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Abstract Entanglement monogamy is a fundamental property of multipartite entan-
gled states. We investigate the monogamy relations for multiqubit generalizedW -class
states. Analytical monogamy inequalities are obtained for the concurrence of assis-
tance, the entanglement of formation, and the entanglement of assistance.

1 Introduction

Quantum entanglement [1–6] is an essential feature of quantum mechanics that distin-
guishes the quantum from the classical world. It is one of the fundamental differences
between quantum entanglement and classical correlations that a quantum system
entangled with one of the other systems limits its entanglement with the remain-
ing others. This restriction of entanglement shareability among multiparty systems
is known as the monogamy of entanglement. The monogamy relations give rise to
the structures of entanglement in the multipartite setting. For a tripartite system A, B,
and C, the monogamy of an entanglement measure ε implies that the entanglement
between A and BC satisfies εA|BC ≥ εAB + εAC .

In Ref. [7,8], the monogamy of entanglement for multiqubit W -class states has been
investigated, and the monogamy relations for tangle and the squared concurrence have
been proved. In this paper, we show the general monogamy relations for the x-power
of concurrence of assistance, the entanglement of formation, and the entanglement of
assistance for generalized multiqubit W -class states.
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2 Monogamy of concurrence of assistance

For a bipartite pure state |ψ〉AB in vector space HA ⊗ HB , the concurrence is given
by [9–11]

C (|ψ〉AB) =
√

2
[
1 − Tr

(
ρ2
A

)]
, (1)

where ρA is reduced density matrix by tracing over the subsystem B, ρA =
TrB(|ψ〉AB〈ψ |). The concurrence is extended to mixed states ρ = ∑

i pi |ψi 〉〈ψi |,
pi ≥ 0,

∑
i pi = 1, by the convex roof construction,

C (ρAB) = min{pi ,|ψi 〉}
∑
i

piC (|ψi 〉) , (2)

where the minimum is taken over all possible pure-state decompositions of ρAB .
For a tripartite state |ψ〉ABC , the concurrence of assistance (CoA) is defined by

[12] Ca (|ψ〉ABC ) ≡ Ca (ρAB) = max{pi ,|ψi 〉}
∑
i

piC (|ψi 〉) , (3)

for all possible ensemble realizations of ρAB = TrC (|ψ〉ABC 〈ψ |) = ∑
i pi |ψi 〉AB

〈ψi |. When ρAB = |ψ〉AB〈ψ | is a pure state, then one has C(|ψ〉AB) = Ca(ρAB).
For an N -qubit state |ψ〉AB1...BN−1 ∈ HA ⊗ HB1 ⊗ . . . ⊗ HBN−1 , the concurrence

C(|ψ〉A|B1...BN−1) of the state |ψ〉A|B1...BN−1 , viewed as a bipartite with partitions A
and B1B2 . . . BN−1, satisfies the following inequality [13]

Cα
A|B1B2...BN−1

≥ Cα
AB1

+ Cα
AB2

+ · · · + Cα
ABN−1

, (4)

and
Cβ

A|B1B2...BN−1
< Cβ

AB1
+ Cβ

AB2
+ · · · + Cβ

ABN−1
, (5)

where α ≥ 2, β ≤ 0, CABi = C(ρABi ) is the concurrence of ρABi =
TrB1...Bi−1Bi+1...BN−1(ρ), CA|B1B2...BN−1 = C(|ψ〉A|B1...BN−1). Due to the monogamy
of concurrence, the generalized monogamy relation based on the concurrence of assis-
tance has been proved in Ref. [14],

C2 (|ψ〉A|B1...BN−1

) ≤
N−1∑
i=1

C2
a

(
ρABi

)
. (6)

In the following, we study the monogamy property of the concurrence of assistance
for the n-qubit generalized W -class states |ψ〉 ∈ HA1 ⊗ HA2 ⊗ · · · ⊗ HAn defined by

|ψ〉 = a|000 . . .〉 + b1|01 . . . 0〉 + · · · + bn|00 . . . 1〉, (7)

with |a|2 + ∑n
i=1 |bi |2 = 1.
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Lemma 1 For n-qubit generalized W-class states (7), we have

C
(
ρA1Ai

) = Ca
(
ρA1Ai

)
, (8)

where ρA1Ai = TrA2...Ai−1Ai+1...An (|ψ〉〈ψ |).
Proof It is direct to verify that [7], ρA1Ai = |x〉A1Ai 〈x | + |y〉A1Ai 〈y|, where

|x〉A1Ai = a|00〉A1Ai + b1|10〉A1Ai + bi |01〉A1Ai ,

|y〉A1Ai =
√∑

k 	=i

|bk |2|00〉A1Ai .

From the Hughston–Jozsa–Wootters theorem Ref. [7], for any pure-state decomposi-
tion of ρA1Ai = ∑r

h=1 |φh〉A1Ai 〈φh |, one has |φh〉A1Ai = uh1|x〉A1Ai + uh2|y〉A1Ai

for some r × r unitary matrices uh1 and uh2 for each h. Consider the normalized state
|φ̃h〉A1Ai = |φh〉A1Ai /

√
ph with ph = |〈φh |φh〉|. One has the concurrence of each

two-qubit pure |φ̃h〉A1Ai ,

C2
(
|φ̃h〉A1Ai

)
= 4

p2
h

|uhi |4|b1|2|bi |2.

Then for the two-qubit state ρA1Ai , we have

∑
h

phC
(
|φ̃h〉A1Ai

)
=

∑
h

ph
2

ph
|uhi |2|b1||bi | = 2|b1||bi |.

Thus, we obtain

C(ρA1Ai ) = min
ph ,|φ̃h〉A1Ai

∑
h

phC
(
|φ̃h〉A1Ai

)

= max
ph ,|φ̃h〉A1Ai

∑
h

phC
(
|φ̃h〉A1Ai

)

= Ca
(
ρA1Ai

)
.

��
Specifically, in Ref. [8], the same result C(ρA1Ai ) = Ca(ρA1Ai ) has been proved

for the generalized W -class states (7) with a = 0.

Theorem 1 For the n-qubit generalizedW-class states |ψ〉 ∈ HA1 ⊗HA2 ⊗· · ·⊗HAn ,
the concurrence of assistance satisfies

Cx
a

(
ρA1|A j1 ...A jm−1

)
≥

m−1∑
i=1

Cx
a

(
ρA1A ji

)
, (9)
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where x ≥ 2 and ρA1A j1 ...A jm−1
is the m-qubit, 2 ≤ m ≤ n, reduced density matrix of

|ψ〉.
Proof For the n-qubit generalized W -class state |ψ〉, according to the definitions of
C(ρ) and Ca(ρ), one has Ca(ρA1|A j1 ...A jm−1

) ≥ C(ρA1|A j1 ...A jm−1
). When x ≥ 2, we

have

Cx
a

(
ρA1|A j1 ...A jm−1

)
≥ Cx

(
ρA1|A j1 ...A jm−1

)

≥
m−1∑
i=1

Cx
(
ρA1A ji

)

=
m−1∑
i=1

Cx
a

(
ρA1A ji

)
.

Here, we have used in the first inequality the relation ax ≥ bx for a ≥ b > 0 and
x ≥ 0. The second inequality is due to the monogamy of concurrence (4). The last
inequality is due to the Lemma 1. ��
Theorem 2 For the n-qubit generalized W-class state |ψ〉 ∈ HA1 ⊗ HA2 ⊗· · ·⊗ HAn

with C(ρA1A ji
) 	= 0 for 1 ≤ i ≤ m − 1, we have

C y
a

(
ρA1|A j1 ...A jm−1

)
<

m−1∑
i=1

Cy
a

(
ρA1A ji

)
, (10)

where y ≤ 0 and ρA1A j1 ...A jm−1
is the m-qubit reduced density matrix as inTheorem 1.

Proof For y ≤ 0, we have

Cy
a

(
ρA1|A j1 ...A jm−1

)
≤ Cy

(
ρA1|A j1 ...A jm−1

)

<

m−1∑
i=1

Cy
(
ρA1A ji

)

=
m−1∑
i=1

Cy
a

(
ρA1A ji

)
.

We have used in the first inequality the relation ax ≤ bx for a ≥ b > 0 and x ≤ 0. The
seconder inequality is due to the monogamy of concurrence (5). The last inequality is
due to Lemma 1.

According to (9) and (10), we can also obtain the lower bounds ofCa(ρA1|A j1 ...A jm−1
).

As an example, consider the 5-qubit generalizedW -class states (7) witha = b2 = 1√
10

,

b1 = 1√
15

, b3 =
√

2
15 , b4 =

√
3
5 . We have
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Fig. 1 Solid line is the lower bound of Ca(ρA1|A2A3 ), dashed line is the lower bound of Ca(ρA1|A2A3A4 )

as functions of x ≥ 2, and dotted line is the upper bound of Ca(ρA1|A2A3 ) and Ca(ρA1|A2A3A4 )

Ca
(
ρA1|A2A3

) ≥ 2√
15

x

√√√√
(

1√
10

)x

+
(√

2

15

)x

and

Ca
(
ρA1|A2A3A4

) ≥ 2√
15

x

√√√√
(

1√
10

)x

+
(√

2

15

)x

+
(√

3

5

)x

with x ≥ 2. The optimal lower bounds can be obtained by varying the parameter
x , see Fig. 1, where for comparison the upper bounds are also presented by using

the formula Ca(ρAB) ≤
√

2(1 − Tr(ρ2
A)) [15], namely Ca(ρA1|A2A3) ≤ 2√

18
and

Ca(ρA1|A2A3A4) ≤ 2√
18

. From Fig. 1, one gets that the optimal lower bounds of

Ca(ρA1|A2A3) andCa(ρA1|A2A3A4) are 0.249 and 0.471, respectively, attained at x = 2.
��

3 Monogamy of entanglement of formation

The entanglement of formation of a pure state |ψ〉 ∈ HA ⊗ HB is defined by

E (|ψ〉) = S (ρA) , (11)

where ρA = TrB(|ψ〉〈ψ |) and S(ρ) = Tr(ρ log2 ρ). For a bipartite mixed state ρAB ∈
HA ⊗ HB , the entanglement of formation is given by

E (ρAB) = min{pi ,|ψi 〉}
∑
i

pi E (|ψi 〉) , (12)
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with the infimum taking over all possible decompositions of ρAB in a mixture of pure
states ρAB = ∑

i pi |ψi 〉〈ψi |, where pi ≥ 0 and
∑

i pi = 1.
It has been shown that the entanglement of formation does not satisfy the inequality

EAB + EAC ≤ EA|BC [16]. Rather it satisfies [13],

Eα
A|B1B2...BN−1

≥ Eα
AB1

+ Eα
AB2

+ · · · + Eα
ABN−1

, (13)

where α ≥ √
2.

The corresponding entanglement of assistance (EoA) [17] is defined in terms of the
entropy of entanglement [18] for a tripartite pure state |ψ〉ABC ,

Ea (|ψ〉ABC ) ≡ Ea (ρAB) = max{pi ,|ψi 〉}
∑
i

pi E (|ψi 〉) , (14)

which is maximized over all possible decompositions of ρAB = TrC (|ψ〉ABC ) =∑
i pi |ψi 〉〈ψi |, with pi ≥ 0 and

∑
i pi = 1. For any N -qubit pure state |ψ〉 ∈

HA ⊗ HB1 ⊗ · · · ⊗ HBN−1 , it has been shown that the entanglement of assistance
satisfies [13],

E
(|ψ〉A|B1B2...BN−1

) ≤
N−1∑
i=1

Ea
(
ρABi

)
. (15)

In fact, generally we can prove the following results for the n-qubit generalized W -
class states about the entanglement of formation and the entanglement of assistance.

Theorem 3 For the n-qubit generalizedW-class states |ψ〉 ∈ HA1 ⊗HA2 ⊗· · ·⊗HAn ,
we have

E
(|ψ〉A1|A2...An

) ≤
n∑

i=2

E
(
ρA1Ai

)
, (16)

where ρA1Ai , 2 ≤ i ≤ n is the 2-qubit reduced density matrix of |ψ〉.

Proof For the n-qubit generalized W -class states |ψ〉, we have

E
(|ψ〉A1|A2...An

) = f
(
C2 (|ψ〉A1|A2...An

))

= f

(
n∑

i=2

C2 (
ρA1Ai

)
)

≤
n∑

i=2

f
(
C2 (

ρA1Ai

))

=
n∑

i=2

E
(
ρA1Ai

)
,
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where for simplify, we have denoted f (x) = h
(

1+√
1−x

2

)
with h(x) = −x log2(x)−

(1 − x) log2(1 − x). We have used in the first and last equalities that the entanglement
of formation obeys the relation E(ρ) = f (C2(ρ)) for a bipartite 2 ⊗ D, D ≥ 2,
quantum state ρ [19]. The second inequality is due to the fact that C2(|ψ〉A1...An ) =∑n

i=2 C
2(ρA1Ai ). The inequality is due to the fact f (x + y) ≤ f (x) + f (y). ��

As for the entanglement of assistance, we have the following conclusion.

Theorem 4 For the n-qubit generalizedW-class states |ψ〉 ∈ HA1 ⊗HA2 ⊗· · ·⊗HAn ,
we have

E
(
ρA1|A j1 ...A jm−1

)
≤

m−1∑
i=1

Ea

(
ρA1A ji

)
, (17)

where ρA1|A j1 ...A jm−1
is the m-qubit reduced density matrix of |ψ〉, 2 ≤ m ≤ n.

Proof From the Lemma 2 of Ref. [7], one has ρA1|A j1 ...A jm−1
of |ψ〉 is a mixture of a

generalized W class state and vacuum. Then, we have

E
(
ρA1|A j1 ...A jm−1

)
≤

∑
h

ph E
(
|ψ〉hA1|A j1 ...A jm−1

)

≤
∑
h

ph

m−1∑
i=1

E
(
ρh
A1A ji

)

=
m−1∑
i=1

[∑
h

ph E
(
ρh
A1A ji

)]

≤
m−1∑
i=1

⎡
⎣∑

h

ph

⎛
⎝∑

j

q j E
(
|ψ j 〉hA1A ji

〈ψ j |
)
⎞
⎠

⎤
⎦

=
m−1∑
i=1

∑
h j

phq j E
(
|ψ j 〉hA1A ji

〈ψ j |
)

.

We obtain the first inequality by noting that |ψ〉hA1|A j1 ...A jm−1
is a generalized W class

state or vacuum [7]. When |ψ〉hA1|A j1 ...A jm−1
is a generalized W class state, then we

have E(|ψ〉hA1|A j1 ...A jm−1
) ≤ ∑m−1

i=1 E(ρh
A1A ji

); When |ψ〉hA1|A j1 ...A jm−1
is a vacuum,

then we have E(|ψ〉hA1|A j1 ...A jm−1
) = 0 ≤ ∑m−1

i=1 E(ρh
A1A ji

). The second inequality is

due to the definition of the entanglement of formation (12) for mixed quantum states.
Since

∑
h j phq j = 1 and

∑
h j phq j |ψ j 〉hA1A ji

〈ψ j | is a pure decomposition of ρA1A ji
,

we have (17). ��
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4 Conclusions and remarks

Entanglement monogamy is a fundamental property of multipartite entangled states.
We have shown the monogamy for the x-power of concurrence of assistance
Ca(ρA1|A ji ...A jm−1

) of the m-qubit reduced density matrices, 2 ≤ m ≤ n, for the
n-qubit generalized W -class states. The monogamy relations for the entanglement of
formation and the entanglement of assistance the monogamy relation for the n-qubit
generalized W -class states have been also investigated. These relations give rise to
the restrictions of entanglement distribution among the qubits in generalized W -class
states.
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