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Abstract Nonlocality is an important resource for quantum information processing.
Tripartite nonlocality is more difficult to produce in experiments than bipartite ones.
In this paper, we analyze a simple setting to generate tripartite nonlocality from two
classes of bipartite resources, namely two-qubit entangled pure states and Werner
states. Upper bounds on the tripartite nonlocality, characterized by the maximal vio-
lation of Svetlichny inequalities, are given, and the optimal measurements to achieve
these bounds are provided.

Keywords Quantum information · Tripartite nonlocality · Svetlichny inequality ·
Werner states

1 Introduction

Nonlocality is one of the most fundamental characteristics of quantum mechanics. The
nonlocal quantum correlations existing between spatially separated quantum systems
have significant advantages over classical correlations, thus serving as an indispensable
resource for quantum information processing. In recent years, many novel applications
of nonlocality have been developed for quantum computation and quantum commu-
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nication [1], including communication complexity [2], quantum cryptography [3],
randomness generation [4], and device-independent quantum computation [5].

The quantum states which exhibit nonlocal correlations are called nonlocal states.
The nonlocality of a quantum state can be verified by Bell-type inequalities which
give upper bounds on all local correlations that admit a local hidden variable (LHV)
model [1]. For bipartite quantum systems, a sufficient criterion of being nonlocal is
the violation of Clauser–Horner–Shimony–Holt (CHSH) inequality [6]. Any purely
entangled two-qubit state violates the CHSH inequality [7] while it is not true for
mixed states. In 1989, Werner found a class of two-qubit states which are entangled
while admit LHV models [8]. In 1995, Horodecki et al. [9] developed a complete
characterization for arbitrary two-qubit systems to violate CHSH inequality.

Similarly, for tripartite systems the violation of Svetlichny inequality serves as a
sufficient condition of being nonlocal [10]. However, the problem regarding multi-
partite nonlocality is much more complicated than the bipartite case, and very few
works were presented in the literature. Even the nonlocality of three-qubit states, the
simplest multipartite systems, is not well understood. In this special case, Ghose et al.
derived an analytical expression of nonlocality for the generalized GHZ states and W
states [11]. Later in 2010, Ajoy and Rungta [12] extended this result to a set of more
general GHZ-class states and W-class states.

In experiments, it is much harder to produce entangled tripartite systems than that of
bipartite systems. To overcome this difficulty, Zeilinger et al. [13] proposed a scheme
of generating tripartite entanglement from bipartite resources. In the experimental
test of nonlocality in GHZ states, the entanglement preparation can also benefit from
Zeilinger’s scheme [14]. Note that being entangled is the necessary condition of being
nonlocal for quantum systems. Therefore, it has practical meaning to generate tripartite
nonlocal systems from bipartite ones.

In this paper, we consider a simple setting to generate tripartite nonlocality from
two classes of bipartite resources, namely two-qubit entangled pure states and Werner
states. Upper bounds on the tripartite nonlocality, characterized by the maximal vio-
lation of Svetlichny inequalities, are given, and the optimal measurements to achieve
these bounds are provided.

2 Svetlichny inequalities and their maximal violation

To quantify the nonlocality of three-qubit states, we first review Svetlichny inequal-
ities and then develop a technique of finding the maximal violation of Svetlichny
inequalities for a special class of three-qubit (pure or mixed) states. As a by-product,
we employ this technique to calculate the nonlocality of generalized tripartite GHZ
states.

2.1 Svetlichny inequalities

The nonlocality test scenario for three-qubit systems considered in this paper has
two projective measurements each with two outcomes on each party. Without loss
of generality, let the two measurement observables for system A are A = a · σ
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and A′ = a′ · σ , where a and a′ are three-dimensional unit real row vectors, and
σ = (σ1, σ2, σ3) is the vector of Pauli matrices. Note that each observable is Hermitian
operator with eigenvalues +1 and −1. Similarly, we have B = b · σ and B ′ = b′ · σ

for system B, and C = c · σ and C ′ = c′ · σ for system C, where b,b′, c, c′ ∈ R
3

are unit vectors. Then, the Svetlichny operator corresponding to A, A′, B, B ′,C,C ′
is defined as

S ≡ (A + A′)⊗(B ⊗ C ′ + B ′ ⊗ C) + (A − A′) ⊗ (B ⊗ C − B ′ ⊗ C ′).

If a three-qubit state ρ admits a LHV model, then it satisfies the Svetlichny inequality

tr(Sρ) ≤ 4

for all possible Svetlichny operators S. Conversely, a three-qubit state which violates
this inequality for some S is nonlocal. To quantify the nonlocality of a three-qubit
system, we need to compute the maximum of the so-called Svetlichny value

Smax(ρ) ≡ max tr(Sρ)

where the maximization is taken over all possible Svetlichny operators. Thus,
Smax(ρ) > 4 is a sufficient condition for ρ to be nonlocal. Moreover, Svetlichny
inequalities are maximally violated by the GHZ state (|000〉 + |111〉)/√2 with the
maximal Svetlichny value being 4

√
2 [10].

2.2 Maximal violation of Svetlichny inequalities for general three-qubit states

Recall that any three-qubit state ρ can be expressed under the Pauli basis as

ρ = 1

8

3∑

i, j,k=0

ti jkσi ⊗ σ j ⊗ σk

where ti jk = tr(ρσi ⊗ σ j ⊗ σk) ∈ R. For any measurement observables A = a · σ ,
B = b ·σ , and C = c ·σ , the expectation of the product of the measurement outcomes
of ρ is

tr [ρ (A ⊗ B ⊗ C)] =
3∑

i, j,k=1

ai ti jkb j ck = 〈a, Tcb〉

where Tc ≡ ∑3
k=1 ckTk , and for each k, the Pauli coefficients matrix Tk = (ti jk) is a

3 by 3 real matrix indexed by i and j . Here 〈·, ·〉 denotes the normal inner product in
R

3, and we abuse the notation slightly by writing Tcb for TcbT .
Let e and e′ be two orthogonal unit vectors such that a + a′ = 2 cos αe and

a − a′ = 2 sin αe′ for some α. Let E ≡ e · σ and E ′ ≡ e′ · σ . Then,
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S(ρ) = 2 cos α tr(E ⊗ (B ⊗ C ′ + B ′ ⊗ C)ρ)

+ 2 sin α tr(E ′ ⊗ (B ⊗ C − B ′ ⊗ C ′)ρ)

= 2 cos α〈e,λ0〉 + 2 sin α〈e′,λ1〉 (1)
(a)≤ 2

√
〈e,λ0〉2 + 〈e′,λ1〉2

≤ 2
√

‖λ0‖2 + ‖λ1‖2,

where

λ0 ≡ Tc′b + Tcb′ (2)

λ1 ≡ Tcb − Tc′b′. (3)

Here the inequality (a) comes from the Cauchy–Schwarz inequality. The following
lemma plays a crucial role in our later discussion.

Lemma 1 Let ρ be a three-qubit state with the Pauli coefficients matrices Tk, k =
1, 2, 3. Then,

Smax(ρ) ≤ max
b,b′,c,c′ 2

√
‖λ0‖2 + ‖λ1‖2 (4)

where λ0 and λ1 are defined in Eqs.(2) and (3). Furthermore, if the maximum on the
right-hand side of Eq.(4) can be obtained for some λ0 and λ1 with λ0 ⊥ λ1, then the
equality holds.

Proof The upper bound has been proved in Eq.(1). Suppose there are unit vectors
b, b′, c, and c′ which achieve the maximum on the right-hand side of Eq.(4) and
make λ0 ⊥ λ1. Without loss of generality, we can assume that both λ0 and λ1 are
nonzero; otherwise, the result holds trivially. Let e = λ0/‖λ0‖, e′ = λ1/‖λ1‖, and
α such that the equality holds in (a). Then, the equality in Eq.(4) holds by putting
a = cos αe + sin αe′ and a′ = cos αe − sin αe′. �


In the following subsection, we will use Lemma 1 to calculate the maximal
Svetlichny value of the generalized GHZ states. Application of Lemma 1 to a class of
mixed three-qubit systems will be shown in Sect. 3.1.

2.3 Nonlocality of generalized GHZ states

The Pauli coefficients matrices of the generalized GHZ states

|Gθ 〉 = cos θ |000〉 + sin θ |111〉

are Tk = sin 2θT ′
k , k = 1, 2, 3, where

T ′
1 =

⎛

⎝
1 0 0
0 −1 0
0 0 0

⎞

⎠ ,
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T ′
2 =

⎛

⎝
0 −1 0

−1 0 0
0 0 0

⎞

⎠ ,

T ′
3 =

⎛

⎝
0 0 0
0 0 0
0 0 cot 2θ

⎞

⎠ .

Suppose b = (sin β sin η, sin β cos η, cos β),b′ = (sin β ′ sin η′, sin β ′ cos η′,
cos β ′), c = (sin γ sin ϕ, sin γ cos ϕ, cos γ ) and c′ = (sin γ ′ sin ϕ′, sin γ ′ cos ϕ′,
cos γ ′). Then, the vectors λ′

0 and λ′
1 corresponding to these parameters are

λ′
0 =

⎛

⎝
− sin β ′ sin γ cos (η′ + ϕ) − sin β sin γ ′ cos (η + ϕ′)
− sin β ′ sin γ sin (η′ + ϕ) − sin β sin γ ′ sin (η + ϕ′)

cot 2θ(cos β ′ cos γ + cos β cos γ ′)

⎞

⎠

λ′
1 =

⎛

⎝
− sin β sin γ cos (η + ϕ) + sin β ′ sin γ ′ cos (η′ + ϕ′)
− sin β sin γ sin (η + ϕ) + sin β ′ sin γ ′ sin (η′ + ϕ′)

cot 2θ(cos β cos γ − cos β ′ cos γ ′)

⎞

⎠

respectively. We further calculate

‖λ′
0‖2 + ‖λ′

1‖2

= cot2 2θ(cos2 β + cos2 β ′)(cos2 γ + cos2 γ ′)
+ 4 sin β sin β ′ sin γ sin γ ′ sin (η − η′) sin (ϕ − ϕ′)
+ (sin2 β + sin2 β ′)(sin2 γ + sin2 γ ′)

≤ cot2 2θ(cos2 β + cos2 β ′)(cos2 γ + cos2 γ ′)
+ 4| sin β sin β ′ sin γ sin γ ′| + (sin2 β

+ sin2 β ′)(sin2 γ + sin2 γ ′)
≤ cot2 2θ(cos2 β + cos2 β ′)(cos2 γ + cos2 γ ′)

+ 2(sin2 β + sin2 β ′)(sin2 γ + sin2 γ ′),

where the last inequality is from the fact that

4 sin β sin β ′ sin γ sin γ ′ ≤ (sin2 β + sin2 β ′)(sin2 γ + sin2 γ ′)

for any β, β ′, γ , and γ ′. Let x ≡ sin2 β + sin2 β ′ and y ≡ sin2 γ + sin2 γ ′. Then,

‖λ′
0‖2 + ‖λ′

1‖2

≤ (2 + cot2 2θ)xy − 2 cot2 2θ(x + y) + 4 cot2 2θ

≡ f (x, y).

Note that the function f (x, y) is symmetric with respect to x and y, and if x < y,
then f (x + ε, y − ε) > f (x, y) whenever 0 < ε < y − x . Thus, f (x, y) reaches its
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maximum at some point with x = y. Inserting x = y into the formula, and noting that
x, y ∈ [0, 2], we have

f (x, y) ≤
{

8 if cot2 2θ ≤ 2
4 cot2 2θ if cot2 2θ > 2,

where for the above case, the equality holds when x = y = 2, while for the below
one, it holds when x = y = 0.

When cot2 2θ ≤ 2, a simple calculation shows that the maximum of ‖λ′
0‖2 +‖λ′

1‖2

can be achieved by taking β = β ′ = γ = γ ′ = η = ϕ = π/2 while η′ = ϕ′ = 0. In
this case, λ′

0 = (0,−2, 0) and λ′
1 = (2, 0, 0). Thus, λ′

0 ⊥ λ′
1, and by Lemma 1, we

derive Smax(Gθ ) = 4
√

2| sin 2θ |.
When cot2 2θ > 2, the maximum of ‖λ′

0‖2 +‖λ′
1‖2 can be achieved by taking β =

β ′ = γ = γ ′ = 0 while other parameters arbitrarily. In this case, λ′
0 = (0, 0, 2 cot 2θ)

and λ′
1 = (0, 0, 0). Thus, λ′

0 ⊥ λ′
1, and by Lemma 1, we derive Smax(Gθ ) = 4| cos 2θ |.

Note that the condition cot2 2θ > 2 is equivalent to sin2 2θ < 1
3 . Therefore, the

maximal violation of Svetlichny inequalities for the generalized GHZ states is

Smax(Gθ ) =
{

4| cos 2θ | if sin2 2θ < 1
3

4
√

2| sin 2θ | if sin2 2θ ≥ 1
3 ,

which coincides the result obtained by Ghose et al. [11].

3 Generating tripartite nonlocality from bipartite resource

We analyze in this paper a simple setting, shown in Fig. 1, for generating tripartite
nonlocality from bipartite resources. Suppose there are three remotely located partic-
ipants Alice, Bob, and Clare. Alice and Bob each shares a copy of the resource state
ρ with Clare, denoted as ρAC1 and ρBC2 , respectively.

Clare then applies a CNOT operation on C1 (the control qubit) and C2 (the target
qubit) and measures the system C2 with some projective measurement. The tripartite
nonlocality of the remaining systems ABC1 will be quantified by the maximal violation
of Svetlichny inequalities.

Fig. 1 Setting for tripartite
nonlocality generation
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In the following subsections, two different types of resource states are investigated:
two-qubit Werner states

ρW = p|�〉〈�| + (1 − p)
I

4
(5)

where 0 < p < 1 and |�〉 = (|00〉 + |11〉)/√2, and arbitrarily entangled two-qubit
pure states with the Schmidt decomposition

|�θ 〉 = cos θ |00〉 + sin θ |11〉, 0 < θ <
π

2
. (6)

3.1 Werner states as the resource

Werner states are an important class of quantum states which show that, rather sur-
prisingly, not all entangled states are nonlocal. This indicates that entanglement and
nonlocality are different resources. In this subsection, we consider two-qubit Werner
states as the resource in our setting and analyze the nonlocality of post-measurement
states.

Suppose the projective measurement applied by Clare on system C2 is in the fol-
lowing orthonormal basis

|ψ0〉 = sin τ |0〉 + cos τ |1〉 (7)

|ψ1〉 = cos τ |0〉 − sin τ |1〉. (8)

If the system is projected to |ψ0〉, the post-measurement state of ABC1 will be

ρ0 = 2 trC2 (ρ|ψ0〉〈ψ0|)

where ρ = CNOTC1C2(ρW ⊗ ρW ). The Pauli coefficients matrices of ρ0 are p2Tk ,
k = 1, 2, 3, where

T1 =
⎛

⎝
1 0 0
0 −1 0
0 0 sin 2τ

⎞

⎠ ,

T2 =
⎛

⎝
0 cos 2τ 0

cos 2τ 0 0
0 0 0

⎞

⎠

and T3 = 0. A routine calculation shows that

‖λ0‖2 + ‖λ1‖2

= cos2 2τ
(
b2

1 + b2
2 + b′

1
2 + b′

2
2
) (

c2
1 + c2

2 + c′
1

2 + c′
2

)

+ 2 sin2 2τ
(
c2

1 + c′
1

2
)

+ 4 cos 2τ
(
b′

1b2 − b1b
′
2

) (
c1c

′
2 − c′

1c2
)
.
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Note that the above formula is a homogeneous polynomial of degree 2, and it does not
depend on b3, b′

3, c3, and c′
3. Thus, the maximum of the formula must be obtained at

some point where b3 = b′
3 = c3 = c′

3 = 0. Then,

max
b,b′,c,c′(‖λ0‖2 + ‖λ1‖2) = 4 cos2 2τ + 2 max

b,b′,c,c′ F(λ0,λ1)

where

F(λ0,λ1) ≡ sin2 2τ
(
c2

1 + c′
1

2
)

+ 2 cos 2τ
(
b′

1b2 − b1b
′
2

) (
c1c

′
2 − c′

1c2
)
.

To further optimize F(λ0,λ1), we need the following lemma.

Lemma 2 For any x, y ≥ 0 and α, β ∈ R,

x(cos2 α − sin2 β) + y sin(α − β) ≤
√
x2 + y2,

and the equality holds if and only if | cos 2α| = x√
x2+y2

and α + β = kπ for some

integer k.

Proof Note that

cos2 α − sin2 β = cos(α + β) cos(α − β).

The result is then easy from the Cauchy–Schwarz inequality. �

Let c1 = cos α, c2 = sin α, c′

1 = cos β, and c′
2 = sin β. Then,

F(λ0,λ1)

≤ sin2 2τ(cos2 α + cos2 β) + 2| cos 2τ | · | sin(α − β)|
≤ sin2 2τ +

√
sin4 2τ + 4 cos2 2τ

= 2

where the first equality is from the fact that b′
1b2 − b1b′

2 ≤ 1 which is in turn from the
Cauchy–Schwarz inequality, and the second equality comes from Lemma 2. Further-
more, it is easy to check that the upper bound is achievable by taking, say,

c1 = c′
1 = 1√

1 + cos2 2τ
,

−c2 = c′
2 = cos 2τ√

1 + cos2 2τ
,

b1 = −b′
2 = 1,

b2 = b′
1 = 0.

123



Generating tripartite nonlocality from bipartite resources Page 9 of 13 28

In this case, we have

λ0 =
√

1 + cos2 2τ (1, 1, 0),

λ1 =
√

1 + cos2 2τ (1,−1, 0).

Thus, λ0 ⊥ λ1, and by Lemma 1,

Smax(ρ0) = 4p2
√

1 + cos2 2τ .

By a similar calculation, we can show that Smax(ρ1) = 4p2
√

1 + cos2 2τ as well,
where ρ1 is the post-measurement state of ABC1 when the system C2 is projected to
|ψ1〉.

If we choose cos τ = 0 or cos τ = ±1, which corresponds to the projective mea-
surement in the standard basis on system C2, the maximal value 4p2

√
2 is achieved

for both ρ0 and ρ1. With this, we have proved the following theorem which is the main
result of this subsection.

Theorem 1 Let ρ in Fig. 1 be a Werner state defined in Eq.(5), and Clare is only
allowed to perform projective measurement in the X − Z plane. Then, the maximal
Svetlichny inequality violation of the remaining states satisfies

p0Smax(ρ0) + p1Smax(ρ1) ≤ 4p2
√

2,

whereρ0 andρ1 are the post-measurement states of system ABC1 with the correspond-
ing probabilities p0 and p1, respectively. The equality holds when the measurement in
the standard basis {|0〉, |1〉} is applied. Furthermore, in this case the maximal viola-
tion 4p2

√
2 is achieved for both measurement outcomes; thus, tripartite nonlocality

is generated with certainty if p > 2− 1
4 ≈ 0.8409.

3.2 Two-qubit pure states as the resource

Now we turn to the case where an arbitrary two-qubit pure state |�θ 〉 described in
Eq.(6) serves as the resource in our setting. By applying the CNOT operation, the
initial state |�θ 〉AC1 |�θ 〉BC2 will be transformed to

|ψ〉ABC1C2

= cos2 θ |0000〉 + sin2 θ |1110〉 + sin θ cos θ(|0101〉 + |1011〉)
≡ x0|�0〉|0〉 + x1|�1〉|1〉

where x0 =
√

cos4 θ + sin4 θ , x1 = √
2 cos θ sin θ , and

|�0〉 = α0|000〉 + α1|111〉 (9)

|�1〉 = (|010〉 + |101〉)/√2 (10)
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with α0 = cos2 θ
x0

and α1 = sin2 θ
x0

.
Suppose Clare measures the system C2 according to the following orthonormal

basis

|ϕ0〉 = μ0|0〉 + μ1|1〉
|ϕ1〉 = μ1|0〉 − μ0|1〉

where μ0, μ1 ∈ R and μ2
0 +μ2

1 = 1. The probability of projecting system C2 into the
state |ϕ0〉 is p0 = μ2

0x
2
0 + μ2

1x
2
1 , and the post-measurement state of system ABC1 is

|�0〉 = (μ0x0|�0〉 + μ1x1|�1〉) /
√
p0. (11)

The measurement projects system C2 into |ϕ1〉 with probability p1 = 1 − p0 and the
state of ABC1 becomes

|�1〉 = (μ1x0|�0〉 − μ0x1|�1〉)/√p1. (12)

To evaluate the nonlocality of the states in Eqs.(11) and (12), we need a lemma.

Lemma 3 Let |�〉ABC ≡ ω0|�0〉 + ω1|�1〉 where |�0〉 and |�1〉 are defined in
Eqs.(9) and (10), respectively, ω0, ω1 ∈ R, and ω2

0 + ω2
1 = 1. Then,

Smax(�) ≤ 4

√

2 + 4α0α1 (1 + 2α0α1)

(
ω4

0 − 1

2α0α1
ω2

0

)

and the equality holds when

12

(
ω2

0α0α1 − ω2
1

2

)2

+ 2ω2
0ω

2
1(α0 + α1)

2 ≥ 1. (13)

Proof By reordering the systems ABC , the state |�〉 can be rewritten as

|�〉ACB = |00〉(ω0α0|0〉 + ω1√
2
|1〉) + |11〉

(
ω1√

2
|0〉 + ω0α1|1〉

)
.

Let

U = ω0α0√
r

σ3 + ω1√
2r

σ1

be a unitary operator, where σ1 and σ3 are Pauli matrices and r = ω2
0α

2
0 + ω2

1
2 . Then,

(IAC ⊗UB)|�〉ACB = √
r |00〉|0〉 + √

1 − r |11〉|φ〉
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where

|φ〉 =
√

2ω0ω1 (α0 + α1) |0〉 + (
ω2

1 − 2ω2
0α0α1

) |1〉
2
√
r(1 − r)

.

Note that local unitary operations do not affect nonlocality. Then, the lemma holds
from [12]. �


With Lemma 3, we calculate the quadratic mean1 of the maximal Svetlichny vio-
lations as

√
p0Smax(�0)2 + p1Smax(�1)2

≤ 4

√√√√2 + 4α0α1(2α0α1 + 1)

[
x4

0

(
μ4

0

p0
+ μ4

1

p1

)
− x2

0

2α0α1

]

≤ 4
√

2 + 2(4α2
0α2

1 − 1)x2
0 = 4

√
2 sin2 2θ

1 + cos2 2θ
,

where the second inequality comes from the fact that

μ4
0

p0
+ μ4

1

p1
= 1

x2

⎡

⎢⎣
μ2

0

1 +
(

μ1x1
μ0x0

)2 + μ2
1

1 +
(

μ0x1
μ1x1

)2

⎤

⎥⎦

≤ 1

x2

(
μ2

0 + μ2
1

)
= 1

x2 .

The equality holds when μ2
0 = 0 or μ2

0 = 1, which correspond to the projective
measurement in the standard basis {|0〉, |1〉}. In this case, the post-measurement states
|�0〉 and |�1〉 are exactly |�0〉 and |�1〉 defined in Eqs.(9) and (10), respectively. If

0.4911 ≈
√

1
2 − 1

2

√
2 − √

3 ≤ cos θ ≤
√

1
2 + 1

2

√
2 − √

3 ≈ 0.8711, then Eq.(13)

holds for both |�0〉 and |�1〉, and the upper bound 4
√

2 sin2 2θ
1+cos2 2θ

is obtained.
We summarize our main result in this section as the following theorem.

Theorem 2 Let ρ = |�θ 〉〈�θ | in Fig. 1 where |�θ 〉 is defined in Eq.(6) with 0.4911 ≤
cos θ ≤ 0.8711, and Clare is only allowed to perform projective measurement in the
X−Z plane. Then, the quadratic mean of the maximal Svetlichny inequality violations
of the remaining states satisfies

√
p0Smax(�0)2 + p1Smax(�1)2 ≤ 4

√
2 sin2 2θ

1 + cos2 2θ
,

1 For technical reasons, here we consider the quadratic mean, instead of the arithmetic mean as for the
Werner states case, to quantify the tripartite nonlocality of the remaining states.
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where |�0〉 and |�1〉 are the post-measurement states of system ABC1 with the
corresponding probabilities p0 and p1, respectively. The equality holds when the
measurement in the standard basis {|0〉, |1〉} is applied. Furthermore, in this case we
have Smax(�1) = 4

√
2 and

Smax(�0) = 4
√

2 sin2 2θ

1 + cos2 2θ
. (14)

Thus, tripartite nonlocality is generated with certainty if

0.5412 ≈
√

2 − √
2

2
< cos θ <

√√
2

2
≈ 0.8409.

4 Conclusion and future work

In this paper, we investigate a setting of generating tripartite nonlocality from two
classes of bipartite resources, namely Werner states and two-qubit pure states. Inter-
estingly, we find in both cases projective measurement according to the standard basis
{|0〉, |1〉} achieves the maximal Svetlichny inequality violation of the remaining states
(although the criteria are slightly different).

The setting considered in this paper is, however, still very simple: only a CNOT
operation on C1 and C2 followed by a projective measurement on C2 is allowed. For
future work, we are going to further exploit the power of the technique we proposed in
this paper to derive the maximal Svetlichny violation for other classes of three-qubit
states. With this, we will be able to include more general measurements and resources
in our setting than those considered in the current paper. More complicated protocols
other than the CNOT measurement one can also be examined, which hopefully will
extend the capability of our setting to generate tripartite nonlocality.
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