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Abstract Many novel quantum digital signature proposals have been proposed, which
can effectively guarantee the information-theoretic security of the signature for a singe
bit against forging and denying. Using the current basic building blocks of signing a
single bit, we give a new proposal to construct an entire protocol for signing a long
message. Compared with the previous work, it can improve at least 33.33% efficiency.

Keywords Quantum digital signature · Integrity · Forgery attack · Authentication

1 Introduction

Digital signature (DS) is a fundamental cryptographic primitive, which can effec-
tively guarantee both the authenticity and transferability of messages. Nowadays, DS
is widely used in electronic transactions, software distribution and other cases where
it is vital to guarantee the security of a signed message against forging and denying.
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Nevertheless, the security of traditional digital signature schemes are generally based
on difficult mathematical problems and therefore is facing serious challenges with the
rapid development of computing technology, especially the appearance of fast quan-
tum algorithms [1,2]. Fortunately, quantum digital signature (QDS) was introduced
by Gottesman and Chuang [3], whose security is based on the fundamental principles
of quantum mechanics. The early proposals [3–5] require preparing complex quantum
states, performing quantum computation on these states and storing them in quantum
memory, which make these proposals impractical. Subsequently, novel QDS propos-
als [6–8] were presented, in which quantum memory were not needed any longer. In
addition, these proposals can be realized with standard quantum-optical techniques,
and some of them have been demonstrated in experiments [6,9,10]. Nevertheless, there
is an impractical assumption that authenticated quantum channels between participants
are necessary in security analysis. Recently, two practical QDS schemes [11,12] were
independently proposed by removing the requirement of authenticated quantum chan-
nels, respectively. Furthermore, the feasibility of experimental implementing QDS
over a distance of more than one hundred kilometers had been given in [12].

However, the previous works are not sufficient to define an entire and practical
QDS protocol. First, none of them has been explicitly generalized to more than three
participants, and their security goals have not been formally defined. Second, a security
framework for QDS schemes that includes rigorous definitions of security suitable for
multiparty QDS protocols has not yet been proposed [13]. Finally, how to sign a long
message has not been considered. Therefore, there still must be an additional set of
rules which stipulate how disputes are resolved, and how validity of a long message
is proven and so on.

Arrazola et al. [13] firstly introduced the rigorous security definitions by extending
the security definitions of unconditionally secure signature (USS) given by Swan-
son and Stinson [14]. Furthermore, they provided a full security framework for QDS
schemes and proved several properties that USS must satisfy. Additionally, they gen-
eralized a QDS protocol in [8] to multiparty case, proving its security against forging,
repudiation and non-transferability.

Two of us firstly proposed a way to define an entire protocol for signing a long
message with the current basic building blocks of signing a single bit [15]. In this
work, we reconsider this problem and give a new proposal to deal with it. Compared
with the previous work [15], the new proposal is also by the way of message tagging
and using protected codewords, but it can reduce at least 33.33% classical and quantum
resources.

2 The proposed proposal

In this section, we will give a new proposal to design an entire protocol with the current
building blocks of signing a single bit, which includes three stages: the initial stage,
the signing stage and the verifying stage. At the same time, a signer Alice, a trusted
third party (TTP) Joe, who judges the validity of signatures and gives a fair decision
when disputes appear, and several recipients Bob, Charlie, David and so on are also
involved in this protocol. Specifically, this proposal can be described as follows.
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2.1 The initial stage

For each possible message bit ki = 0 and ki = 1 in the future, i = 1, 2, . . . , N ,
where the integer N is sufficiently large, Alice generates its signing key Ski and the
corresponding verification key Vki , respectively, of which all the verification keys
{Vk1 , Vk2 , . . . , VkN } are distributed to TTP and each recipient. This stage can be easily
completed by one of the ways in [6–12]. It should be noted that all the signing keys
and verification keys are labeled and sequential, and the key Ski used to sign 0 or
1 is predetermined, that is, if ki = 0, it shall be used to sign a bit 0; otherwise, it
shall be used to sign bit 1. Furthermore, the verification key Vki distributed to TTP
and each recipient may be different, which depends on the adopted way in [6–12],
but their functions are the same to verify the validity of a signature generated by the
corresponding signing key Ski , and therefore, here we do not distinguish them with
different notations any longer.

2.2 The signing stage

Without loss of generality, suppose that the recipient Bob wants the signer Alice to
sign a classical message M = m1||m2|| · · · ||mn , mi ∈ {0, 1}, i = 1, 2, . . . , n, where
|| denotes the concatenation between bits.

(1) Bob sends the message M to Alice via a classical authenticated channel.
(2) When receiving the message M , Alice firstly checks whether it is within the

border delimited in advance. If it is not so, she rejects it. Otherwise, for each
bit mi , i = 1, 2, . . . , n, if it is 0, she encodes it with the codeword 00; if it is
1, she encodes it with the codeword 01. After that, she adds a special codeword
11 to both the start and the end of the codeword sequence. In this way, the
message M is transformed to a bit sequence ̂M whose length is 2n + 4, i.e.,
̂M = m̂1||m̂2|| · · · ||m̂2n+4, here m̂1 = m̂2 = m̂2n+3 = m̂2n+4 = 1 and m̂ j ∈
{0, 1}, j = 3, 4, . . . , 2n + 2.

(3) Alice firstly chooses 2n+4 signing keys Skl+1 , Skl+2 ,…,Skl+2n+4 in sequence with
kl+ j = m̂ j , j = 1, 2, . . . , 2n + 4. Second, for each bit m̂ j , j = 1, 2,…,2n + 4,
she signs it with the corresponding key Skl+ j , here the signature for the bit m̂ j

is denoted as SigSkl+ j
(m̂ j ). Finally, she sends the resulting message-signature

pair (M, Sig(M), l) to Bob via a classical authenticated channel, where M is the
original message, l is the sequence number of the first signing key in the whole,
and

Sig(M) = SigSkl+1
(m̂1)||SigSkl+2

(m̂2)

|| · · · ||SigSkl+2n+4
(m̂2n+4) (1)

(4) When Bob receives the message-signature pair (M, Sig(M), l), he transforms
the message M to ̂M by the same way as Alice does in the step (2). Then he checks
whether each signature SigSkl+ j

(m̂ j ) is true or not by using the corresponding
verification key Vkl+ j . If each bit-signature pair (m̂ j , SigSkl+ j

(m̂ j )) can pass the
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verification, he confirms that the message-signature pair (M, Sig(M), l) comes
from Alice and the message M has not been tampered with. Otherwise, he rejects
it.

2.3 The verifying stage

When other recipient say Charlie receives the resulting message-signature pair
(M, Sig(M), l) forwarded by Bob via a classical authenticated channel, he can verify
their validity by using the similar way as Bob does in step (4), i.e., if each bit-signature
pair (m̂ j , SigSkl+ j

(m̂ j )) ( j = 1, 2, . . . , 2n+4)matches with the verification key Vkl+ j

distributed by Alice in the initial stage, Charlie confirms the authenticity of the mes-
sage M ; otherwise, he thinks that the message M does not come from Alice or it has
been tampered with.

If no dispute appears, this protocol has been completed so far; otherwise, if there is
a dispute, for example, the signer Alice denies her signature or a recipient doubts the
authenticity of a message-signature pair (M, Sig(M), l), in this case, they send the
message-signature pair (M, Sig(M), l) to TTP via a classical authenticated channel.
Once receiving the request, TTP firstly verifies the validity of the message-signature
pair (M, Sig(M), l) in the same way as Bob does in the step (4) of Sect. 2.2 and then
gives an objective decision according to the verification outcome, that is to say, if the
signature can pass his verification, he judges the message M comes from Alice and it
has not been tampered with; otherwise, he accepts Alice’s appeal that the signature is
not generated by her.

2.4 The security analysis

It has been proven that the signature for a single bit is unconditionally secure
against forging and denying in [6–12], that is to say, nobody can forge a valid bit-
signature pair (m̂i , SigSkl+i

(m̂i )) except with a negligible probability even if he/she
has infinite resources including computing, storing and so on. Obviously, the pre-
sented protocol is based on the basic building blocks of signing a single bit, which
means that nobody can generate a valid message-signature pair (M, Sig(M), l) by
the way of forging a new (̂m′

i , SigSkl+i
(̂m′

i )) except the signer Alice. Therefore,
this way is not valid to the presented protocol, and the other way is recombin-
ing the bit-signature pair (m̂ j , SigSkl+ j

(m̂ j )) to form a valid message-signature

pair (M ′, Sig(M ′), l ′) by using known message-signature pair (M, Sig(M), l), i.e.,
choosing some bits from known messages and their signatures to recombine a
new message-signature pair (M ′, Sig(M ′), l ′), which has been shown by forgery
attacks 1 and 2 in [15]. Nevertheless, it is also not feasible to this protocol even
if an opponent Eve has gained access to a lot of valid message-signature pairs
(M1, Sig(M1), l1), (M2, Sig(M2), l2), . . . , (MT , Sig(MT ), lT ).

First, the label of verification key for each message bit 0 or 1 is predetermined
and sequential, which requires the bit-signature pairs chosen from known message-
signature pairs must be also in sequence.
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Second, it can be seen that every legal signature

Sig(M) = SigSkl+1
(m̂1)||SigSkl+2

(m̂2)||
· · · ||SigSkl+2n+3

(m̂2n+3)||SigSkl+2n+4
(m̂2n+4)

= SigSkl+1
(1)||SigSkl+2

(1)||SigSkl+3
(m̂3)||

· · · ||SigSkl+2n+3
(1)||SigSkl+2n+4

(1) (2)

are tagged with SigSkl+1
(1)||SigSkl+2

(1) and SigSkl+2n+3
(1) ||SigSkl+2n+4

(1) at the start
and the end, i.e., both the start and the end of a valid signature Sig(M) must be a
signature on the special codeword 11. Therefore, in order to forge a valid message-
signature pair, it is necessary to find two signatures on the special codeword 11.

Finally, it can be seen from both the signing stage and the verification stage that
except the first two bit signatures and the last two in a legal signature Sig(M), all the
other bit signatures are on the bit sequence consisted of the codewords 00 and 01.

As a result, if an opponent Eve wants to forge a message-signature pair
(M ′, Sig(M ′), l ′) (here the length of the message M ′ is n′) that can pass the veri-
fication, she must make the forged signature

Sig(M ′) = SigSkl′+1
(̂m′

1)||SigSkl′+2
(̂m′

2)||
· · · ||SigSkl′+2n′+4

(̂m′
2n′+4) (3)

satisfy the following three requirements:

(1) m′
1m

′
2 = 11,m′

2n′+3m
′
2n′+4 = 11;

(2) m′
2 j+1m

′
2 j+2 ∈ {00, 01}, j = 1, 2, . . . , n′;

(3) each bit-signature pair (m̂i , SigSkl′+i
(m̂i )), i = 1, 2, . . . , 2n′ + 4 matches the

corresponding verification key Vkl′+i
, that is to say, all of them must pass the

verification.

However, it is impossible to recombine such a message-signature pair (M ′, Sig(M ′),
l ′) no matter how many valid message-signature pairs (M1, Sig(M1), l1),(M2,
Sig(M2),l2), …,(MT , Sig(MT ), lT ) Eve has gained access to. To prove the conclu-
sion, some necessary preliminaries should be given firstly.

Theorem 1 Suppose that C = c1||c2|| · · · ||ct , ci ∈ {00, 01}, i = 1, 2, . . . , t , is a
bit sequence, i.e., C is a codeword sequence consisted of 00 and 01, then we can get
11 /∈ C.

Proof By simple analysis, it can be obtained that there are only four cases
00||00, 00||01, 01||00 and 01||01 between the concatenation of 00 and 01. In addition,
the codeword sequence C just includes the two codewords 00 and 01. Therefore, three
kinds of codewords 00, 01 and 10 can be found in the sequence C , but it is impossible
to find a codeword 11 no matter how large t is, that is 11 /∈ C .

Noted that this theorem is simple, but it implies that if each bit 0(1) of a message
M is encoded by the codeword 00(01), then it is impossible to find a codeword 11 in
the corresponding encoding sequence. For example, let a message M = 001011, then
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the message M is transformed to the bit sequence C = 000001000101, in which it is
impossible to find such a codeword 11. ��
Theorem 2 Suppose that C = 11||c1||c2|| · · · ||ct ||11, ci ∈ {00, 01}, i = 1, 2, . . . , t ,
is a bit sequence, it is impossible to find a sequence C ′ = 11||c′

1||c′
2|| · · · ||c′

k ||11 with
c′
i ∈ {00, 01}, i = 1, 2, . . . , k such that C ′ ⊆ C except C ′ = C. Noted that here all
the codewords in C ′ are in sequence.

Proof To find a sequence C ′ = 11||c′
1||c′

2|| · · · ||c′
k ||11 with c′

i ∈ {00, 01}, i =
1, 2, . . . , k such that C ′ ⊆ C , we must find two codewords 11 in the sequence C
at first. Nevertheless, we know 11 /∈ c1||c2|| · · · ||ct according to Theorem 1, which
means that it is impossible to find a codeword sequence C ′ = 11||c′

1||c′
2|| · · · ||c′

k ||11
with c′

i ∈ {00, 01}, i = 1, 2, . . . , k such that C ′ ⊆ c1||c2|| · · · ||ct . In addition, the first
bit of both the legal codewords 00 and 01 is 0, and therefore, we cannot find a new
codeword 11 in 11||c1||c2|| · · · ||ct except the start codeword 11. Therefore, to find a
sequence C ′ = 11||c′

1||c′
2|| · · · ||c′

k ||11 with c′
i ∈ {00, 01}, i = 1, 2, . . . , k such that

C ′ ⊆ C , we must choose the first codeword 11 of the sequenceC as the start codeword
of the sequence C ′, but the end codeword 11 of the sequence C ′ cannot be also chosen
from the last codeword 11 of the sequence C because the bit sequences C ′ and C are
the same in the case, i.e., C ′ = C . By simple deducing, it is not difficult to find that
there is only one codeword 11 in the sequence C except the first and the last, that is,
when the codeword ct is 01, the last bit 1 of ct and the first bit 1 of the end codeword 11
in the sequence C can be taken out to combine a new codeword 11. Nevertheless, the
sequence C ′ is 11||c1||c2|| · · · ||ct−1|01|1 = 11||c1||c2|| · · · ||ct−1|0||11 in this case.
It is evident that it does not satisfy the requirement C ′ = 11||c′

1||c′
2|| · · · ||c′

k ||11 with
c′
i ∈ {00, 01}, i = 1, 2, . . . , k for 0 /∈ {00, 01}.

Therefore, it is impossible to find a sequence C ′ = 11||c′
1||c′

2|| · · · ||c′
k ||11 with

c′
i ∈ {00, 01}, i = 1, 2, . . . , k such that C ′ ⊆ C except C ′ = C . For example, let
C = 110000010111, clearly, there is no codeword 11 in the middle of the bit sequence
C , and therefore, it is impossible to find a sequence C ′ = 11||c′

1||c′
2|| · · · ||c′

k ||11
with c′

i ∈ {00, 01}, i = 1, 2, . . . , k such that C ′ ⊆ 110000010111 except C ′ =
110000010111. ��
Theorem 3 Suppose that C j = c j1 ||c j2 || · · · ||c jn j , c

j
1 = c jn j = 11, c ji ∈ {00, 01}, i =

2, 3, . . . , n j − 1, j = 1, 2, . . . , l, it is impossible to find a sequence C ′ = c
′
1||c

′
2||

· · · ||c′
n′ with c

′
1 = c

′
n′ = 11 and c

′
i ∈ {00, 01}, i = 2, 3, . . . , n′ − 1 such that

C ′ ⊆ C1||C2|| · · · ||Cl except C ′ = C j , j = 1, 2, . . . , l.

Proof When l = 1, Theorem 3 reduces to Theorem 2, and hence, the conclusion is
obviously right.

When l = 2,

C1||C2 = c1
1||c1

2|| · · · ||c1
n1−1||c1

n1
||c2

1||c2
2|| · · · ||c2

n2−1||c2
n2
. (4)

To find a sequence C ′ = c
′
1||c

′
2|| · · · ||c

′
n′ with c

′
1 = c

′
n′ = 11 and c

′
i ∈ {00, 01}, i =

2, 3, . . . , n′ − 1 such that C ′ ⊆ C1||C2|| · · · ||Cl , it is necessary to find at least one
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new codeword 11. By Theorem 2 and Formula (4), the new codeword 11 can be only
chosen from c1

n1−1||c1
n1

||c2
1 or c2

n2−1||c2
n2

.

(1) When c1
n1−1 = c2

n2−1 = 00, c1
n1−1||c1

n1
||c2

1 = 00||11||11 and c2
n2−1||c2

n2
=

00||11, we can choose the new codeword 11 only from c1
n1

||c2
1 = 11||11. Nev-

ertheless, if we choose c1
n1

as the end codeword of the sequence C ′, we must
choose c1

1 as the start codeword, in the case C ′ = C1; if we choose c1
n1

as the
start codeword of the sequence C ′, we must choose c2

n2
as the end codeword, i.e.,

C ′ = c1
n1

||c2
1||c2

2|| · · · ||c2
n2−1||c2

n2
, in the case c2

1 = 11 /∈ {00, 01}; if we choose

the last bit of c1
n1

and the first bit of c2
1 as the end codeword of the sequence C ′,

we must choose c1
1 as the start codeword, i.e., C ′ = 11||c′

2|| · · · ||c
′
n′−1||11 =

c1
1||c1

2|| · · · ||c1
n1−1||11||1, in the case there must exist at least one codeword c′

i

(c′
i ∈ C ′) such that c′

i /∈ {00, 01}; if we choose the last bit of c1
n1

and the first
bit of c2

1 as the start codeword of the sequence C ′, we must choose c2
n2

as the

end codeword, i.e., C ′ = 11||c′
2|| · · · ||c

′
n′−1||11 = 1||11||c2

2|| · · · ||c2
n2−1||11,

in the case there also must exist at least one codeword c′
i (c

′
i ∈ C ′) such that

c′
i /∈ {00, 01}; if we choose c2

1 as the end codeword of the sequence C ′, we must
choose c1

1 as the start codeword, i.e.,C ′ = c1
1||c1

2|| · · · ||c1
n1−1||c1

n1
||c2

1, in the case

c1
n1

= 11 /∈ {00, 01}; if we choose c2
1 as the start codeword of the sequence C ′,

we must choose c2
n2

as the end codeword, in the case C ′ = C2. Therefore, when

c1
n1−1 = c2

n2−1 = 00, it is impossible to find a sequence C ′ = c
′
1||c

′
2|| · · · ||c

′
n′

with c
′
1 = c

′
n′ = 11 and c

′
i ∈ {00, 01}, i = 2, 3, . . . , n′−1 such thatC ′ ⊆ C1||C2

except C ′ = C j , j = 1, 2.
(2) When c1

n1−1 = 01 and c2
n2−1 = 00, c1

n1−1||c1
n1

||c2
1 = 01||11||11 and c2

n2−1||c2
n2

=
00||11, we can choose the new codeword 11 only from c1

n1−1||c1
n1

||c2
1 =

01||11||11. Nevertheless, if we choose the last bit of c1
n1−1 and the first bit

of c1
n1

as the end codeword of the sequence C ′, we must choose c1
1 as the

start codeword, i.e., C ′ = 11||c′
2|| · · · ||c

′
n′−1||11 = c1

1||c1
2|| · · · ||c1

n1−2||01||1,
in the case there must exist at least one codeword c′

i (c′
i ∈ C ′) such that

c′
i /∈ {00, 01}; if we choose the last bit of c1

n1−1 and the first bit of c1
n1

as

the start codeword of the sequence C ′, we can choose c2
1 or c2

n2
as the end

codeword, if we choose c2
1, i.e., C ′ = 1||c1

1||c1
2 = 11111, it is obviously

contradictory to the requirement c
′
i ∈ {00, 01}, but if we choose c2

n2
, i.e.,

C ′ = 11||c′
2|| · · · ||c

′
n′−1||11 = 1||11||c2

1||c2
2|| · · · ||c2

n2−1||11, in the case there
also must exist at least one codeword c′

i (c
′
i ∈ C ′) such that c′

i /∈ {00, 01}; if we
choose c1

n1
, c2

1 or the last bit of c1
n1

and the first bit of c2
1 as the start codeword

or the end one, we will face the similar difficulty. Therefore, when c1
n1−1 = 01

and c2
n2−1 = 00, it is impossible to find a sequence C ′ = c

′
1||c

′
2|| · · · ||c

′
n′ with

c
′
1 = c

′
n′ = 11 and c

′
i ∈ {00, 01}, i = 2, 3, . . . , n′ − 1 such that C ′ ⊆ C1||C2

except C ′ = C j , j = 1, 2.
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(3) When c1
n1−1 = 00 and c2

n2−1 = 01, c1
n1−1||c1

n1
||c2

1 = 00||11||11 and

c2
n2−1||c2

n2
= 01||11, we can choose the new codeword 11 from c1

n1
||c2

1 = 11||11

or c2
n2−1||c2

n2
= 01||11. Nevertheless, if we choose c1

n1
as the end codeword

of the sequence C ′, we must choose c1
1 as the start codeword, in the case

C ′ = C1; if we choose c1
n1

as the start codeword of the sequence C ′, we can
choose the last bit of c2

n2−1 and the first bit of c2
n2

or c2
n2

as the end code-

word, in both cases c2
1 = 11 /∈ {00, 01}; if we choose the last bit of c1

n1
and

the first bit of c2
1 as the end codeword, we also must choose c1

1 as the start
codeword, in the case C ′ = 11||c′

2|| · · · ||c
′
n′−1||11 = 11||c1

2|| · · · ||c1
n1−1||11||1,

there must exist at least one codeword c′
i (c

′
i ∈ C ′) such that c′

i /∈ {00, 01};
if we choose the last bit of c1

n1
and the first bit of c2

1 as the start codeword,
we can choose the last bit of c2

n2−1 and the first bit of c2
n2

or c2
n2

as the end

codeword, i.e., C ′ = 11||c′
2|| · · · ||c

′
n′−1||11 = 1||11||c2

2|| · · · ||c2
n2−2||01||1 or

C ′ = 11||c′
2|| · · · ||c

′
n′−1||11 = 1||11||c2

2|| · · · ||c2
n2−2||01 ||11, in both cases

there must exist at least one codeword c′
i (c

′
i ∈ C ′) such that c′

i /∈ {00, 01};
if we choose c2

1, the last bit of c2
n2−1 and the first bit of c2

n2
or c2

n2
as the new

codeword, we will face the similar difficulty. Therefore, when c1
n1−1 = 00 and

c2
n2−1 = 01, it is impossible to find a sequence C ′ = c

′
1||c

′
2|| · · · ||c

′
n′ with

c
′
1 = c

′
n′ = 11 and c

′
i ∈ {00, 01}, i = 2, 3, . . . , n′ − 1 such that C ′ ⊆ C1||C2

except C ′ = C j , j = 1, 2.
(4) When c1

n1−1 = 01 and c2
n2−1 = 01, c1

n1−1||c1
n1

||c2
1 = 01||11||11 and c2

n2−1||c2
n2

=
01||11, we can choose the new codeword 11 from c1

n1−1||c1
n1

||c2
1 = 01||11||11

or c2
n2−1||c2

n2
= 01||11. Nevertheless, no matter how to choose the sequence

C ′ = c
′
1||c

′
2|| · · · ||c

′
n′ = 11||c′

2|| · · · || c
′
n′−1||11, there must exist at least one

codeword c′
i (c

′
i ∈ C ′) such that c′

i /∈ {00, 01}. ��

Therefore, when l = 2, the conclusion is also right.
Suppose that when n = l − 1, this conclusion is right. When n = l, let C =

C1||C2|| · · · ||Cl−1, by the former assumption, it is impossible to find a sequence
C ′ = c

′
1||c

′
2|| · · · ||c

′
n′ with c

′
1 = c

′
n′ = 11 and c

′
i ∈ {00, 01}, i = 2, 3, . . . , n′ − 1

such that C ′ ⊆ C except C ′ = C j , j = 1, 2, . . . , l − 1. By similar analysis as l = 2,
we can conclude that it is impossible to find a sequence C ′ = c

′
1||c

′
2|| · · · ||c

′
n′ with

c
′
1 = c

′
n′ = 11 and c

′
i ∈ {00, 01}, i = 2, 3, . . . , n′ − 1 such that C ′ ⊆ C ||Cl except

C ′ = C j , j = 1, 2, . . . , l, which means this conclusion is also right when n = l.
All in all, it is impossible to find a sequence C ′ = c

′
1||c

′
2|| · · · ||c

′
n′ with c

′
1 = c

′
n′ =

11 and c
′
i ∈ {00, 01}, i = 2, 3, . . . , n′ − 1 such that C ′ ⊆ C1||C2|| · · · ||Cl except

C ′ = C j , j = 1, 2, . . . , l.
From Theorems 1, 2 and 3, it can be concluded that Eve cannot forge a new valid

message-signature pair (M ′, Sig(M ′), l ′) by recombining the obtained bit-signature
pairs even if she has a lot of valid message-signature pairs, and therefore if the basic
building blocks of signing a single bit is unconditionally secure against forging, the
presented protocol is also unconditionally secure against forging. Furthermore, a TTP
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Joe is introduced in this protocol, where he can deal with disputes and prevent the
possible repudiation of a valid signature.

As a result, if the basic building blocks of signing a single bit are unconditionally
secure against forging and denying, the presented protocol is also unconditionally
secure against forging and denying even in the model of adaptive chosen-message
attacks [16].

3 Conclusion

Based on the current basic building blocks of signing a single bit, we give a new
proposal to define an entire protocol for signing a long message by the way of tagging
both the start and the end of a signed message. In the proposal, a valid message-
signature pair (M, Sig(M), l) is generated by the signer Alice, and it can be verified
and transferred among the legal recipients Bob, Charlie, David and so on. Although
a TTP is introduced, he does not participate in this protocol except when a dispute
appears. Furthermore, the security analysis shows it is unconditionally secure against
forging and denying. Therefore, the defined QDS protocol has the basic properties of
transferability, verifiability, unforgeability and non-repudiation.

In the previous work [15], it will consume 3n signing keys to sign a message
M consisted of n bits, but the protocol only consumes 2n signing keys to sign M .
Furthermore, the participants transfer the message M instead of the encoding sequence
̂M in this protocol, which makes it reduce 66.7% classical communication. Therefore,
this protocol can reduce at least 33.33% classical and quantum resources compared
with the previous work. We hope this work shed some light on the next development
of QDS.
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