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Abstract We present a scheme for implementing discrete quantum Fourier transform
(DQFT) with robustness against the decoherence effect using weak cross-Kerr non-
linearities (XKNLs). The multi-photon DQFT scheme can be achieved by operating
the controlled path and merging path gates that are formed with weak XKNLs and
linear optical devices. To enhance feasibility under the decoherence effect, in prac-
tice, we utilize a displacement operator and photon-number-resolving measurement
in the optical gate using XKNLs. Consequently, when there is a strong amplitude of
the coherent state, we demonstrate that it is possible to experimentally implement
the DQFT scheme, utilizing current technology, with a certain probability of success
under the decoherence effect.

Keywords Discrete quantum Fourier transform · Cross-Kerr nonlinearity ·
Decoherence effect

1 Introduction

Discrete quantum Fourier transform (DQFT) [1], which is a linear transformation
on qubits, can implement various quantum algorithms to solve problems like the
factoring problem [2], the search problem [3], the phase estimation problem [4] and the
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hidden subgroup problem [5,6]. Therefore, practical DQFT, which is experimentally
implemented with current technology, is an important topic for quantum algorithms
and computations. Many physical schemes have been proposed to realize DQFT based
on cavity quantum electrodynamics [7–10], nuclear magnetic resonance [11,12], ion
trap systems [13–15], superconducting circuits [16], linear optical systems [17–20],
and nonlinear optical systems [21–24].

In particular, optical nonlinearities can assist indirect interaction between pho-
tons for quantum information processing. Cross-Kerr nonlinearities (XKNLs) have
been widely researched, both theoretically and experimentally, for feasible optical
multi-qubit gates. After Nemoto and Munro [25] proposed a nearly deterministic
controlled NOT gate using weak XKNLs, X-homodyne measurements, and linear
optical elements, many researchers tried to increase the feasibility of quantum infor-
mation processing schemes by suggesting various methods for optical multi-qubit
gates (controlled gates). They include compositions of weak XKNLs, X-homodyne
measurements [26–30], andweakXKNLs, coherent superposition states, P-homodyne
measurements [31–33], and weak XKNLs, quantum bus beams, photon-number-
resolving (PNR) measurements [34–42]. However, in practice, the decoherence effect
of opticalmulti-qubit gates (by loss of photons) is unavoidable in optical fiber. Because
the states of photons evolve into a mixed state after homodyne measurement [43–47],
the fidelity of the optical multi-qubit gates will decrease. Fortunately, Jeong [44,45]
demonstrated that the decoherence effect can be made arbitrarily small simply by
increasing the amplitude of the coherent state and by applying a displacement opera-
tor to the coherent state and the PNR measurements.

In this paper, we propose an optical DQFT scheme that can experimentally imple-
ment the operation of DQFT on qubits for quantum algorithms using nonlinearities.
Our DQFT scheme is composed of the CPRkMP [controlled path-Rk(CPRk) + merg-
ing path (MP)] gates which are consecutively operated a controlled path-Rk(CPRk)
gate and a merging path (MP) gate. Our CPRk and MP gates are based on a controlled
path and a merging gates, which utilized weak XKNLs, and X-homodyne detections
[26] or quantum bus beams and the PNR measurements [35–37]. However, the con-
trolled path andmerging gates in [26] are vulnerable (evolving the output state tomixed
state) against decoherence effect due to the X-homodyne measurement [43–47]. Also,
the controlled gates in Refs. [35–37] which used the quantum bus beams and the PNR
measurements, for the reliable performance of the controlled path operation of the
output state, the interactions of XKNL should be employed the maximum two times,
compared with the scheme in [26], on account of the structure of the quantum bus
beams. Thus, in the proposed DQFT scheme, we will design our CPRkMP (CPRk +
MP) gate using weak XKNLs, the displacement operators and the PNRmeasurements
[43–47], a single photon R-k

(
URk

)
operator and linear optical operators, to acquire

the advantages of the robustness against decoherence effect and less consumption of
the interactions of XKNL, compared with the optical gates in Refs. [26,35–37]. Then,
we demonstrate that our CPRkMP gate, which is critical component in our DQFT
scheme, can obtain the robustness against the decoherence effect by only using the
strong amplitude of the coherent state, in accordance with the analysis and simulation
from the master equation (describing open quantum system) [44,45]. Further, this
means that our DQFT scheme can be enhanced the feasibility under the decoherence
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effect compared with the existing DQTF scheme [24], which is constructed using
controlled path, eraser and merging gates via XKNLs, when experimentally realized.

2 Discrete quantum Fourier transforms based on photon gates

2.1 Discrete quantum Fourier transform using qubit operations (controlled-Rk
and swap)

We introduce the DQFT operation, based on qubits, as described in Fig. 1 [1]. For a
given state of n qubits| j〉 = | j1〉 . . . . . . .. | jn〉, where jm ∈ {0, 1}, it is transformed by
the controlled-Rk and swap (CRkS) and Hadamard operations as follows:

| j〉 ⇒ 1√
2n

2n−1∑

k=0
ei2π jk/2n |k〉 = 1√

2n

(|0〉 + ei2π(0. jn) |1〉) ⊗ (|0〉
+ ei2π(0. jn−1 jn) |1〉) ⊗ · · · · · · · · · · · · ⊗ (|0〉 + ei2π(0. j1 j2··· jn−1 jn) |1〉) ,

(1)

where 0. j1 j2 · · · · jn−1 jn = j1/21 + j2/22 + · · · · + jn−1/2n−1 + jn/2n .
Then, an arbitrary quantum state |ϕ〉 = ∑N−1

j=0 α j | j〉 can be transformed to

UDQFT |ϕ〉 = ∑N−1
k=0 βk |k〉 via CRkS and Hadamard operations, where βk =(∑N−1

j=0 α jei2π jk/N
)

/
√
N . The critical element is CRkS operation UCRkS, which

is shown in Fig. 1, for DQFT of quantum states. Suppose that the initial state of two
qubits is |ϕ〉int = x0 |0〉1 |0〉2 + x1 |0〉1 |1〉2 + x2 |1〉1 |0〉2 + x3 |1〉1 |1〉2. After state
|ϕ〉int passes through the CRkS operation, UCRkS, this state can be transformed to

Fig. 1 The quantum circuit (on qubits) for implementation of theDQFToperation. This circuit is comprised
of controlled-Rk (k = 2 . . . ..n) operations and Hadamard operations for DQFT of n qubits. The red box
denotes the CRkS operation in which controlled-Rk and swap operations are consecutively performed
(Color figure online)
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|ϕ〉fin = x0 |0〉1 |0〉2 + x1 |1〉1 |0〉2 + x2 |0〉1 |1〉2 + x3e
i2π/2k |1〉1 |1〉2 . (2)

TheCRkSoperation comprises consecutive a controlled-Rk operationwith target qubit
1 and control qubit 2, swapping the two modes of the qubits. Because DQFT is based
on the CRkS operation, it is important that the CRkS operation is experimentally
implemented with nearly deterministic performance for DQFT having a probability
of success and feasibility of realization.

2.2 Discrete quantum Fourier transform using optical gates (controlled path-Rk
and merging path)

We propose a deterministic and experimentally feasible CPRkMP gate, an optical
multi-photon gate,which can be directly implemented in theCRkSoperation described
in Sect. 2.1. This gate is composed of consecutive operations of a controlled path-
Rk(CPRk) gate and a merging path (MP) gate, based on the controlled path gates
and the merging gates in Refs. [26,35–37], which employ the weak XKNLs, the
displacement operators and the PNR measurements [43–47], and the linear optical
operators (URk and U : phase-flip). Let us consider two types of polarization: linear
polarization (|H〉 is horizontal, and |V 〉 is vertical) and circular polarization (|R〉 is
right- and |L〉 is left-circular). The linearly polarized states and the circularly polarized
states of a single photon correspond to the eigenstates of σZ : {|H〉 ≡ |0〉 , |V 〉 ≡ |1〉}
and σX : {|R〉 ≡ |+〉 , |L〉 ≡ |−〉}.

Before explaining our CPRkMP gate, we introduce XKNL. The XKNL’s Hamil-
tonian is HKerr = h̄χN1N2, where Ni is the photon number operator, and χ is the
strength of nonlinearity in the Kerr medium. Let us assume that |ns〉i represents a
signal state of n photons and polarization s, and |α〉 j is a coherent state (probe beam).
After passing through the Kerr medium, the signal-probe system’s state is changed
to UKerr |ns〉1 |α〉2 = eiθN1N2 |ns〉1 |α〉2 = |ns〉1

∣
∣αinθ

〉
2, where θ = χ t , and t is the

interaction time.
Now,we propose a deterministic CPRkMPgate comprised of the consecutively per-

forming aCPRkgate and aMPgate,which employ theweakXKNLs, the displacement
operators and the PNR measurements, and the linear optical operators (URk , U ) and
the process of the crossing-path (swapping paths with each other). We assume that
the initial state of two photons is |φ〉int = x0 |0〉a |0〉b + x1 |0〉a |1〉b + x2 |1〉a |0〉b +
x3 |1〉a |1〉b, where we denote

{|H〉i , |V 〉i , |R〉i , |L〉i} ≡ {|0〉i , |1〉i , |+〉i , |−〉i}
and i represents a path of the photon, conventionally.

In the CPRk gate, first, as shown in Fig. 2, the initial state |φ〉int of two photons
passes through the Beam splitter (BS) on path a and the polarizing beam splitter
(PBS) on path b. Here, the action of a BS is described by a+

u → (
a+
u + a+

d

)
/
√
2

and a+
d → (

a+
u − a+

d

)
/
√
2 [48] where a+

i is the creation operator of a photon on
path i (u is an up path and d is a down path). Also, when passing through the PBS,
|H〉 ≡ |0〉 is transmitted and |V 〉 ≡ |1〉 is reflected. Then, the phase shifts θ and −θ ,
which are generated by two photons, are induced in the probe beam |α〉p in Kerr media
(XKNLs). Then, displacement operation D (−α) is performed on the probe beam. The
transformed state |φ〉D of the signal-probe system is given by
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Fig. 2 TheCPRkMPgate (red box) is comprised of the consecutive operation of a controlled path gate (blue
box) and amerging path gate (black box) usingXKNLs, the displacement operators, the PNRmeasurements,
feed-forwards and a URk operation (blue box). This CPRkMP gate experimentally implements the CRkS
operation as described in Fig. 1 (Color figure online)

|φ〉D = 1√
2

[(
x0 |0〉a.0 |0〉b + x2 |1〉a.0 |0〉b

)
⊗ |0〉p +

(
x1 |0〉a.1 |1〉b

+ x3 |1〉a.1 |1〉b
)

⊗ |0〉p
]

+ e−iα2 sin θ

√
2

[(
x0 |0〉a.1 |0〉b + x2 |1〉a.1 |0〉b

)
⊗

∣∣∣α
(
e−iθ − 1

)〉

p
+

+ e2iα
2 sin θ

(
x1 |0〉a.0 |1〉b + x3 |1〉a.0 |1〉b

)
⊗

∣∣
∣α

(
eiθ − 1

)〉

p

]
, (3)

where D (−α)
∣∣αe±iθ

〉 = e±iα2 sin θ
∣∣α

(
e±iθ − 1

)〉
, and

∣∣α
(
e±iθ − 1

)〉 = e−α2(1−cos θ)

∞∑
n=0

αn
(
e±iθ−1

)n
√
n! |n〉 for α ∈ R. Subsequently, we utilize the measurement strategy

of PNR detection (i.e., the converted voltage or current) on the probe beam. If the
outcome of the measurement is |0〉p, then the output state |φ〉CP is given by |φ〉CP =
x0 |0〉a.0 |0〉b+x1 |0〉a.1 |1〉b+x2 |1〉a.0 |0〉b+x3 |1〉a.1 |1〉b in Eq. 3. Otherwise, the
output state can be transformed into state |φ〉CP by feed-forward operation of the linear
phase shifter
n andpath-switch S, according to the results |n〉p (n = 1, 2 . . . . . .) from
the PNR measurement. Then, the state |φ〉CP passes through a URk operator on path
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a.1. If the state of a photon is |1〉a.1(vertical polarization), theURk operation is linearly

shifted from the phase of state |1〉a.1 to ei2π/2k |1〉a.1. Then, the output state of the
CPRk gate is given by

|φ〉CPRk = x0 |0〉a.0 |0〉b + x1 |0〉a.1 |1〉b + x2 |1〉a.0 |0〉b + x3e
i2π/2k |1〉a.1 |1〉b ,

(4)
where the path of first photon is divided into the twopaths a.0 and a.1. So,we should use
the MP gate to merge the split path of the first photon to a single path. The probability
of error of the CPRk gate, PCPRk

err , which is the probability of detecting |0〉p (no

photon) in
∣
∣α

(
e±iθ − 1

)〉
p, in Eq. 3 is calculated as P

CPRk
err = e−2α2(1−cos θ)/2, where

1 − cos θ ≈ θ2/2 for the weak XKNL (θ << 1), and PCPRk
err is approximated as

e−α2θ2/2. When αθ > π , PCPRk
err is smaller than 10−4 that indicates that if we choose

amplitude α of the coherent state to be sufficiently large, the weak XKNL (θ << 1)
can be utilized for the CPRk gate. Thus, by using weak XKNLs, a displacement
operator and PNR measurement with the condition αθ > π , this CPRk gate is nearly
deterministic with a certain probability of success (PCPRk

err → 1).
In the MP gate, second, as shown in Fig. 2, the output state of the CPRk gate,

|φ〉CPRk, passes through the BS on between path a.0 and a.1 and the phase-flip operator
(U ≡ |H〉 〈H | − |V 〉 〈V | = |0〉 〈0| − |1〉 〈1|) on path b. Then, the linear phase shift
−θ and the controlled phase shift θ (XKNL), which is generated by one photon,
are induced in the probe beam |α〉q . And then, displacement operation D (−α) is
performed on the probe beam. The transformed state |ϕ〉D of the signal-probe system
is given by

|ϕ〉D = 1√
2

[(
x0 |0〉a.1 |0〉b + x1 |0〉a.1 |1〉b + x2 |1〉a.1 |0〉b

+ x3e
i2π/2k |1〉a.1 |1〉b

)
⊗ |0〉q

]

+ e−iα2 sin θ

√
2

[(
x0 |0〉a.0 |0〉b − x1 |0〉a.0 |1〉b + x2 |1〉a.0 |0〉b

− x3e
i2π/2k |1〉a.0 |1〉b

)
⊗

∣∣
∣α

(
e−iθ − 1

)〉

q

]
. (5)

Subsequently, we utilize the measurement strategy of PNR detection (i.e., the con-
verted voltage or current) on the probe beam. If the outcome of the measurement is
|0〉q , then the output state |ϕ〉MP is given by |ϕ〉MP = x0 |0〉a.1 |0〉b+ x1 |0〉a.1 |1〉b+
x2 |1〉a.1 |0〉b + x3ei2π/2k |1〉a.1 |1〉b in Eq. 5. Otherwise, the output state can be
transformed into state |ϕ〉MP by feed-forward operation of the path-switch S and
the phase-flip U operator. The probability of error of the MP gate, PMP

err , which is
the probability of detecting |0〉q (no photon) in

∣
∣α

(
e−iθ − 1

)〉
q , in Eq. 5 is calcu-

lated as PMP
err = e−2α2(1−cos θ)/2. This error probability, PMP

err , is exactly same as

PCPRk
err = e−α2θ2/2 of the CPRk gate for the weak XKNL (θ << 1). So, this MP gate

is also nearly deterministic with a certain probability of success (PMP
err → 1) because
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Fig. 3 The two-qubit DQFT using CR2S and two Hadamard operations is equivalent to two-photon DQFT,
which is implemented by a CPR2MP gate and two HWPs. The Hadamard operation can be fulfilled with
an HWP, which rotates the polarization of a photon

PMP
err is smaller than 10−4 when αθ > π . Then, we finally cross the two paths of the

state |ϕ〉MP (the crossing-path in Fig. 2). The output state, |
〉fin, of the CPRkMP
gate is given by

|�〉fin = x0 |0〉a |0〉b + x1 |1〉a |0〉b + x2 |0〉a |1〉b + x3e
i2π/2k |1〉a |1〉b , (6)

where the paths of two photons are swapped with each other. Consequently, this state
|�〉fin, in Eq. 6, which is transformed via the CPRkMP gate using the XKNLs, the
displacement operators and the PNR measurement, is identical to the state |ϕ〉fin in
Eq. 2 by the CRkS operation (UCRkS) in Fig. 1.

For the simple example, we consider two-qubit DQFT, which employs a CR2S
operation and two Hadamard operators. The two-qubit DQFT is deterministically
realized using the proposed CPR2MP (CPR2 + MP) gate and two half-wave plates
(HWPs), as described in Fig. 3. Furthermore, the construction of two-photon DQFT
can be generalized to realize n-photon DQFT by the composition of the CPRkMP
gates (k = 2, . . . .., n) and HWPs.

Consequently, DQFT, in Fig. 1, based on the CRkS operations, is experimen-
tally simulated by the CPRkMP gates in Fig. 2. Our CPRkMP gate is consisted
of the consecutive operation of the CPRk gate and the MP gate. We utilize the
weak XKNLs, the displacement operators and the PNR measurements for our opti-
cal gates. The fundamental concepts of our gates (CPRk and MP) are affected from
the controlled path gates and the merging gates as described in Refs. [26,35–37].
However, compared with the existed optical gates in Refs. [26,35–37], we designed
our gates using the displacement operators and the PNR measurements to consider
of the experimentally implementation under the decoherence effect, and to pre-
vent evolving to mixed state by the photon loss and the dephasing in the practical
optical fiber [44,45]. Thus, in the next section, we will show the detail analysis
of our gate under the decoherence effect when implemented the CPRkMP gate in
practice.
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3 Controlled path-Rk gate and merging path gate using XKNLs under
decoherence effect

In a practical implementation of the CPRk gate and theMP gate, the transformed states
|φ〉D , in Eq. 3, and |ϕ〉D , in Eq. 5, of the signal-probe system will be mixed states due
to the decoherence effect in the nonlinear media (XKNLs: θ and −θ) of the CPRk
gate and the MP gate. The important factor about decoherence in states |φ〉D and |ϕ〉D
is photon loss (energy decay) in the probe beam. We consider the decoherence effect
in the Kerr medium. The decoherence effect of the state is described by solving the
master equation [49]:

∂ρ

∂t
= Ĵρ + L̂ρ, Ĵρ = γ aρa+, L̂ρ = −γ

2

(
a+aρ + ρa+a

)
, (7)

where γ is the energy decay rate. The solution to Eq. 7 can be written as ρ (t) =
e

[(
Ĵ+L̂

)
t
]

ρ (0), where t (= θ/χ) is the interaction time. Thus, the probe beam |α〉 loses
photons in the first nonlinear medium as |�tα〉 where �t = e−γ t/2 (the photon decay
rate). If the initial density operator is |α〉 〈β|, decoherence effect D̃�t can be described
as D̃�t (|α〉 〈β|) = exp

[− (
1 − e−γ�t

) {−αβ∗ + (|α|2 + |β|2) /2
}] |��tα〉 〈��tβ|

for �t . Note that decoherence effect D̃�t simultaneously occurs with XKNL interac-
tion X̃�t by theHamiltonian HKerr in the nonlinearmedium.This process (decoherence
+ XKNL) can be modeled as follows [44,45]:

(
D̃�t X̃�t

) ∣∣1s
〉 〈0| ⊗ |α〉 〈α|

= exp
[
−α2 (

1 − e−γ�t)
(
1 − ei�θ

)] ∣
∣1s

〉 〈0| ⊗
∣∣
∣��tαe

i�θ
〉
〈��tα| , (8)

where signal state |1s〉 (here, 1s means a single photon and the polarization s) is
a control photon to drive the phase shift of the XKNL interaction, which can be
described as X̃�t (|1s〉 〈0| ⊗ |α〉 〈α|) → |1s〉 〈0| ⊗ ∣∣αei�θ

〉 〈α| where �θ = χ�t for
α ∈ R. Also, exp

[−α2
(
1 − e−γ�t

) (
1 − ei�θ

)]
is the coherent parameter to quantify

the degree of dephasing by this process (decoherence + XKNL). We assume that
interaction time �t of D̃ (decoherence) and X̃ (XKNL) is arbitrarily small to obtain a
good approximation of this process. In our analysis, as described in Jeong [44,45], we
chose N = 106 of time t (= N�t) and θ = χ t = N�θ = χN�t for this process.
This value gives a good approximation against the induced coherent parameters in the
CPRk gate and the MP gate of the proposed CPRkMP gate for the whole range (the
amplitude of the probe beam) of α. For example, if the initial state |1s〉 〈0| ⊗ |α〉 〈α|
of the signal-probe system, as in Eq. 8, evolves by this process for time t (= N�t), it
is given by
(
D̃�t X̃�t

)N ∣∣1s
〉 〈0| ⊗ |α〉 〈α|

= exp

[

−α2 (
1 − e−γ�t)

N∑

n=1

e−γ (n−1)�t
(
1 − ein�θ

)]∣
∣1s

〉 〈0| ⊗
∣
∣∣�tαe

iθ
〉
〈�tα| ,

(9)
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where�t = e−γ t/2, θ = N�θ , and N = 106.We can quantify the degree of dephasing

by the coherent parameter C = exp

[
−α2

(
1 − e−γ�t

) N∑

n=1
e−γ (n−1)�t

(
1 − ein�θ

)]
.

As we mentioned in Sect. 2.2, our gates employed the displacement operators and
the PNR measurements to acquire the robustness against the decoherence effect. If
the measurement strategy of the homodyne (X or P) is applied to the optical gates
as describe in [26–30], the output states of the optical gates will be mixed states
due to the photon loss and the dephasing, and then the fidelities of the optical multi-
qubit gates will decrease [43–47] in practice. Therefore, we analyze our gates (CPRk,
MP) using the simulation of the photon loss and the dephasing, which can be mod-
eled as the process (decoherence + XKNLs) [44,45] in Eqs. 8 and 9. And then, we
demonstrate that the deterministic CPRk gate and MP gate,

(
PCPRk
err = PMP

err ≈ 10−4

for αθ = π), which utilize the XKNLs, the displacement operators and PNR mea-
surements as described in Sect. 2.2, can obtain to decrease the photon loss and the
dephasing due to the decoherence effect by increasing the amplitude of the probe beam
(α) when experimentally implemented.

In a laboratory, whenwe realize the experimental implementation of our gates using
the optical fiber and Kerr medium, it is known that an optical fiber of about 3000 km is
needed for phase shift θ = π of the XKNL [50,51]. Thus, the amplitude (photons) will
reduce at rate e−γ t , while θ = π is obtained for 3000 km, according to χ/γ = 0.0303.
This value (χ/γ = 0.0303) corresponds to the signal loss (0.15 dB/km), which is
achieved using pure silica core fibers [52] in the current technology. When operating
our CPRk gate and MP gate in practical terms, first we consider photon loss (without
dephasing) of the decoherence effect for a fixed αθ = π , as in Sect. 2.2. The resulting
states |φ〉D of Eq. 3 and |ϕ〉D of Eq. 5 should be modified to allow for photon loss
(�t = e−γ t/2). The modified resulting state

∣∣φ′〉
D of the CPRk gate is given by

∣∣φ′〉
D = 1√

2

[
|A〉 |0〉p + |B〉 |0〉p + e−i�4

t α
2 sin θ |C〉

∣∣
∣�2

t α
(
e−iθ − 1

)〉

p

+ ei�
4
t α

2 sin θ |D〉
∣∣∣�2

t α
(
eiθ − 1

)〉

p

]
, (10)

where we denote |A〉 ≡ x0 |0〉a.0 |0〉b + x2 |1〉a.0 |0〉b, |B〉 ≡ x1 |0〉a.1 |1〉b +
x3 |1〉a.1 |1〉b, |C〉 ≡ x0 |0〉a.1 |0〉b + x2 |1〉a.1 |0〉b and |D〉 ≡ x1 |0〉a.0 |1〉b +
x3 |1〉a.0 |1〉b, conventionally, in Eq. 3. Also, because of the photon loss by the deco-
herence effect, we should utilize the displacement operator D

(−�2
t α

) ∣∣�2
t αe

±iθ
〉
p =

e±i�4
t α

2 sin θ
∣∣�2

t α
(
e±iθ − 1

)〉
p instead of D (−α). And the modified result state

∣∣ϕ′〉
D

of the MP gate is given by

∣∣ϕ′〉
D = 1√

2

[∣∣M+〉a.1 |0〉q + e−i�2
t α

2 sin θ
∣∣M−〉a.0 ∣∣∣�α

t

(
e−iθ − 1

)〉

q

]
, (11)

where we denote
∣∣M±〉a.x ≡ x0 |0〉a.x |0〉b ± x1 |0〉a.x |1〉b + x2 |1〉a.x |0〉b ±

x3ei2π/2k |1〉a.x |1〉b, conventionally, in Eq. 5. And we should change the displace-
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Fig. 4 When only considering photon loss by the decoherence effect and the fixed value αθ = π via the
optical fiber with χ/γ = 0.0303 (0.15 dB/km), the probabilities of success PCPRk

succ (black dotted line) of
the CPRk gate and PMP

succ (black line) of the MP gate, and the rates of photon loss �4
t (red dotted line) and

�2
t (red line) are plotted depending on the amplitude of the probe beam, α. For α < 500, the plot shows

PCPRk
err ≈ PMP

err > 10−3, and �4
t < 0.66 and �2

t < 0.8 (Color figure online)

ment operator D (−α) to D (−�tα)
∣∣�tαe−iθ

〉
q = e−i�2

t α
2 sin θ

∣∣�2
t α

(
e−iθ − 1

)〉
q in

Fig. 2. For the fixed αθ = π in the optical fiber having the signal loss (0.15 dB/km),
we calculate the probabilities of success, PCPRk

succ (in the CPRk gate) and PMP
succ (in the

MP gate), of the performance after taking the PNR measurement and the values of �4
t

(in CPRk gate) and�2
t (in MP gate) due to photon loss�t , according to the increasing

amplitude of the probe beam (α), as shown in Fig. 4. The probabilities of success
PCPRk
succ

(= 1 − PCPRK
err

)
and PMP

succ

(= 1 − PMP
err

)
, which are obtained from probabili-

ties of error PCPRK
err to detect |0〉p in

∣∣�2
t α

(
e±iθ − 1

)〉
p of Eq. 10 and PMP

err to detect

|0〉q in
∣∣�α

t

(
e−iθ − 1

)〉
q of Eq. 11, are given by

PCPRK
err = 1 − exp[−�4

t · (αθ)2]/2 = 1 − exp[−e−2π/(0.0303)·α · π2]/2,
PMP
err = 1 − exp[−�2

t · (αθ)2]/2 = 1 − exp[−e−π/(0.0303)·α · π2]/2, (12)

for the fixed values αθ = αχ t = π and χ/γ = 0.0303 (0.15 dB/km) where �t =
e−γ t/2 (the photon decay rate). This means that if the amplitude of the coherent state is
α < 500, the probabilities of error PCPRK

err , PMP
err for our CPRk andMP gates are larger

than 10−3 because of the rapidly decreasing values of �4
t and �2

t (increasing the rate
of photon decay). Thus, we can obtain the reliable CPRk and MP gates, against the
photon loss, by increasing the amplitude of the probe beam.

Furthermore, in practical performance of the gate, we also have to consider that
photon loss coincides with dephasing in our CPRkMP gate. This can be modeled as
the process (decoherence + XKNLs) [44,45] in Eqs. 8 and 9. Thus, the output state
(Eq. 3) of the CPRk gate, which evolves by photon loss and dephasing, will be mixed
state ρCPRk

D (a density matrix) as follows:
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ρCPRk
D = 1

2

⎛

⎜⎜⎜
⎝

1 K ∗ · C∗ L · ei�4
t α

2 sin θ O∗ · C∗ · e−i�4
t α

2 sin θ

K · C 1 O · C · ei�4
t α

2 sin θ L∗ · e−i�4
t α

2 sin θ

L∗ · e−i�4
t α

2 sin θ O∗ · C∗ · e−i�4
t α

2 sin θ 1 M∗ · C∗ · e−2i�4
t α

2 sin θ

O · C · ei�4
t α

2 sin θ L · ei�4
t α

2 sin θ M · C · e2i�4
t α

2 sin θ 1

⎞

⎟⎟⎟
⎠

,

(13)
where the basis states of the signal-probe system are |A〉 |0〉p, |B〉 |0〉p, |C〉 ∣∣�2

t α .

.
(
e−iθ − 1

)〉
pand |D〉 ∣

∣�2
t α

(
eiθ − 1

)〉
p from left to right and top to bottom. Also,

C = exp

[
−α2

(
1 − e−γ�t

) N∑

n=1
e−γ (n−1)�t

(
1 − ein�θ

)]
and the other coherent para-

meters (K , L , M and O) of the off-diagonal terms, which are calculated by the
decoherence (D̃t ) and the XKNLs (X̃t ) [44,45], are given by

K = exp

[

−α2e−γ t (1 − e−γ�t)
N∑

n=1

e−γ (n−1)�t
(
1 − e−i ·(n�θ−θ)

)]

,

L = exp

[

−α2e−γ t (1 − e−γ�t)
N∑

n=1

e−γ ·(n−1)�t
(
1 − ein�θ

)]

M = exp

[

−α2e−γ t (1 − e−γ�t)
N∑

n=1

e−γ (n−1)�t
(
1 − ei ·(n�θ+θ)

)
]

,

O = exp

[

−α2e−γ t (1 − e−γ�t)
(
1 − eiθ

) N∑

n=1

e−γ (n−1)�t

]

(14)

And the output state ρMP
D , which is evolved to a mixed state by the decoherence effect,

of the MP gate is given by

ρMP
D = 1

2

(
1 C∗ · ei�2

t α
2 sin θ

C · e−i�2
t α

2 sin θ 1

)

, (15)

where the basis states of the signal-probe system are
∣
∣M+〉a.1 |0〉q and

∣
∣M−〉a.0

∣∣�α
t

(
e−iθ − 1

)〉
q from left to right and top to bottom, and C = exp

[−α2
(
1 − e−γ�t

)

N∑

n=1
e−γ (n−1)�t

(
1 − ein�θ

)]
. From the coherent parameters (C , K , L , M and O ,

in Eq. 14), we can obtain a good approximation of the coherent parameters for
t = N�t , θ = N�θ and N = 106. And for the fixed αθ = αχ t =
π

(
PCPRk
err = PMP

err ≈ 10−4
)
, our CPRk and MP gates operate in optical fiber with

signal loss 0.15 dB/km (χ/γ = 0.0303) [52]. If we use the strategy measurement of
homodynewithout the displacement operator in our gate, like as Ref. [26], the absolute
values of coherent parameters rapidly decrease to zero [44,45]. This means that the
completely dephased states (the output states, ρCPRk

D and ρMP
D , of the CPRk and MP

gates) of the signal-probe system are no longer the pure quantum states; i.e., the DQFT
gate completely fails.
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Fig. 5 When considering photon loss and dephasing by the decoherence effect, and XKNLs for the fixed
values αθ = π and N = 106 via the optical fiber with χ/γ = 0.0303 (0.15 dB/km), the absolute values
of coherent parameters in ρCPRkD and ρMP

D are plotted depending on the increase in amplitude of the probe
beam, α. This means that the increasing α can converge coherent parameters at 1 in our CPRkMP under
the decoherence effect (Color figure online)

Fig. 6 When the fixed αθ = αχ t = π
(
Perr ≈ 10−4

)
and χ/γ = 0.0303 (0.15 dB/km), the absolute

values of the coherent parameters in ρCPRkD (Eq. 13) and ρMP
D (Eq. 15) are expressed for increasing the

amplitude of the probe beam, α, in (1), (2), (a, b). Also, the fidelities FC of ρCPRkD (the output
∣
∣φ′〉

D
in Eq. 10) and FM of ρMP

D (the output
∣∣ϕ′〉

D in Eq. 11), according to amplitudeα, are calculated by

FC =
∣∣
∣∣

√〈
φ′∣∣ ρCPRkD

∣
∣φ′〉

D

∣∣
∣∣ /2 and FM =

∣∣
∣∣

√〈
ϕ′∣∣ ρMP

D

∣
∣ϕ′〉

D

∣∣
∣∣. For reliable performances of the CPRk and

MP gates under the decoherence effect, the amplitude α should be increased in accordance with fidelities
(Color figure online)
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Figure 5 shows that our CPRkMP gate, which employs displacement operators,
D

(−�2
t α

)
in the CPRk gate and D

(−�α
t

)
in the MP gate, and the PNR mea-

surements, does not suffer the rapid dephasing of the off-diagonal terms in Eqs. 13
(ρCPRk

D ) and 15 (ρMP
D ). When increasing the amplitude of the probe beam, α,

using optical fiber having signal loss 0.15 dB/km (χ/γ = 0.0303) [52] for a fixed
αθ = αχ t = π

(
PCPRk
err = PMP

err ≈ 10−4
)
, the absolute values of coherent parame-

ters can approach 1, where t = N�t , θ = N�θ , and N = 106. Thus, our gate,
using the displacement operators and PNR measurements, prevents the decreasing
degree of the dephasing coherent parameters by increasing amplitude of α under
the decoherence effect and XKNLs. Furthermore, the analysis of the performances
of the CPRk and MP gates in the CPRkMP gate is important under the decoher-
ence effect, because the proposed DQFT scheme is composed of our CPRkMP gates.
When fixed αθ = π (Perr ≈ 10−4) in optical fiber has signal loss 0.15 dB/km
(χ/γ = 0.0303) [52], Fig. 6 shows the needed θ (phase shift: XKNL) and the length
of the optical fiber in terms of the increasing amplitude of the probe beam, α. Also
(1), (2), (a) and (b) represent the absolute values of coherent parameters in ρCPRk

D (in
Eq. 13) and ρMP

D (in Eq. 15), depending on the amplitude of α. For experimentally
reliable performances of the CPRk and MP gates, the output states should be the pure
states, which has off-diagonal terms (coherent parameters) of 1, as

∣∣φ′〉
D and

∣∣ϕ′〉
D

in Eqs. 10 and 11. If the output states are mixed state ρCPRk
D and ρMP

D (the values
of off-diagonal terms are not 1) by photon loss and dephasing, these can approach
the pure states as

∣
∣φ′〉

D and
∣
∣ϕ′〉

D (the off-diagonal terms of 1) by the increasing
amplitude of the probe beam, α. For this and reliable performance of our CPRkMP
gate, we can calculate the fidelities (FC: CPRk gate, FM: MP gate) that give a useful
metric to quantitatively analyze the proposed gate. In Fig. 6, we prepare for the ini-
tial amplitude of the probe beam, α, to be larger, α(1, a) < α(2, b) = 1 × 106, and

the output states ρCPRk
D and ρMP

D to be closer to the pure states
∣∣φ′〉

D and
∣∣ϕ′〉

D for

FC
(1) < FC

(2) ≈ 0.999 and FM
(a) < FM

(b) ≈ 0.999 where FC =
∣∣∣∣

√
〈φ′| ρCPRk

D |φ′〉D
∣∣∣∣ /2

and FM =
∣∣∣
∣

√
〈ϕ′| ρMP

D |ϕ′〉D
∣∣∣
∣. When a fixed αθ = π (Perr ≈ 10−4) in the optical

fiber has a 0.15 dB/km signal loss (χ/γ = 0.0303), our CPRk and MP gates can
attain reliable performance (FC, FM → 1) by the increasing amplitude of α with the
displacement operators and PNR measurements under the decoherence effect.

Consequently, our CPRkMP (CPRk + MP) gate is based on the controlled path
and merging gates in [26,35–37]. But our gate employed the displacement operators
and the PNR measurements, unlike [26,35–37], to decrease the decoherence effect.
Compared with the existing gates in [26,35–37], in our gate, we considered of the
photon loss and the decreasing coherent parameters (dephasing) due to the decoherence
effect, and simulated to analyze the performance of our gate using the model of the
process (decoherence + XKNL) as [44,45] in practice. By the increasing amplitude of
α with the displacement operators and PNR measurements, instead of the homodyne
detection [26], our gate has the reliable performance (the high fidelity of gate in the
optical fiber) against the decoherence effect. Also, the number of the interaction of
XKNLs in our CPRk gate (two times) is identical with the controlled path gate in Ref.
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[26] in comparison with the number of the interaction of XKNLs in the controlled
path gates (four times, due to the structure of quantum bus beams) of Refs. [35–37].
It shows that our gate enhances the efficiency in terms of the interaction of XKNLs
with the robustness against the decoherence effect. Furthermore, our gate can decrease
the magnitudes of the phase shifts (θ and −θ) by XKNL because of the increasing
amplitude of α for decreasing the decoherence effect, as shown in Fig. 6. Therefore,
compared with the existing DQFT schemes [21–24] using nonlinearities, our DQFT
scheme based on the proposed CPRkMP gate is experimentally implemented with
feasibility.

4 Conclusion

So far, we have proposed an optical DQFT scheme that can experimentally implement
the operation of DQFT on qubits for quantum algorithms and quantum computations
[4–6]. This DQFT scheme is composed of CPRkMP gates, which utilize weakXKNLs
(nonlinearities) and HWPs described in Sect. 2.2. Compared with linear optical sys-
tems [17–20], the nonlinear optics system (XKNL) can implement some tasks of
quantum information processing, including DQFT, [21–47] to assist indirect interac-
tions between photons. Also, by using only the linear optical model, the probability
of success for quantum information processing schemes [53–55] is less than unity, in
theory. Thus, we utilized XKNLs in our CPRkMP gate, which can realize the opti-
cal DQFT scheme, to be nearly deterministic with a certain probability of success
(PCPRk+MP

succ → 1). Furthermore, we employed the displacement operators and the
PNR measurements to design a CPRkMP gate robust against the decoherence effect.
In practice (in optical fiber), there is photon loss and dephasing by the decoherence
effect in the performance of our CPRkMPgate. It inevitably leads to decreasing fidelity
of the CPRkMP gate, and then our DQFT gate will totally fail. For analysis of the
decoherence effect, we simulated photon loss and dephasing, which occurred in our
gate, using the master equation [44,45]. Subsequently, we showed that the efficiency
(decreasing the magnitudes of the phase shifts) in terms of the interaction of XKNLs
with the robustness (decreasing the dephasing coherent parameters) against the deco-
herence effect in our optical gate can be enhanced via increasing amplitude of α

with the displacement operators and the PNR measurements through the analysis as
described in Sect. 3. Thus, our CPRkMP (CPRk +MP) gate can experimentally realize
CRkS operation and augment the robustness with respect to decoherence by using the
proposed techniques (the strong coherent state, the displacement operator, and PNR
measurement).

In this paper, the basic structure of our gate (CPRk + MP) bases on the controlled
path and the merging gates, which used the homodyne measurements or quantum
bus beams and the PNR measurements, as described in Refs. [26,35–37]. However,
as the above-mentioned statements, we utilized the weak XKNLs, the displacement
operators and the PNR measurements in the CPRk and MP (CPRkMP) gate to obtain
the robustness against the decoherence effect by increasing amplitude of α. Compared
with the optical gates in [26,35–37] and the proposed CPRkMP gate, first, the strategy
measurement of homodyne in the optical gate [26] cannot prevent evolving the output
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state to a mixed state by the decoherence effect [43–47]. Second, other optical gates
in [35–37], which employed the quantum bus beams and the PNR measurements for
the controlled operation of the output state, required four the interactions of XKNL
(due to the structure of quantum bus beams) to avoid the induced −θ phase shift (not
easy realization according to [56]). Here, the advantages of the CPRkMP gate are as
follows:

1. We designed our gate to enhance the robustness against the decoherence effect
using the displacement operators and the PNR measurements, unlike the gate in
[26]. So, our gate will be more feasible and robust, using the strong amplitude of
α, than the optical gates in [26] under the decoherence effect.

2. According to Sect. 3 (the analysis, in Eqs. 8 and 9, of the photon loss and the
dephasing), if the number of the interaction XKNLs increases (two times → four
times), the probabilities of success of the optical gates decrease and the output
state rapidly evolves from the pure state to the mixed state. Namely, the simulation
by the master equation (as Eqs. 8 and 9) shows that the number of the coherent
parameters will rise by two times when increased the interactions (XKNLs), as the
optical gates in Refs. [35–37], and then the absolute values of coherent parameters
(the off-diagonal terms in density matrices of the output states of the optical gates
in [35–37]) rapidly decrease to zero more than the output state of our CPRk gate.
Therefore, we constructed the CPRk gate to minimize the number of the interac-
tions of XKNL (two times: θ and −θ) using the displacement operator and the
PNR measurements without quantum bus beams, unlike the controlled path gate
(four the interactions of XKNL) in [35–37]. Unfortunately, Kok [56] has shown
that it is generally not possible to change the sign of the conditional phase shift
(−θ). However, in the CPRk gate, to decrease the decoherence effect, we should
increase the amplitude of α. And as a result, we can extremely reduce the magni-
tudes of the phase shifts (including the minus phase shift) as illustrated in Sect. 3,
i.e., θ = 3.14× 10−6 when α = 1× 106, as shown in Fig. 6. Although our CPRk
gate needs the minus phase shift, the magnitude of the phase shift will be small
by the increasing amplitude of α to reduce the decoherence effect. And we expect
this advantage (small phase shift) of our CPRk gate to contribute the near future
development for the implementation of the minus phase shift.

In conclusion, our DQFT scheme based on CPRkMP gates, which have the advan-
tages as above, is experimentally applicable with a certain probability of success under
the decoherence effect beside previous DQFT schemes [21–24] via nonlinearity opti-
cal systems.
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