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Abstract Following recent developments in quantum PageRanking, we present
a comparative analysis of discrete-time and continuous-time quantum-walk-based
PageRank algorithms. Relative to classical PageRank and to different extents, the
quantum measures better highlight secondary hubs and resolve ranking degeneracy
among peripheral nodes for all networks we studied in this paper. For the discrete-time
case, we investigated the periodic nature of the walker’s probability distribution for a
wide range of networks and found that the dominant period does not grow with the
size of these networks. Based on this observation, we introduce a new quantum mea-
sure using the maximum probabilities of the associated walker during the first couple
of periods. This is particularly important, since it leads to a quantum PageRanking
scheme that is scalable with respect to network size.
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1 Introduction

Characterising the relative importance of nodes in a graph is a key element in network
analysis. A ubiquitous application of such centrality measures is Google’s PageRank
algorithm [1,2], whereby the World Wide Web (WWW) is considered as a network of
webpages (nodes) connected by hyperlinks (directed edges) between them. By ranking
each webpage according to its PageRank centrality, the search engine’s results are
ordered based on their approximated quality.

There has been recent interest in formulating a quantum version of PageRank. Since
the intuition behind Google’s PageRank is a classical “random surfer” crawling the
WWW, a quantum walker traversing the associated directed network can be expected
to provide an analogous measure of PageRank. As the quantum analogue of classical
random walks, quantum walks serve as building blocks for quantum algorithms that can
outperform their classical counterparts [3]. It is thus interesting to study whether their
quantum mechanical properties afford an advantage over Google’s classical PageRank
algorithm.

Paparo and Martin-Delgado [4] and Sánchez-Burillo et al. [5] have separately pro-
posed two quantum PageRank measures. The former is based on a discrete-time
quantum walk (DTQW), whereas the latter uses a continuous-time quantum walk
(CTQW). While quantum walks on arbitrary undirected graphs have been well defined,
extending this framework to include directed quantum walks is non-trivial due to the
requirements of unitarity and reversibility of the walk [6]. To deal with this diffi-
culty, the discrete-time quantum PageRank uses a non-fully directed but unitary walk,
whereas the continuous-time algorithm forgoes unitarity in using an open-system
quantum walk.

Paparo et al. [7] performed further analysis of their proposed quantum PageRank on
complex networks, specifically on hierarchical graphs, directed scale-free graphs, and
Erdős–Rényi random graphs. The quantum PageRank algorithm not only distinguished
clearly between the three graph classes, but also exhibited distinct characteristics in
terms of highlighting secondary hubs and lifting the degeneracy of low-lying nodes.
While it displayed a smoother power-law behaviour on scale-free networks, it was
more sensitive to coordinated attacks on hubs than the classical PageRank algorithm.

Nevertheless, the number of time steps required for the underlying discrete-time
quantum walk to yield a reliable quantum PageRank is yet to be considered. We
seek to address this by investigating the oscillatory nature of the walker’s probability
amplitudes across nodes in the network. Such a consideration is crucially important,
should an efficient quantum-system-based implementation of the PageRank scheme
become realisable.

The open-system-quantum-walk-based PageRank in [5] modelled directionality as
the walker’s non-unitary interaction with the environment. Similar to the discrete-time
case, the open-system PageRank lifted classical rank degeneracy of lowly connected
nodes, while preserving identification of the most central nodes. By extension, it is
useful to ascertain whether the other characteristics found in [7] for the discrete-time
quantum PageRank are reflected in the open-system scheme.

In this article, we largely follow the analysis in [7], but extend it in three ways.
Firstly, we consider the timescale involved for discrete-time-quantum-walk-based
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PageRank. For the network types considered here, we gauge a suitable number of
time steps for the walker’s evolution after which reliable PageRanks can be obtained.
We propose such an upper bound that does not scale significantly with increasing
network size. Secondly, rather than taking the time average of the walker’s prob-
ability distribution, we propose an alternative indicator of PageRank based on the
maximum probability amplitude achieved by the walker on each node. This has pre-
viously been studied as a centrality measure on undirected graphs in [8]. Thirdly, we
concurrently analyse an open-system-based PageRank algorithm. In our comparative
study of three quantum PageRank schemes, we discuss their relative performance in
extracting practically useful information about the networks under consideration. This
provides a better understanding of each scheme as tools for quantum-walk-based com-
plex network analysis. Our results suggest that as per classical PageRank, quantum
PageRanking distinguishes clearly between the outerplanar hierarchical, scale-free,
and Erdős–Rényi network families. While the quantum measures pick out more sec-
ondary hubs and remove degeneracies among low-lying nodes [5,7], each exhibits
such quantum advantage to different extents.

This article is organised as follows: Sect. 2 outlines the theoretical framework
underlying the classical and quantum PageRank algorithms. In Sect. 3, we present
our numerical results for the algorithms on three types of directed networks, namely
outerplanar hierarchical, scale-free, and Erdős–Rényi networks. We continue our com-
parative analysis on the algorithms in terms of secondary hub resolution on scale-free
networks, localisation–delocalisation of the walker, and power-law behaviour on scale-
free networks. Finally, Sect. 4 contains discussion and conclusions.

2 Theory

2.1 Classical PageRank

Google’s PageRank algorithm is a variant of eigenvector centrality. The PageRank
vector Icl is given by

GIcl = Icl, (1)

where G is the Google matrix, defined as

G := αE + (1 − α)

N
1. (2)

Here N is the number of nodes in the network, E is a (patched) connectivity matrix,
α is the damping parameter (typically α = 0.85), and 1 is the matrix of all ones.
Intuitively, the second term represents the possibility of the walker randomly hopping
to any other node in the network [2].

Define the connectivity (or adjacency) matrix C of the network as C jk = 1 if
there is an edge from k to j , and C jk = 0 otherwise. To obtain the patched E , C is
modified such that each column k containing all zeroes (corresponding to a node k
with zero out-degree) is replaced by a column with all entries set to 1

N . The remaining
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columns corresponding to nodes with outgoing link(s) are normalised to sum to one
by dividing by the out-degree of the node. Denote the out-degree of a node k by Dk ,
with Dk = ∑

j C jk . Mathematically, E is then

E jk =
{

1
N if Dk = 0
C jk
Dk

if Dk �= 0
(3)

and is in general column stochastic.

2.2 Szegedy-Google PageRank via discrete-time quantum walk

Szegedy’s formalism of the discrete-time quantum walk is a quantisation of the Markov
chain corresponding to a classical random walk [9–12]. Classically, for an N -node
graph, such a process is described by an N -by-N matrix P of transition probabili-
ties, where each entry Pjk denotes the transition probability from node k to node j .

Szegedy’s walk takes place on the Hilbert space HN2 = HN ⊗HN . This space is the
span of all vectors | j, k〉, where each vector represents a directed edge in the graph
from node j to node k.

First, we define the state vector

|ψ j 〉 := | j〉 ⊗
N∑

k=1

√
Pkj |k〉

=
N∑

k=1

√
Pkj | j, k〉 (4)

for each node j = 1, . . . , N of the graph. This represents a superposition of edge
states | j〉1 |k〉2 outgoing from the j th vertex, weighted by P . The projection operator
is given by

�̂ :=
N∑

j=1

|ψ j 〉 〈ψ j | , (5)

and

Ŝ :=
N∑

j,k=1

| j, k〉 〈k, j | (6)

is the swap operator. Then a step of the quantum walk is the unitary operator

Û := Ŝ(2�̂ − 1̂), (7)

whereas a two-step evolution operator takes the form

Û 2 := (2Ŝ�̂Ŝ − 1̂)(2�̂ − 1̂). (8)
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As proposed in [4], using the Google matrix G as the stochastic matrix P imple-
ments a quantum version of the classical PageRank algorithm. Unitarity of the quantum
walk is maintained since G is stochastic; moreover, information on the directionality
of the network is preserved in G.

The corresponding quantum walk is initialised as

|ψ0〉 = 1√
N

N∑

j=1

|ψ j 〉 , (9)

that is, an equal superposition across all nodes, but weighted among the edge states
at each node by G. Taking Û 2 as the discrete-time evolution operator of the walk, the
instantaneous quantum PageRank is then

Iq(Pi , t) = 〈ψ0| Û †2t |i〉2 〈i | Û 2t |ψ0〉 , (10)

which is defined as the walker’s probability distribution of the Pi pages in the network
after t time steps. This value does not converge in time to any stationary distribution
due to the unitarity and reversibility of the quantum-walk operator defined by Eq. (7).

Since a quantum PageRank measure must provide a unique ranking to each node in
the graph, Paparo et al. defined it as the walker’s time-averaged probability distribution
[4,7]:

ITA(Pi ) := 〈
Iq(Pi , t)

〉 = 1

tmax

tmax−1∑

t=0

Iq(Pi , t), (11)

which converges for large enough tmax. This will be referred to as the time-averaged
(TA) PageRank measure in this paper.

We propose an alternative PageRank measure based on the peak probability of
finding the walker on the node. We use the maximum Iq(Pi , t) reached after tmax to
be the quantum PageRank of a node:

IPmax(Pi ) := max{Iq(Pi , t) : 1 ≤ t ≤ tmax, t ∈ Z}. (12)

We seek to gauge a suitable timescale tmax based on the oscillatory evolution of
Iq(Pi , t) according to Eq. (10). First, we apply t = 500 time steps of Û 2 onto the
initial state (9). Performing a Fourier transform on the time series Iq(Pi , t) yields a
power spectrum of the oscillation frequencies present in it. We define ω(Pi ) to be the
lowest frequency present above noise using a threshold of 10% of the highest peak in
the power spectrum [8]. The “period” of Iq(Pi , t) is then Tq(Pi ) = 2π

ω(Pi )
. In general,

each node i in the network, corresponding to page Pi , has a different period Tq(Pi ).
Denote the mean period of all nodes as 〈T all

q 〉:

〈T all
q 〉 := 1

N

N∑

i=1

Tq(Pi ). (13)

123



25 Page 6 of 22 T. Loke et al.

Table 1 Mean periods 〈T 5
q 〉 and

〈T all
q 〉 of the three network types

considered, with number of
nodes N

Network type N 〈T 5
q 〉 〈T all

q 〉

Outerplanar hierarchical 32 21.0 19.7

64 24.0 19.7

128 21.4 19.8

256 20.2 20.5

512 21.0 20.2

Scale-free 32 95.3 109.0

64 100.2 120.7

128 85.8 118.9

256 91.0 111.0

512 99.1 113.3

Erdős–Rényi 32 37.7 68.3

64 56.6 64.4

128 54.5 72.5

256 20.4 33.8

512 11.0 17.5

We use tmax = 2〈T 5
q 〉 as the

number of time steps to obtain
ITA and IPmax for a given
network type and size

Let 〈T 5
q 〉 be the mean period of the five nodes whose instantaneous quantum

PageRanks Iq(Pj , t) reach the highest peak values within their respective periods
1 ≤ t ≤ Tq(Pj ), t ∈ Z.

Following the above steps, we compute 〈T all
q 〉 and 〈T 5

q 〉 for the directed network
families relevant to this study, namely outerplanar hierarchical, scale-free, and Erdős–
Rényi networks with sizes N = 32, 54, 128, 256, 512 nodes. We use an ensemble
of ten scale-free and Erdős–Rényi random networks for each N , generated using
NetworkX [13]. For each Erdős–Rényi network here and throughout this article, the
probability for edge creation is set to p = 0.07. We use tmax = 2〈T 5

q 〉 as the required
timescale for our PageRank analyses, reasoning that the periods of the most central
nodes should figure more strongly over those of the peripheral nodes in determining
the general timescale for each network.

Numerical results are shown in Table 1, and Fig. 1 plots the scaling of the mean
periods with network size. Our results suggest that tmax = 2〈T 5

q 〉 does not scale linearly
upward with N , rather it remains stable for the network types considered here. In the
case of the deterministically constructed outerplanar hierarchical networks, the mean
period plateaus at approximately 〈T 〉 = 20 time steps for successive generations.
Overall, the mean periods are highest for scale-free networks. We see that larger
Erdős–Rényi networks (with same edge probability p = 0.07) tend to have smaller
mean periods. We expect the timescale for higher N to remain similarly bounded.

This is an important observation since it provides the possibility of implementing
a quantum PageRank scheme efficiently, which is a crucial issue not yet addressed
previously in the literature. Note that Chiang et al. [14] presented an efficient quantum
circuit to implement Szegedy walks on arbitrary sparse networks. Although the use
of the Google matrix in ITA and IOS causes the associated unitary evolution operator
Û to be dense, Loke and Wang [15] exploited partitioning the Google matrix into
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Fig. 1 Scaling of mean periods with network size for N = 32, 64, 128, 256, 512 nodes. Mean periods
〈T 5

q 〉 (solid) and 〈T all
q 〉 (dashed) for outerplanar hierarchical, scale-free, and Erdős–Rényi networks are

plotted in blue, orange, and green, respectively. For both the scale-free and Erdős–Rényi random networks,
an ensemble of ten graphs is used for each N . Each error bar corresponds to the standard error of the mean
of the ten 〈Tq 〉 values from each ensemble (Color figure online)

manageable subsets and extended the scheme of Chiang et al. [14] to implement the
Google matrix efficiently, as long as the original network is sparse.

2.3 Open-system PageRank via continuous-time quantum walk

The continuous-time quantum walk was originally proposed by Farhi and Gutmann
[16] out of a study of computational problems reformulated in terms of decision trees.
Following the Schrödinger equation, such evolution is described by

d |�(t)〉
dt

= −i Ĥ |�(t)〉 , (14)

where Ĥ is the transition rate matrix. Requiring unitary evolution operators in quan-
tum mechanics implies that Ĥ must be Hermitian, which is generally not the case
for a directed walk. To introduce directionality into CTQWs, we employ the open-
system method using the Lindblad–von Neumann equation, which accounts for the
non-unitary nature of the directed walk through coupling with an external environment.

To work with open quantum systems, the concept of a density operator is used as
a substitution for wave functions in quantum mechanics. The density operator for the
system is defined by [17]

ρ =
N∑

i=1

pi |�i 〉 〈�i | (15)

where pi are constants that represent how much of state |�i 〉 is in the final mixed state,
with

∑N
i=1 pi = 1.

The Lindblad–von Neumann equation describes how a quantum system evolves
after tracing out the environment, and can be written in the form [18]:
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dρ

dt
= −i h̄[Ĥ , ρ] +

∑

k

γk

(

L̂kρ L̂
†
k − 1

2

{
L̂k L̂

†
k, ρ

})

, (16)

where L̂k are unitary operators on the space that ρ is in. The set of all L̂k forms a basis
for this space. The matrix γ describes how non-energy-conserving phenomena such
as temperature affect the system.

To parameterise interpolation between classical (undirected) and classical (directed)
behaviours, a damping parameter β is introduced into the Lindblad–von Neumann
equation:

dρ

dt
= −i(1 − β)[Ĥ , ρ] + β

∑

i, j

γi j

(

L̂i jρ L̂
†
i j − 1

2

{
L̂i j L̂

†
i j , ρ

})

, (17)

where Ĥ is a symmetrized form of the adjacency matrix C representing its corre-
sponding undirected graph. γ is taken as the patched connectivity matrix E as per Eq.
(3)—this a specific case of the Google matrix G in Eq. (2) with α = 1. Our approach
is equivalent to the quantum PageRank algorithm developed by Sánchez-Burillo et al.
[5], where they set γ = G with α = 0.9 instead.

We solve the master equation via an eigenoperator method used by Saalfrank [19].
This is a linearisation method that turns a nonlinear equation into a linear one, whereby
Eq. (17) becomes

dρ

dt
= −i(1 − β)LHρ + βLDρ = LSOρ. (18)

This takes the eigenoperators LH and LD from the original N -dimensional space to
a space of N 2 dimensions, and the density matrix is vectorised in this set-up.

As per Eq. (18), LH and LD can be combined into one operator LSO . For time-
independent LSO , this form is readily solved for any time t by taking the matrix
exponential of LSO , i.e.

ρ = ρ0e
LSO t . (19)

Convergence to a stationary result for large enough t is guaranteed [5], upon which the
occupation probabilities of each node indicate the open-system quantum PageRank,
namely

IOS(Pi ) := 〈i |ρ|i〉 = ρi i . (20)

3 Results

To recap, the four PageRank measures considered here are as follows:

• Icl (1)—classical Google PageRank
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• ITA (11)—DTQW-based PageRank using the time average of the instantaneous
quantum PageRank Iq

• IPmax (12)—DTQW-based PageRank using the maximum Iq reached
• IOS (20)—CTQW-based PageRank using the open-system method

We set α = 0.85 in the Google matrix G (2) for Icl, ITA, and IPmax . For IOS, we use
α = 1 in G and β = 0.85 in the master equation (17).

For all numerical results below, the DTQW-based PageRank measures ITA (11) and
IPmax (12) are computed using tmax = 2〈T 5

q 〉 steps of the evolution operator Û 2, with

values for 〈T 5
q 〉 in Table 1. For IOS, we use sufficiently large t for convergence to the

stationary result.

3.1 Three types of directed networks considered

To allow meaningful comparison between the four PageRank measures on various
networks, we normalise the PageRanks by dividing through by the maximum value
obtained so that the most central node has a PageRank value of 1.

3.1.1 Outerplanar hierarchical networks

As introduced by Comellas and Miralles [20], outerplanar hierarchical networks are
a family of modular, self-similar, small-world graphs with zero clustering. This fam-
ily mirrors social, technological, and biological systems with a low clustering [21].
Outerplanarity refers to the network having an embedding where all nodes lie on the
boundary of the exterior face, whereas the hierarchical structure is realised by using
a recursive method of network construction. Each generation n has N = 2n+1 nodes;
thus the network doubles in size for successive n, with newly added nodes being those
indexed 2n < i ≤ 2n+1. We follow [7] in giving directions to the edges.

As shown in Fig. 2, all three quantum PageRank measures have a step-like behaviour
that reflects the network’s hierarchical structure. Within the same hierarchical level,
edge directionality gives rise to non-degenerate PageRank values. This intra-level non-
degeneracy has a smaller amplitude for the newly added nodes (evidenced by nodes
17–32 in n = 4, nodes 33–64 in n = 5, nodes 65–128 in n = 6, and nodes 129–256
in n = 7), thus enabling the PageRank measures to distinguish between pre-existing
and newly added nodes in successive generations.

Comparing ITA and IPmax , the latter measure tends to give more closely valued
PageRanks within a hierarchical level, particularly for the newly added nodes. As
depicted in Fig. 3, nodes whose oscillatory Iq never peak above the value subsequent
to the initial state receive near-similar IPmax = Iq(Pi , t = 1) after one time step. For
example, IPmax almost plateaus for nodes 21–24 in n = 4 and nodes 41–48 in n = 5.
Taking the time average resolves this degeneracy as each node’s Iq evolves slightly
differently in time.

Furthermore and as would be expected, we see that pairs of automorphically equiv-
alent nodes have identical time evolution of Iq . (Two nodes a and b are said to be
automorphically equivalent if there exists an isomorphism in which the labels of a and
b are interchanged [22,23].) Such nodes are thus ranked identically by ITA and IPmax ,
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Fig. 2 PageRanks on outerplanar hierarchical networks for generations n = 4, 5, 6, 7. Icl, ITA, IPmax , and
IOS—normalised by their maximum values—are plotted in grey, blue, purple, and orange, respectively
(Color figure online)

preserving the equivalence also present in Icl. On the other hand, this identical ranking
of automorphically equivalent nodes is not preserved by IOS. We instead observe a
falling pattern of IOS values within the hierarchical levels.

In summary, the four PageRank measures considered here are able to uncover the
hierarchical structure present in each network, but disagree on the relative rankings of
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Fig. 3 Time evolution of Iq on n = 4 and n = 5 outerplanar hierarchical networks. Left the selected
like-coloured nodes are automorphically equivalent and have Iq that evolve identically over time. Right
time evolution of Iq . Vertical dashed lines bound tmax = 2〈T 5

q 〉 for the network, within which we determine
IPmax as indicated by arrows, and ITA by taking the time-averaged probabilities (Color figure online)

these levels. Here IOS most closely resembles Icl in ranking each level, but, especially
for higher n, its intra-level behaviour is in stark contrast to the other measures.

3.1.2 Scale-free networks

A power-law degree distribution typifies scale-free networks, that is, the probability
P(k) that a node is connected to k other nodes decays as P(k) ∼ k−γ [24]. Such
behaviour was first observed by Albert et al. [25] in their analysis of the topology of
the World Wide Web, in that the numbers of incoming and outgoing hyperlinks of a
webpage both follow a power law over several orders of magnitude. Numerous other
real-world networks have since been found to be scale-free, from functional networks
in the brain [26] and protein interactions in cells [27], to social networks and their
technical derivatives such as the Internet, e-mail networks, and business collaboration
[28].

Inherently linked to the scale-free property of a network is its evolution over time
[29], which can be modelled by preferential attachment [30]. Starting with a small
number of nodes, new nodes are added with a higher probability of being connected
to pre-existing nodes that are already well connected—conceptually, “the rich get
richer”. In this study, we perform PageRank analysis on Bollobás et al.’s scheme for
directed scale-free networks [31] as implemented in NetworkX [13]. This scheme
allows multiple edges and loops.

Based on Fig. 4, all PageRank methods largely agree on identifying the most central
nodes, or hubs. Figure 5 provides an example case for obtaining ITA and IPmax based
on the time evolution of Iq .
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Fig. 4 PageRanks on directed scale-free networks of sizes N = 32, 64, 128, 256. Icl, ITA, IPmax , and
IOS—normalised by their maximum values—are plotted in grey, blue, purple, and orange, respectively.
For the N = 32 and N = 64 cases, nodes marked in red are the most central nodes, or hubs; secondary
hubs identified by ITA and IPmax are marked in greyscale (Color figure online)

As previously observed and noted in [7], ITA better highlights the secondary hubs
compared to Icl rather than concentrating all the importance on the most important
hubs. This improved ranking capability of ITA over classical PageRank is even more
strongly featured in IPmax . We investigate this further in Sect. 3.2.

123



Comparing classical and quantum PageRanks Page 13 of 22 25

Fig. 5 Time evolution of Iq on a directed scale-free network of size N = 128. The black vertical dashed

line bounds tmax = 2〈T 5
q 〉 for the network, within which we determine IPmax as indicated by arrows, and

ITA by taking the time-averaged probabilities

For the examples considered here, nodes with little or no in-degree receive the lowest
importance according to Icl and IOS, forming a near-plateau of low-lying nodes.

ITA and IPmax are additionally affected by which nodes a given node is pointing
to. In the case of the 32-node scale-free network in Fig. 4, node 17 has unexpectedly
high ITA and IPmax by virtue of its pointing to secondary hub node 11. Similarly, the
nodes pointing to central hubs nodes 1 and 2 have low Icl and IOS, but have improved
ITA and IPmax . The more nodes there are that point to a given hub, the less advantage
those nodes gain, as is the case for those surrounding node 3. This accords with the
observation made by Sánchez-Burillo et al. [5] for their open-system-quantum-walk-
based PageRank, in that nodes connected to hubs distributing their influence among a
large number of connections receive lower rankings.

Therefore, low-lying nodes with degenerate Icl can be distinguished by ITA and
IPmax as these measures are more sensitive to the nodes’ positions in the network. In
particular, a node’s ranking is increased by being linked to a network hub, provided it
is among a few neighbours of the hub. This ability of quantumness to resolve classical
PageRank degeneracies among peripheral nodes is also noted in [5,7].

Finally, we observe that IOS closely resembles Icl on these networks. Considering
that IOS as implemented here uses damping parameter α = 1 ⇒ G = E as the matrix
coding classical behaviour (directionality) into the walk, this suggests that β in the
master equation (18) (parameterising the classicality of the walk, here set to β = 0.85)
can play a similar role to that of α in classical PageRanking (parameterising random
hops to any node, set to α = 0.85 for Icl).

3.1.3 Erdős–Rényi random networks

An Erdős–Rényi random network of N nodes is constructed by choosing, with com-
mon edge probability p, whether or not to connect pairs of nodes, with the choices
being independent for each node pair [32,33]. For large N , its degree distribution fol-

lows a Poisson distribution P(k) = e−〈k〉 〈k〉k
k! , where 〈k〉 is the mean degree. Despite

having random edge positions, such a network is rather homogeneous as most nodes
have the same degree [34]. In this study, we use directed Erdős–Rényi random net-
works generated using NetworkX [13].
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Fig. 6 Time evolution of Iq on a directed Erdős–Rényi network of size N = 256. The vertical dashed line
indicates tmax = 2〈T 5

q 〉 for the network, within which we determine IPmax as indicated by arrows, and ITA
by taking the time-averaged probabilities

An example case of obtaining the DTQW-based ITA and IPmax is presented in Fig. 6.
Overall results in Fig. 7 demonstrate that for each PageRank measure, most nodes
receive similar PageRanks with no discernible hubs. This is an ostensibly different
distribution of PageRanks in contrast to the directed scale-free networks analysed
earlier. Section 3.3 further studies this localised/delocalised behaviour of the walker
on these two network types.

In summary, consistent with our analysis on scale-free networks, we find that IPmax

provides an alternative measure to ITA as both exhibit similar features, whereas IOS
more closely resembles Icl.

3.2 Detection of secondary hubs on scale-free graphs

The preliminary PageRank analyses on scale-free graphs suggest that the quantum-
walk-based PageRank measures tend to give higher ranks to secondary hubs compared
to classical PageRank. To quantify such secondary hub detection for each PageRank
scheme, we analyse an ensemble of 30 directed scale-free networks of size N = 256
by categorising the nodes according to their PageRanks.

As before, for each network and PageRank method, we normalise the nodes’ PageR-
anks by dividing through by the maximum so that the most central node has a PageRank
of 1. Let the mean of these maximum-normalised PageRanks be a. Then we classify
a node with PageRank x as a

• main hub if x ≥ ca,
• secondary hub if a ≤ x < ca,
• low-importance node hub if x < a,

where c > 1 is a fixed constant. Here we choose c = 10.
Results plotted in Fig. 8 affirm our earlier observations on scale-free networks.

Comparing all PageRank measures considered, IPmax identifies the most number of
nodes as secondary hubs, followed by ITA, IOS, and finally Icl. Based on Fig. 8c, the set
of nodes classified as secondary hubs by ITA is most likely a subset of those identified
by IPmax . In particular, IPmax never picks out less secondary hubs than ITA; moreover,

123



Comparing classical and quantum PageRanks Page 15 of 22 25

Fig. 7 PageRanks on directed Erdős–Rényi random networks of sizes N = 32, 64, 128, 256. Icl, ITA,
IPmax , and IOS—normalised by their maximum values—are plotted in grey, blue, purple, and orange,
respectively (Color figure online)

both largely follow the same trend in quantifying secondary hubs across the network
ensemble. On the other hand, IOS exhibits a similar trend to Icl. Although not as stark
a difference as the other two quantum measures, IOS also outperforms Icl in secondary
hub detection.
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Fig. 8 Secondary hub resolution by PageRank algorithms on an ensemble of 30 directed scale-free networks
of size N = 256. a A histogram of nodes classified as main hubs, secondary hubs, or low-importance nodes
based on their (from left to right) Icl, ITA, IPmax , and IOS values, respectively. b Zooming into a. The
quantum PageRanks ITA, IPmax , and IOS, respectively, identify approximately 1.9, 2.6, 1.5 times more
secondary hubs than Icl. c The number of secondary hubs as measured by Icl (grey), ITA (blue), IPmax
(purple), and IOS (orange) for each of the scale-free networks in the ensemble (Color figure online)

3.3 Localisation–delocalisation transition

To further compare the abilities of the various PageRank schemes to distinguish
between scale-free and Erdős–Rényi random networks, we study their localisation
behaviour on these network types. Since each PageRank scheme corresponds to a
classical or quantum walk along nodes, we can infer the walker’s degree of localisa-
tion based on the PageRank distribution across the network.

Within scale-free networks, the presence of hubs—nodes of unusually high
degree—is the fundamental cause of localisation. Such localisation poses a problem
for conventional eigenvector centrality because most of the weight of the centrality
concentrates on a small number of nodes, thus necessitating the random-hop term in
the Google matrix [35]. On the other hand, the relatively homogeneous degree distri-
bution in Erdős–Rényi random networks is expected to favour a delocalised phase of
the walker, as observed in [7].

To quantify localisation, we use the inverse participation ratio (IPR) defined as

ξ :=
N∑

i=1

[Pr(X = i)]2r , (21)

where r > 0 is a freely chosen integer and is fixed.
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As in [7], we appropriate ξ to the case of PageRanks by considering X as a ran-
dom variable whose realisations are the nodes of the network. Then the probability
Pr(X = i) corresponds directly to node i’s PageRank Icl, ITA, or IOS—for each of
these measures, the sum of all PageRanks over the network is one. For a consistent
probability interpretation of IPmax , we divide its values by the mean 〈IPmax〉, so that all
such normalised values sum to one.

In the case of complete delocalisation, the walker’s probability distribution would
be uniform across the network, that is, Pr(X = i) = 1

N ∀i . If the walker is fully
localised on one node j , Pr(X = i) = δi j , the Kronecker delta. Hence the IPR for
these limiting cases is

ξ =
{

1 if the walker is localised

N 1−2r if the walker is delocalised.
(22)

Rewrite the IPR as ξ = N−τ2r with

τ2r := (2r − 1) + �2r , (23)

where �2r is the normalised anomalous dimension, which interpolates between �2r =
1 − 2r for a localised phase and �2r = 0 for a delocalised one. Then

log ξ ∼ (1 − 2r − �2r ) log N . (24)

Choosing r = 1 and plotting log ξ against log N , analytical values for the gradient
of the plot are a = 0 and a = −1 for complete localisation and delocalisation,
respectively.

Based on Eq. (24), we analyse the localisation–delocalisation transition of each
PageRank measure. We compute the IPR for scale-free and Erdős–Rényi networks of
size N = 32, 64, 128, 256, and 512, using an ensemble of ten graphs for each N .

As shown in Fig. 9, performing linear fits on the resulting log–log plots yield numer-
ical gradient values a that are near-zero for the scale-free plots, and close to −1 for the
Erdős–Rényi plots. These values, respectively, correspond to localised and delocalised
phases of the walker, as was expected based on the presence and absence of hubs in
these networks. All four PageRank measures are thus able to distinguish between
scale-free and Erdős–Rényi random networks by virtue of the walker’s localisation
behaviour.

3.4 Power-law behaviour on scale-free networks

Analyses of classical PageRank on real-world Web graphs have revealed a power-law
distribution of PageRank values [36,37]. This reflects a characteristic property of such
scale-free networks, in that only a few main hubs account for much of the PageRank
allocation in such scale-free networks. In particular,

I j ∼ j−λ, (25)
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Fig. 9 Log–log plots of IPR (with r = 1) against the number of nodes in the network for the four PageRank
schemes. Successive rows correspond to Icl, ITA, IPmax , and IOS; left and right columns correspond to
directed scale-free and Erdős–Rényi networks, respectively. An ensemble of ten graphs is used for each
network type and size, with a dotted line joining the mean IPR values for each size. Linear model fits are
performed according to log ξ = a log N +b and plotted in black, with parameter values a and b as indicated

where the I j are the PageRanks of nodes sorted in descending order, and λ is the
power-law scaling coefficient. Such a power-law behaviour confirms that the PageRank
algorithm is able to reveal a network’s scale-free nature, with λ measuring the relative
importance of hubs with respect to the other less important nodes [7].

Here we verify and compare such power-law behaviour for the PageRank measures
I j = Icl, ITA, IPmax , and IOS. As per Sect. 3.3, the IPmax values given by Eq. (12) are
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Fig. 10 Plots of the logarithms of the mean PageRanks for each measure over an ensemble of 30 scale-free
networks against the logarithm of the node index (nodes sorted in descending PageRank order). Particularly
over region II, the PageRanks follow a power-law distribution I j ∼ j−λ across the nodes with fitting
parameter λ. For Icl and IOS, nodes in the tail region III are ignored in performing the linear fit

normalised to sum to one. For each measure, a plot of the logarithm of the sorted
PageRank values I j against the logarithm of the node index j has slope λ. We analyse
an ensemble of 30 scale-free networks with N = 256 generated using NetworkX.

Figure 10 contains plots of the logarithm of the ensemble mean PageRanks against
j , with linear fits yielding β for each PageRank measure. All PageRank measures
display a power-law behaviour with scaling coefficients λOS < λTA < λPmax < λcl.
The quantum-walk-based measures thus tend to concentrate less importance on the
hubs compared to classical PageRank.

As noted in [7], the power-law behaviour of ITA interpolates over a larger portion
of the data compared to Icl, marked as region II in Fig. 10. We observe that such a
smoother power-law behaviour is preserved by IPmax . Therefore, ITA and IPmax can
both better distinguish the low-lying nodes on scale-free networks.

In contrast to Icl, and as observed in [37], the plot flattens out for nodes in region III
with very low PageRank. Such a tail region without the general power-law behaviour
is also present for IOS, but is characterised instead by a sharp decrease in PageRank.
Nodes of lowest importance are thus penalised by IOS.

Finally, Fig. 11 presents an overall plot of each PageRank measure’s distribution on
scale-free networks. As shown in region II of the plot, intermediate nodes (including
the secondary hubs discussed in Sect. 3.2) are given higher ranks according to (in
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Fig. 11 Combined plot of the logarithms of the mean PageRanks from each measure over an ensemble of
30 scale-free networks versus the logarithm of the node index (nodes sorted in descending PageRank order)

descending order) IPmax , ITA, and IOS compared to Icl. To compensate for this improved
ranking, main hubs in region I receive lower quantum than classical PageRanks.

4 Discussion and conclusions

In this paper, we have presented a comparative investigation of three quantum PageR-
ank measures, two of which are based on DTQWs, while the third uses an open-system
CTQW. Extending the work in [7], we further studied the periodic nature of the
instantaneous quantum PageRank Iq . In particular, we utilised it to propose a suit-
able timescale tmax = 2〈T 5

q 〉 for the corresponding DTQW based on the periods of the
hub nodes. Such a timescale was observed to not scale with network size, making it
feasible even use on for larger networks. This is particularly important, since it leads
to a quantum PageRanking scheme that is scalable with respect to network size.

We have demonstrated that all three quantum PageRank measures are able to
distinguish between outerplanar hierarchical, scale-free, and Erdős–Rényi directed
networks. Through a comparative view, we observed similarities in rankings given
by the DTQW-based PageRanks ITA and IPmax , and between the open-system-based
PageRank IOS and the classical PageRank Icl.

When applied to scale-free networks, the quantum PageRank schemes were better
able to highlight secondary hubs in scale-free networks than the classical scheme,
which tends to concentrate PageRanks on a few main hubs. This affirmed the results
in [5,7]; moreover, we found that this quantum advantage is most apparent in IPmax ,
followed by ITA and IOS.

We used the inverse participation ratio (IPR) to characterise the walker’s localisation
on scale-free and Erdős–Rényi networks. We showed that for all four PageRank meth-
ods, the walker is in a localised phase on the hub-containing scale-free networks, and is
delocalised on the hubless Erdős–Rényi random networks. Therefore, each PageRank
scheme is shown to clearly distinguish between these two types of networks.
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Lastly, the distribution of quantum PageRanks was observed to follow a power-
law behaviour on scale-free networks—a property present in classical PageRank. In
particular, we showed that IPmax preserves the smoother power-law distribution over a
larger portion of nodes as found in ITA [7] compared to the classical case. We observed
that IOS scales according to a power law for most nodes, but displays a sharp drop
in average PageRank for the nodes of lowest importance, thus indicating that these
nodes are penalised by IOS compared to Icl.
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