single d-level quantum system. Qin and Dai [28] considered a verifiable (t, n) thresh-
old quantum secret sharing using d-dimensional Bell state. Based on the idea of the
previous schemes, we try to combine the d-dimensional GHZ state and the local dis-
tinguishability to design a new quantum secret sharing scheme.

In this paper, we propose the quantum secret sharing scheme that uses local opera-
tions and classical communication (LOCC) to distinguish between two d-dimensional
orthogonal GHZ states (d-LOCC-QSS). In our protocol, we firstly adopt the data block
transmission technique [29] and make use of the decoy photon technique [30,31] to
assure the security of the transmission. Then we utilize the delayed measurement tech-
nique [32]; that is, all participants efficiently make the measurements with X -basis
after Alice. At last, the participants can distinguish the orthogonal pair and reconstruct
the original secret.

The organization of this paper is as follows: In Sect. 2, we give some preliminaries.
In Sect. 3, we propose the quantum secret sharing scheme and show two specific d-
LOCC-QSS schemes. Section 4 analyzes the security. Section 5 compares our scheme
with the existing scheme. Finally, the conclusion is given in Sect. 6.

2 Preliminaries

In this section, we discuss several distinguishability problems related to an orthogonal
pair of n-qudit symmetric state, i.e., the generalized GHZ state, see Refs. [23,28].

Let H be a d-dimensional Hilbert space and a generalized n-qudit GHZ state can
be denoted by

123



Quantum secret sharing using the d-dimensional GHZ state Page 3 of 13 59

|GHZ(u1, u2, u3, . . . , un)〉 = 1√
d

d−1∑

j=0

ω ju1 | j, j + u2, . . . , j + un〉,

where ω = e
2π i
d ,u1, u2, . . . , un ∈ {0, 1, . . . , d − 1}, and the symbol “+” means the

adder modulo d. In particular, for d = 2, the general GHZ state can also be described
as follows.

|GHZ(u1, u2, u3, . . . , un)〉 = 1√
2
[|0, u2, . . . , un〉 + (−1)u1 |1, u2, . . . , un〉]

whereu1, u2, . . . , un ∈ {0, 1}, and the bar over a bit value indicates its logical negation.
In the d-dimensional Hilbert space, the generalized X -basis and Z -basis have the

following forms:

X = {| j〉, j = 0, 1, . . . , d − 1}
Z = {|J j 〉, j = 0, 1, . . . , d − 1}

where |J j 〉 = 1√
d

∑d−1
k=0 ωk j |k〉 and ω = e

2π i
d .

Let us define an orthogonal pair with distance r as follows:

|GHZ〉 = 1√
d

[
|

n︷ ︸︸ ︷
0, 0, . . . , 0︸ ︷︷ ︸

A0

, 0, 0, . . . , 0︸ ︷︷ ︸
A1

, . . . , 0, 0, . . . , 0︸ ︷︷ ︸
Ad−1

〉 + |1, 1, . . . , 1, 1, . . . , 1〉

+ · · · + |d − 1, d − 1, . . . , d − 1, d − 1, . . . , d − 1〉
]

|GHZ〉r = 1√
d

[
| 0, 0, . . . , 0︸ ︷︷ ︸

A0

, 1, 1, . . . , 1︸ ︷︷ ︸
A1

, . . . , d − 1, d − 1, . . . , d − 1︸ ︷︷ ︸
Ad−1

〉 (1)

+ |1, 1, . . . , 1, 2, 2, . . . , 2, . . . , 0, 0, . . . , 0〉 + . . .

+ |d − 1, d − 1, . . . , d − 1, 0, 0, . . . , 0, . . . , d − 2, d − 2, . . . , d − 2〉
]

where r = max{|Ak | : k = 0, 1, . . . , d − 1} and |Ak |(k = 0, 1, . . . , d − 1) represents
the total number of Ak and satisfies the following: (1)

∑d−1
k=0 |Ak | = n and (2) there

exist at least two nonzero elements in the {|Ak |}d−1
k=0 . In particular, for d = 2 we can

get r = max{|A0|, |A1|}. It is easy to verify that the orthogonal pair with distance r is
consistent with the orthogonal pair of that distance in Ref. [23].

Example 1 We give an example to illustrate the existence of this orthogonal pair with
distance r . An orthogonal pair is denoted by:

|GHZ〉 = 1√
3

[
|000000〉 + |111111〉 + |222222〉

]
(2)
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|GHZ〉r = 1√
3

[
|011222〉 + |122000〉 + |200111〉

]

By the definition, we can get that r = 3. Hence, this is a distance-3 orthogonal pair.

Theorem 1 ([23]) Classical communication is necessary to distinguish any pair of
Bell states locally.

We can understand this theorem as follows. Let Alice and Bob share the following
pair of Bell states:

|Φ±〉 = 1√
2
[|0〉A|0〉B ± |1〉A|1〉B]

Their goal is to distinguish the above pair of Bell states by only local operations (LO)
on their respective qubits, and they cannot utilize the classical communication.

Let Alice and Bob be spatially separated and share the known Bell state |Φ±〉. Bob
applies I or σz on his qubit to communicate the message 0 or 1, respectively, and the
desired state may change to another orthogonal Bell state as

(IA ⊗ I
B)|Φ+〉 = 1√

2
[|0〉A|0〉B + |1〉A|1〉B] = |Φ+〉,

(
I
A ⊗ σ B

z

)
|Φ+〉 = 1√

2
[|0〉A|0〉B − |1〉A|1〉B] = |Φ−〉

If Alice (alone) is able to distinguish the above pair without any communication
from Bob, then she can recover Bobs message as well, which is impossible as that
would imply signaling (no message can travel faster than the speed of light in a
vacuum).

Theorem 2 An orthogonal pair of generalized GHZ states (1) can always be exactly
distinguished by any two cooperating LOCC parties, one from the part of A j and the
other from the part of Ak, where k, j ∈ {0, 1, . . . , d − 1} and j �= k.

Proof The proof is simple. Both cooperating parties (one from the part of A j

and the other from the part of Ak( j �= k)) measure their own qudit in the basis
{|0〉, |1〉, . . . , |d − 1〉} locally, and if both of them get the same result, the shared state
was |GHZ〉, otherwise the state was |GHZ〉r . ��

3 Quantum scheme for secret sharing

3.1 The d-LOCC-QSS scheme

Now we propose our scheme in some steps: Alice is going to share her secret infor-
mation among Bobk (k = 1, 2, . . . , n) such that some of them must collaborate to
reconstruct Alice’s secret. In this protocol, we adopt the following techniques: the
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Fig. 1 The qudits distribution of our QSS scheme and the arranged particle sequences

data block transmission [29], the decoy photon technique [30,31] and the delayed
measurement technique [32].

Step 1 (S1) Alice first prepares a sequence ofm entangled states, (q j
1q

j
2 . . . q j

n ) j =
1, 2, . . . ,m, chosen randomly from a specified distance-r orthogonal pair of the n-
qudit GHZ states in Eq. (1) according to the access structure. Then, Alice divides the
sequence into n strings, as given in Fig. 1, and these strings can be denoted by:

S1 =
{
q1

1 , q2
1 , . . . , qm1

}
,

S2 =
{
q1

2 , q2
2 , . . . , qm2

}
,

. . .

Sn =
{
q1
n , q

2
n , . . . , q

m
n

}
, (3)

where q j
1 , q j

2 , . . . , q j
n are the ordered particles in j th entangled state in the main

sequence j = 1, 2, . . . ,m.
Step 2 (S2) In order to prevent the dishonest participants, Alice now prepares, at

random, a different sequence, rk = �k(1, 2, 3, . . . ,m) (k = 1, 2, . . . , n), where �k

is an arbitrary permutation of the sequence (1, 2, 3, . . . ,m). Alice makes use of the
rk to disrupt the order of Sk and produces a new sequence S′

k (k = 1, 2 . . . , n).
Step 3 (S3) In this step, Alice uses the checking photon technique in order to

guarantee the security of transmission and randomly chooses some checking single
photons from the X -basis and Z -basis. These photons are denoted by

Ck =
{
p1
k , p

2
k , . . . , p

l
k

}
, k = 1, 2, . . . , n.

the single photons ofCk are put randomly between the particles of S′
k , k = 1, 2, . . . , n.

At last, Alice shuffles the particles in the sequences and obtains new sequences
S′′

1 , S′′
2 , . . . , S′′

n .
Step 4 (S4) In this case, for each k = 1, 2, . . . , n, Alice sends S′′

k to Bobk . Note that
Alice only sends the qudits and not the information about �k . Hence, except Alice,
no one has the information about �k .
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Step 5 (S5) After confirming that Bob1, Bob2, . . . , Bobn have received their own
sequences, Alice announces the positions and measuring base of checking photons
in each sequence. All players take some measures to their corresponding checking
photons in specific bases and resend the results to Alice. According to all participants’
results, Alice can evaluate the error rate. If the error rate is higher than threshold value,
then she must abort the protocol and start again with a new set of resources.

Step 6 (S6) If no eavesdropper is detected, Alice announces the sequence rk to
Bobk , respectively. After receiving the sequence rk , Bobk measures his particles in
the sequence S′′

k with the X -basis. Through cooperation among the participants, they
can distinguish between |GHZ〉 and |GHZ〉r , which |GHZ〉r (|GHZ〉) represents the
secret a(= 0/1). The relation between classical bit value and orthogonal entangled
pair is fixed and communicated, securely, from Alice to all Bobs in advance.

3.2 The specific d-LOCC-QSS scheme

In Ref. [23], Rahaman and Parker proposed the restricted (2, n)-threshold LOCC-
QSS scheme. From the perspective of the graph access structure [33], the access
structure in the LOCC-QSS scheme is a complete bipartite graph. In this section, we
discuss the choice of states (S1) for different threshold scenarios and give the standard
(2, n)-threshold d-LOCC-QSS scheme and the generalized restricted (2, n)-threshold
d-LOCC-QSS scheme.

3.2.1 The (2, n)-threshold d-LOCC-QSS scheme

Here considering the case when r = 1, that is, |Ak | = 1(k = 0, 1, . . . , d − 1), we
propose the (2, n)-threshold d-LOCC-QSS scheme (n = d). For this scheme, it is a
standard threshold scheme; that is, the access structure can be written as

Γ = {Pj Pk : j, k = 0, 1, . . . , d − 1 and j �= k}.

S1. Alice first prepares the states, each chosen randomly from a distance-1 orthog-
onal pair of n-qudit GHZ states (4).

|GHZ〉 = 1√
d

[
|0, 0, . . . , 0〉 + |1, 1, . . . , 1〉 + · · · + |d − 1, d − 1, . . . , d − 1〉

]

|GHZ〉1 = 1√
d

[
|0, 1, . . . , d − 1〉 + |1, 2, . . . , 0〉 + · · · + |d − 1, 0, . . . , d − 2〉

]

(4)

S2, S3, S4 and S5 can be carried out in accordance with the above steps in Sect. 3.1.
S6. If no eavesdropper is detected, Alice announces the sequence rk to Bobk ,

respectively. According to Theorem 2, Bobs make use of the X -basis to measure
their particles, and any two cooperating players can perfectly distinguish the above
pair (4). If both are the same measurement, then the state is |GHZ〉, otherwise the state
is |GHZ〉1. Hence, they are able to recover the secret.
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Fig. 2 The graph of the access
structure Γ

3.2.2 The generalized restricted (2, n)-threshold d-LOCC-QSS scheme

In Sect 3.2.1, we have already discussed the (2, n)-threshold d-LOCC-QSS scheme,
i.e., r = 1. Thus here we only consider the case when r ≥ 2 and give the generalized
restricted (2, n)-threshold d-LOCC-QSS scheme. For this scheme, the access structure
is a complete multipartite graph.

S1. Alice first prepares the states, each chosen randomly from a distance-r orthog-
onal pair of n-qudit GHZ states, as given in Eq. (1).

S2, S3, S4 and S5 can be carried out in accordance with the same steps in Sect. 3.1.
S6. If no eavesdropper is detected, Alice announces the sequence rk to Bobk ,

respectively. According to Theorem 2, Bobs make use of the X -basis to measure
their particles, and any two cooperating players, i.e., one from the part of Ak and the
other from the part of A j (k �= j), can perfectly distinguish the pair (1). If both are
the same measurement, then the state is |GHZ〉, otherwise the state is |GHZ〉r . Hence,
they are also able to recover the secret.

Example 2 In this example, the access structure can be written as

Γ = {P1P2, P1P3, P1P4, P1P5, P1P6, P2P4, P2P5, P2P6, P3P4, P3P5, P3P6},

where the Pk is said to Bobk . From the access structure, we can know that the graph
of Γ is a complete tripartite one (Fig. 2).

Hence, we can give a generalized restricted (2, 6)-threshold d-LOCC-QSS scheme,
which Alice prepares in the Step S1 and can be chosen randomly from the pair (2).

S6. If no eavesdropper is detected, Alice announces the sequence rk to Bobk(k =
1, 2, 3, 4, 5, 6), respectively. Then Bobs make use of the X -basis to measure their
particles, as given in Table 1. According to Table 1, we can get that any two cooperating
players which are from the parts of Ak and A j (k �= j, and j, k ∈ {0, 1, 2}) can
perfectly distinguish the pair in the step S1. If both are the same measurement, then
the state is |GHZ〉, otherwise the state is |GHZ〉3. Hence, they can cooperatively
reconstruct the secret.

The rest of the steps are similar to those mentioned in Sect. 3.1.
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Table 1 Measurement result
performed by
Bobk (k = 1, 2, 3, 4, 5, 6)

X -basis |0〉 |1〉 |2〉 |0〉 |1〉 |2〉
A0 Bob1 |0〉 |1〉 |2〉 |0〉 |1〉 |2〉
A1 Bob2 |0〉 |1〉 |2〉 |1〉 |2〉 |0〉

Bob3 |0〉 |1〉 |2〉 |1〉 |2〉 |0〉
A2 Bob4 |0〉 |1〉 |2〉 |2〉 |0〉 |1〉

Bob5 |0〉 |1〉 |2〉 |2〉 |0〉 |1〉
Bob6 |0〉 |1〉 |2〉 |2〉 |0〉 |1〉

|GHZ〉 |GHZ〉3

4 Security analysis

It is the most important issue for the quantum communication protocol to assure its
security. Then, in this following we mainly analyze the security of our scheme against
four primary quantum attacks: the intercept-and-resend attack, entangle-and-measure
attack, participant attack and Trojan horse attack.

4.1 Intercept-and-resend attack

In this paper, Alice mainly makes use of the decoy photon technique to check eaves-
dropper’s attacks, in which some sample checking single photons are chosen from the
X -basis and Z -basis. Suppose Eve can utilize the intercept-and-resend attack. When
Alice sends those sequences S′′

1 , S′′
2 , . . . , S′′

n to Bob1, Bob2, . . . , Bobn , respectively,
Eve intercepts all sequences and measures the particles by the X -basis and Z -basis.
After that, she sends the fake particle sequences S∗

1 , S∗
2 , . . . , S∗

n to the players. Because
the eavesdropper Eve does not know the positions of the decoy photons, she must intro-
duce some errors. If intercept-and-resend attack does not have errors in the checking
phase, then Alice can detect eavesdropping with the probability 1 − ( d+1

2d )nl . Thus,
when the numbers of n and l get larger, the probability is

1 −
(
d + 1

2d

)nl

≈ 1.

Consequently, Eve’s eavesdropping will be detected from the higher error rate.

4.2 Entangle-and-measure attack

In this section, we will primarily consider the entangle-and-measure attack. Assume
that the eavesdropper Eve implements ancillary system to obtain the information.
Suppose that Eve performs the unitary transformUE on her particles and the auxiliary
ones in the following forms,

123



Quantum secret sharing using the d-dimensional GHZ state Page 9 of 13 59

UE |k〉|E〉 =
d−1∑

l=0

akl |k〉|ekl〉 (5)

UE |J j 〉|E〉 = UE

(
1√
d

d−1∑

k=0

ωk j |k〉
)

|E〉

= 1√
d

d−1∑

k=0

ωk jUE (|k〉|E〉)

= 1√
d

d−1∑

k=0

ωk j

(
d−1∑

l=0

akl |l〉|ekl〉
)

(6)

= 1√
d

d−1∑

k=0

d−1∑

l=0

ωk j akl

(
1√
d

d−1∑

m=0

ω−ml |Jm〉
)

|ekl〉

= 1

d

d−1∑

k=0

d−1∑

l=0

d−1∑

m=0

ωk j−mlakl |Jm〉|ekl〉

where |E〉 is the initial state of Eve’s ancillary system; |ekl〉 (k, l = 0, 1, . . . , d − 1)

is the pure auxiliary state determined uniquely by the unitary transform UE , and

d−1∑

l=0

|akl |2 = 1(k = 0, 1, . . . , d − 1) (7)

In order to avoid introducing the error rate for the states, Eve has to set: akl = 0,
where k �= l and k, l ∈ {0, 1, . . . , d −1}. Therefore, Eqs. (5) and (6) can be simplified
as follows:

UE |k〉|E〉 = akk |k〉|ekk〉 (8)

UE |J j 〉|E〉 = 1

d

d−1∑

k=0

d−1∑

m=0

ωk( j−m)akk |Jm〉|ekk〉 (9)

Similarly, Eve can obtain that
∑d−1

k=0 ωk( j−m)akk |ekk〉 = 0, where m ∈ {0, 1, . . . , d −
1} and m �= j . Then for any j ∈ {0, 1, . . . , d − 1}, we can get d − 1 equations.
According to these d − 1 equations, we can compute that

a00|e00〉 = a11|e11〉 = · · · = ad−1,d−1|ed−1,d−1〉. (10)

To obtain useful information about the secret, without loss of generality, Eve uses the

unitary transform UE on the last particle of the n-qudit |GHZ〉 = 1√
d

[
|0, 0, . . . , 0〉+

|1, 1, . . . , 1〉 + · · · + |d − 1, d − 1, . . . , d − 1〉
]
, then we can have that
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(I⊗n−1 ⊗UE )|GHZ〉 = 1√
d

(a00|0, 0, . . . , 0〉|e00〉 (11)

+ · · · + ad−1,d−1|d − 1, d − 1, . . . , d − 1〉|ed−1,d−1〉)

According to Eq. (10), Eq. (11) can be changed to

(I⊗n−1 ⊗UE )|GHZ〉 = 1√
d

(|0, 0, . . . , 0〉
+ · · · + ad−1,d−1|d − 1, . . . , d − 1〉) ⊗ (a00|e00〉) (12)

In Eq. (12), it implies that Eve has no effect on the whole system of QSS if she
wants to eavesdrop without being detected, that is, she cannot steal secret information.
So the entangle-and-measure attack is unsuccessful.

4.3 Participant attack

For the QSS scheme, the participant attack is also of great importance because it is
always easier and more powerful than external attack and the participants can get
more useful information than a fourth eavesdropper. In the step S6, after receiving
the sequence rk , Bobk measures his particles in the sequence S′′

k with the X -basis.
Supposing that Bob1 is a dishonest participant and gets other people’s measurements
by cheating, he compares his measurements with others to recover the secret. The
successful probability, however, is quite small because Alice has disrupted the order
of Sk with the random �k (k = 1, 2 . . . , n) before sending these particles. Bob1 does
not know the position of these and guesses the probability of �k is 1

m! . Thus, he cannot
exactly distinguish any pair of the orthogonal states |GHZ〉r or |GHZ〉. It means that
he cannot obtain any information. Therefore, the participant attack is unsuccessful.

4.4 Trojan horse attack

In this section, we will primarily consider another important attack—Trojan horse
attack [34–41]. The proposed protocol used the photons that may be insecure against
the two kinds of Trojan horse attacks: the delay photon attack [38] and the invisible
photon attack [36,37]. In these studies, they give some ways to defeat these attacks.
Therefore, we can modify our protocol slightly and make use of the similar way
to overcome the Trojan horse attack. In order to prevent the delay photon attack,
the participants can pick up a portion of the photons and split each particle by the
technology of photon number splitter (PNS). Then, they measure the photons with the
X -basis and Z -basis. If the multiphoton rate is much higher than the desired value,
then the presence of the delay photon attack is detected. At that time, Alice must stop
the transmission of the scheme and begin with a new set of resources. For stopping the
invisible photon attack, the participants should install a wavelength optical device that
filters out the invisible photons. Through this optical device, the operable photons will
be allowed to come in, and the eavesdropper’s invisible photons will be eliminated.
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Moreover, in the proposed QSS protocol, all same photons are sent only one time to
these participants. Therefore, the protocol itself can prevent the Trojan horse attack.

5 Comparison

We compare our protocol with Rahaman and Parker [23] in Table 2. The information
efficiency η , see Ref. [42], is defined as η = c

q , where c is the total number of shared
classical bits and q is the total number of particles used in the protocol.

Suppose Alice wants to choose m entangled states in form (1) and nl single photons
as the secret and the checking photons. Then Alice uses n(m+l) photons for sharingm-
bit information among n participants. Then the information efficiency of the proposed
scheme is m

n(m+l) .
In Rahaman and Parker’s scheme, L GHZ states are used to share m(< L) secret

bits because (L − m) states are used to check eavesdropping. Then the information
efficiency of their scheme is m

nL (L > m). If this efficiency is the same as that of our
protocol, we will have that l = L − m and it implies that the number of particles
checking eavesdropping is the same in both schemes. From the point of view of
resources, our scheme uses the single quantum states, but Rahaman and Parker’s
utilizes GHZ states. Comparison of two kinds of quantum states, obviously, it is easier
to make a single quantum state than GHZ, and the cost will be lower.

In addition, Rahaman and Parker [23] proposed the restricted (2, n)-threshold
LOCC-QSS scheme. The access structure corresponding to their scheme is a com-
plete bipartite graph, so it is not a standard (2, n)-threshold scheme. In our protocol,
we give the standard (2, n)-threshold scheme with the n-qudit GHZ states. Further-
more, we propose the generalized restricted (2, n)-threshold d-LOCC-QSS scheme,
and the graph for the access structure is a complete multipartite one.

6 Conclusions

We have proposed here a quantum secret sharing scheme that uses an orthogonal
pair of n-qudit GHZ states and local distinguishability. In the proposed protocol,

Table 2 Comparison of Rahaman and Parker’s scheme [23] with our proposed one

Rahaman and Parker’s scheme Our proposed scheme

Basic principle Local distinguishability Local distinguishability

Quantum state n-qubit GHZ state n-qudit GHZ state

Checking state n-qubit GHZ state Single photon

Information efficiency m
nL (L > m) m

n(m+l)

Specific LOCC-QSS scheme Restricted (2, n)-threshold (2, n)-threshold scheme;

with the GHZ state Generalized restricted (2, n)-threshold

Graph of the access structure Complete bipartite graph Complete graph; complete multipartite
graph
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the participants use an X-basis measurement and classical communication to dis-
tinguish between the orthogonal states to reconstruct the original secret. We also
presented (2, n)-threshold and generalized restricted (2, n)-threshold schemes that
enable any two cooperating players from two disjoint groups to always reconstruct the
secret. Comparing the scheme of Rahaman and Parker with ours, we note that their
scheme has a complete bipartite graph access structure, while ours is complete mul-
tipartite. Because our scheme is the more general, its access structure contains more
authorized sets. Moreover, we showed that our protocol is secure against the intercept-
and-resend attack, entangle-and-measure attack, participant attack, and Trojan horse
attack. Table 2 offers a summary comparison of the two schemes.
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