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Abstract We propose a protocol for implementing π phase gate of two photons with
linear optical elements and an atom–cavity system. The evolution of the atom–cavity
system is based on the quantum Zeno dynamics. The devices in the present protocol
are simple and feasible with current experimental technology. Moreover, the method
we proposed here is deterministic with a high fidelity. Numerical simulation shows
that the evolution in cavity is efficient and robust. Therefore, the protocol may be
helpful for quantum computation field.
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1 Introduction

In the recent years, many interests have been attracted by the developments in quantum
information processing (QIP) [1–5]. As one of the most important research fields in
QIP, quantum computation has shown great advantages [6–9]. Comparing with a clas-
sical electronic computer, a quantum computer has much higher running speed [6,7].
Moreover, a quantum computer can solve many special problems [7–9] which cannot
be solved by a classical electronic computer. To achieve quantum computation, quan-
tum logic gates are the essential elements because it has been shown that a quantum
computation network can be decomposed into a series of logic gates [10–12]. That is,
any multiqubit gates can be decomposed into single-qubit operations and two-qubit
logic gates. Therefore, numerous researches have been focus on the realization of the
one-qubit unitary gates and the two-qubit logic gates in different physical systems, such
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as ion traps [13], cavities [14], quantum dots [15], NMR systems [16], superconductor
systems [17] and so on. It is worth noting that the cavity quantum electrodynamics
(CQED) system has been proved to be very promising for QIP. And it is a preferably
alternative for implementations of logic gates [18–28]. For example, Deng et al. [18]
have used the controlled phase flip (CPF) gates, which are constructed with CQED
system, to construct atomic phase gates by single-photon interference. The CPF gates
have been also used by Duan and Kimble [20] to implement a controlled Not (CNOT)
gate for photons. Ren et al. have proposed two interesting protocols [21,22] for pho-
tonic hyper-CNOT gates with quantum dot–microcavity coupled systems. Chudzicki
et al. [27] have proposed a protocol for deterministic and cascadable conditional phase
gate for photonic qubits. Moreover, many protocols [29–31] for realizing CQED sys-
tems in experiments have been proposed in past several years. Therefore, the CQED
system is a perfect alternate candidate for preparing phase gates.

Quantum Zeno dynamics is previously considered to restrain the evolution of the
initial state by performing frequent measurements, which are experimentally tested
[32]. And it is improving by numerous following researches [33–35], which have indi-
cated that the dynamics does not necessarily freeze in evolution with quantum Zeno
dynamics and the system will evolve away from its initial state in a subspace called
“Zeno subspace” [33,36], by frequently projecting onto a multidimensional subspace.
Furthermore, as shown in Refs. [35,37], with quantum Zeno effect expressed in terms
of a continuous measurement one can obtain the same physical effects as the case
when quantum Zeno effect expressed by projection operators and nonunitary dynam-
ics. The quantum Zeno dynamics in terms of continuous coupling can be described as
following. Supposing a dynamical evolution process is governed by the Hamiltonian
HK = Hobs + K Hmean, where Hobs is the Hamiltonian of the quantum system inves-
tigated, K is a coupling constant, and Hmeas is viewed as an additional interaction
Hamiltonian performing the measurement. The system will remain in the same Zeno
subspace including its initial state, in the limit K → ∞, and the evolution operator
can be written by U (t) = exp[−i t

∑
ι(KηιPι + PιHobsPι)], in which Pι denotes the

eigenvalue projection of Hmeas with eigenvalues ηι (Hmeas = ∑
ι ηιPι). As it provides

a large amount of interesting application in CQED system, quantum Zeno dynamics
attracts many interests [38–41]. For example, Li and Huang [38] have proposed a pro-
tocol for the generation of a three-dimensional entangled state for two atoms trapped in
a cavity via quantum Zeno dynamics. The method proposed in protocol [38] is robust
against the cavity decay since the evolution of the system is restricted to a subspace
with null-excitation cavity fields. Chen et al. [39] have proposed an efficient scheme
to drive two atoms in two coupled cavities into a two-atom singlet state via quantum
Zeno dynamics and virtual excitations by one step, which is robust against both the
cavity decay and atomic spontaneous emission.

On the other hand, photons are known as the ideal carriers for information between
quantum nodes in a quantum network, as they can be transmitted over long distance
through optical fibers or even in a free space with high speed [42,43]. Moreover,
photons have good operability, as their polarization, spatial, momentum, frequency
and some other degrees of freedom can be operated easily by linear or nonlinear optical
elements. For example, Sheng and Deng [44] have presented an efficient scheme to
realize quantum entanglement distribution over an arbitrary collective-noise channel
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Fig. 1 Schematic diagram of
the atom energy levels
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between two users, where the quantum information is encode in polarization degree of
freedom of photons. Li et al. [45] have proposed a faithful qubit transmission scheme
with linear optics against collective noise. Moreover, Kang et al. [46] have exploited
the photon frequency degree of freedom to generate entanglement in quantum nodes.
Therefore, it is worthwhile to realize quantum information tasks with photon systems.

Combining the advantages of photons and quantum Zeno dynamics in CQED sys-
tem, in this paper, we propose a protocol for implementing π phase gate of two
photons with linear optical elements and atom–cavity system. The evolution of the
atom–cavity system is based on the quantum Zeno dynamics. The present protocol
has the following advantages. Firstly, the devices in the present protocol are simple,
and feasible with current experimental technology. Secondly, the implementation of
the two-photon phase gate can be achieved in one step. The method we propose here
is deterministic with a high fidelity. Numerical simulation shows that the evolution
in cavity is efficient and robust. Thirdly, auxiliary photons are not required in our
protocol, which can save physical resources. Therefore, our protocol may be helpful
for quantum computation field.

The article is organized as follows. In Sect. 2, we will introduce the evolution of
the atom–photon system. In Sect. 3, we will describe the process for implementation
of a two-photon π phase gate with linear optical elements and atom–cavity system.
Discussion and conclusions are shown in Sect. 4.

2 The evolution of the atom–cavity system

Weconsider an atomwith a ground state |g〉 and three excited states |eL〉, |e0〉 and |eR〉,
which is shown in Fig. 1. Suppose that the atomic transition |g〉 ↔ |eL〉 (|g〉 ↔ |eR〉)
is resonantly coupled to the input left (right) circularly polarized photon |L〉 (|R〉) with
coupling constant λL (λR), |g〉 ↔ |e0〉 is resonantly driven through a laser pulse with
Rabi frequency �. The total Hamiltonian in the interaction picture can be written by
(h̄ = 1)

HI = Hc + Hl ,

Hc =
∑

k=L ,R

λk |ek〉〈g|ak + H.c.,

Hl = �|e0〉〈g| + H.c., (1)
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where ak is the annihilation operator for the k-polarization photon (k = L , R).
In the present paper, assuming that the initial state of the atom is |e0〉, according to

the setups of the linear optical elements, no more than two photons will be injected
into the cavity. There are three cases: (1) No photons are injected into the cavity.
(2) A R-polarized photon or an L-polarized photon is injected into the cavity. (3)
A R-polarized photon and an L-polarized photon are both injected into the cavity.
Therefore, the system will evolve in the Hilbert subspace spanned by

|ψ0〉 = |g〉|0〉L |0〉R, |ψ1〉 = |e0〉|0〉L |0〉R, |ψ2〉 = |g〉|1〉L |0〉R,

|ψ3〉 = |eL〉|0〉L |0〉R, |ψ4〉 = |e0〉|1〉L |0〉R, |ψ5〉 = |g〉|0〉L |1〉R,

|ψ6〉 = |eR〉|0〉L |0〉R, |ψ7〉 = |e0〉|0〉L |1〉R, |ψ8〉 = |g〉|1〉L |1〉R,

|ψ9〉 = |eL〉|0〉L |1〉R, |ψ10〉 = |eR〉|1〉L |0〉R, |ψ11〉 = |e0〉|1〉L |1〉R, (2)

in which |m〉R (|m′〉L ) (m,m′ = 0, 1, 2, . . .) are the photon number states of R
(L)-polarization. The Hamiltonian can be rewritten with the eigenstates |φn〉 (n =
1, 2, . . . , 7) of Hc as

HI = Hc + Hl ,

Hc =
7∑

n=1

εn|φ〉n〈φ|,

Hl = �(|ψ0〉〈ψ1| + |φ6〉〈ψ11| + |φ7〉〈ψ11|)
+ �√

2
(|φ1〉〈ψ4| + |φ2〉〈ψ4| + |φ3〉〈ψ7| + |φ4〉〈ψ7|) + H.c., (3)

where ε1 = λL , ε2 = −λL , ε3 = λR , ε4 = −λR , ε5 = 0, ε6 = χ and ε7 = −χ ,

(χ =
√

λ2L + λ2R), and

|φ1〉 = 1√
2
(|ψ2〉 + |ψ3〉), |φ2〉 = 1√

2
(|ψ2〉 − |ψ3〉),

|φ3〉 = 1√
2
(|ψ5〉 + |ψ6〉), |φ4〉 = 1√

2
(|ψ5〉 − |ψ6〉),

|φ5〉 = 1

χ
(λR |ψ9〉 − λL |ψ10〉), |φ6〉 = 1√

2χ
(χ |ψ8〉 + λL |ψ9〉 + λR |ψ10〉),

|φ7〉 = 1√
2χ

(χ |ψ8〉 − λL |ψ9〉 − λR |ψ10〉). (4)

That means under the Zeno condition � 	 λk (k = L , R), the Hilbert subspace will
split into eight subspaces

S1 = {|ψ0〉, |ψ1〉}, S2 = {|φ1〉}, S3 = {|φ2〉},
S4 = {|φ3〉}, S5 = {|φ4〉}, S6 = {|φ6〉},
S7 = {|φ7〉}, S8 = {|φ5〉}. (5)
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If we define projectors as following

Pq = |φq〉〈φq | (q = 1, 2, . . . , 7), (6)

according to Ref. [35], the effective Hamiltonian of the system can be written by

Heff =
∑

q

εq Pq + Pq Hl Pq

= �(|ψ0〉〈ψ1| + |ψ1〉〈ψ0|) +
7∑

q=1

εq |φq〉〈φq |. (7)

Then, we can further write Hamiltonians of these eight subspaces as

HS1 = �(|ψ0〉〈ψ1| + |ψ1〉〈ψ0|), HS2 = λL |φ1〉〈φ1|, HS3 = −λL |φ2〉〈φ2|,
HS4 = λR |φ3〉〈φ3|, HS5 = −λR |φ4〉〈φ4|, HS6 = χ |φ6〉〈φ6|,
HS7 = −χ |φ7〉〈φ7|, HS8 = 0. (8)

Under Zeno condition� 	 λk (k = L , R), the evolution operators of eight subspaces
can be written by

US1(t) = e−i HS1 t = e−i�(|ψ0〉〈ψ1|+|ψ1〉〈ψ0|)t , US2(t) = e−i HS2 t = e−iλL |φ1〉〈φ1|t ,
US3(t) = e−i HS3 t = eiλL |φ2〉〈φ2|t , US4(t) = e−i HS4 t = e−iλR |φ3〉〈φ3|t ,
US5(t) = e−i HS5 t = eiλR |φ4〉〈φ4|t ,
US6(t) = e−i HS6 t = e−iχ |φ6〉〈φ6|t , US7(t) = e−i HS7 t = eiχ |φ7〉〈φ7|t , US8 = I. (9)

3 The π phase gate of two photons with linear optical elements and
atom–cavity system

Now, we describe the implementation of two-photon phase gate with linear optical
elements and atom–cavity system. The schematic diagram of the devices is shown in
Fig. 2. As shown in Fig. 2, HWP is a half-wave plate for transformation |R〉 ↔ |L〉.
PBS1 and PBS2 are two polarizing beam splitters in the circular basis, which transmit
the input right circularly polarized photons |R〉 and reflect the left circularly polarized
photons |L〉. K is an optical switch with two different states: one is transmitting state
and the other is reflecting state. a and b denote two different paths. We assume that the
side-leakage κs of the cavity is large enough, so that the input photons can be injected
into and emitted out the cavity easily. Moreover, if we design the length of each path
carefully, the input photons will arrive at PBS1, PBS2 and the cavity at the same time.
The arrival time t0 of the input photons can be calculated when the length of each path
and the speed of photons are known. We assume that the optical switch K is initially
in transmitting state, and we change switch K to the reflecting state at time t0, so that
the injected photons will be not emitted from the cavity during the interaction. Then,
after the evolution in the cavity, we change switch K back to the transmitting state at
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Fig. 2 Schematic diagram of the two-photon phase gate with linear optical elements and atom–cavity
system. HWP is a half-wave plate for transformation |R〉 ↔ |L〉. PBS1 and PBS2 are two polarizing beam
splitters in the circular basis, which transmit the input right circularly polarized photons |R〉 and reflect the
left circularly polarized photons |L〉. a and b denote two different paths

time t0 + t f (t f is the evolution time in the cavity), so that the photons may be emitted
from the cavity. In addition, toggling the switch K should be precise to avoid the gate
error.

Suppose that the two input photons are injected to the devices from paths a and b,
respectively. The initial state of the two photons is

x1|R〉a |R〉b + x2|R〉a |L〉b + x3|L〉a |R〉b + x4|L〉a |L〉b, (10)

where |x1|2+|x2|2+|x3|2+|x4|2 = 1. Therefore, the state of the whole atom–photon
system is

|e0〉(x1|R〉a |R〉b + x2|R〉a |L〉b + x3|L〉a |R〉b + x4|L〉a |L〉b). (11)

After the photons in paths a and b passing PBS1 (See Fig. 2), the state in Eq. (11)
changes into

|e0〉(x1|R〉d |R〉c + x2|R〉d |L〉d + x3|L〉c|R〉c + x4|L〉c|L〉d). (12)

Then, the photon in path c passing though HWP, the total state of the atom–photon
system will be

|e0〉(x1|R〉d |L〉c + x2|R〉d |L〉d + x3|R〉c|L〉c + x4|R〉c|L〉d). (13)

Next, the photons in paths c and d passing PBS2, the state of the whole system changes
into

|e0〉(x1|R〉a′ |L〉a′ + x2|R〉a′ |L〉b′ + x3|R〉b′ |L〉a′ + x4|R〉b′ |L〉b′). (14)

From Fig. 2, we can see that the photon(s) in path a′ will be injected into the cavity
and coupled with the trapped atom. Therefore, the state of the whole atom–photon
system in Eq. (14) can be written as
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(x1|e0〉|1〉R |1〉L |0〉a′ |0〉a′ + x2|e0〉|0〉L |1〉R |0〉a′ |L〉b′

+x3|e0〉|1〉L |0〉R |R〉b′ |0〉a′ + x4|e0〉|0〉L |0〉R |R〉b′ |L〉b′)

= (x1|ψ11〉|0〉a′ |0〉a′ + x2|ψ7〉|0〉a′ |L〉b′ + x3|ψ4〉|R〉b′ |0〉a′ + x4|ψ1〉|R〉b′ |L〉b′).

(15)

According to the evolution operators in Sect. 2, by setting the Rabi frequency
� of laser beam and the interaction time t f suitably, that is, satisfying �t f = π ,
the evolution in cavity will be |ψ11〉 → |ψ11〉, |ψ7〉 → |ψ7〉, |ψ4〉 → |ψ4〉 and
|ψ1〉 → −|ψ1〉. So, when the evolution is over, the atom–photon system will be in
state

U (t f )(x1|ψ11〉|0〉a′ |0〉a′ + x2|ψ7〉|0〉a′ |L〉b′ + x3|ψ4〉|R〉b′ |0〉a′ + x4|ψ1〉|R〉b′ |L〉b′)

= (x1|ψ11〉|0〉a′ |0〉a′ + x2|ψ7〉|0〉a′ |L〉b′ + x3|ψ4〉|R〉b′ |0〉a′ − x4|ψ1〉|R〉b′ |L〉b′)

= (x1|e0〉|1〉R |1〉L |0〉a′ |0〉a′ + x2|e0〉|0〉L |1〉R |0〉a′ |L〉b′

+x3|e0〉|1〉L |0〉R |R〉b′ |0〉a′ − x4|e0〉|0〉L |0〉R |R〉b′ |L〉b′)

= |e0〉(x1|1〉R |1〉L |0〉a′ |0〉a′ + x2|0〉L |1〉R |0〉a′ |L〉b′

+x3|1〉L |0〉R |R〉b′ |0〉a′ − x4|0〉L |0〉R |R〉b′ |L〉b′). (16)

Next, we trace out the atom state. Subsequently, photons in cavity will be emitted
from the cavity to the path a′, and photons in path b′ will be straightly reflected by the
mirror. Therefore, the state of the two photons will be

x1|R〉a′ |L〉a′ + x2|R〉a′ |L〉b′ + x3|R〉b′ |L〉a′ − x4|R〉b′ |L〉b′ . (17)

Then, the two photons will pass back through PBS2, HWP and PBS1 in sequence
again, and the process can be described as

x1|R〉a′ |L〉a′ + x2|R〉a′ |L〉b′ + x3|R〉b′ |L〉a′ − x4|R〉b′ |L〉b′

PBS2−−→ x1|R〉d |L〉c + x2|R〉d |L〉d + x3|R〉c|L〉c − x4|R〉c|L〉d
HWP−−−→ x1|R〉d |R〉c + x2|R〉d |L〉d + x3|L〉c|R〉c − x4|L〉c|L〉d
PBS1−−→ x1|R〉a |R〉b + x2|R〉a |L〉b + x3|L〉a |R〉b − x4|L〉a |L〉b. (18)

From Eq. (18), we can see that the implementation of the two photons phase gate with
linear optical elements and atom–cavity system is completed.

4 Discussion and conclusions

In this section, let us make some discussion. Firstly, we calculate the fidelity of the
system’s state in the cavity. Because when the evolution process in the cavity is com-
pleted as expectation, the state of the trapped atom should be |g〉. In other cases, the
gate operation is failure. When the gate operation is succeed, we trace the state of the
trapped atom, which has nothing to do with the photons’ state. Therefore, we use the
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Fig. 3 The fidelity F(t) of the state in the cavity versus λt

Fig. 4 The final fidelity F(t f ) of the state in the cavity versus �/λ

fidelity of the atom–cavity state to describe the gate fidelity when the linear optical
elements outside the cavity are considered to be perfect. The fidelity is defined as
F(t) = |〈�ideal|ρ(t)|�ideal〉| with |�ideal〉 = x1|ψ11〉 + x2|ψ7〉 + x3|ψ4〉 − x4|ψ1〉
and ρ(0) = |�(0)〉〈�(0)|. (|�(0)〉 = x1|ψ11〉 + x2|ψ7〉 + x3|ψ4〉 + x4|ψ1〉.)
For simplification, we set λL = λR = λ. According to the differential equation
ρ̇(t) = i[ρ(t), HI (t)], in which ρ(t) is the density operator of the system, we plot the
fidelity F(t) versus λt in Fig. 3. As shown in Fig. 3, the fidelity continuously increases
with the increasing of the interaction time, and the final fidelity F(t f ) is 0.9989 with
the parameters t f = 50/λ (� = π/t f = πλ/50) and x1 = x2 = x3 = x4 = 1/2.
Moreover, we plot F(t f ) versus�/λ, when� is variational, which is shown in Fig. 4,
with x1 = x2 = x3 = x4 = 1/2. As indicated in Fig. 4, the final fidelity F(t f )
vibrates with the change of �/λ. The vibration is intensified with the increasing of
�/λ because large � means the Zeno condition is not satisfied well. Therefore, we
should choose a suitable value of �/λ to obtain a maximum F(t f ).

Secondly, sincemost of the parameters are hard to faultlessly achieve in experiment,
we need to investigate the variations in the parameters induced by the experimental
imperfection. We consider that there are little deviations of interaction time t f and
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Fig. 5 The final fidelity F(t f ′ ) of the two-photon phase gate versus δt f /t f and δ�/�

Table 1 Samples of the final
fidelity F(t f ′ ) with
corresponding δ�/� and
δt f /t f

δt f /t f δ�/� F(t f ′ )

5% 5% 0.9960

5% 0 0.9864

0 5% 0.9922

0 0 1.0000

−5% 0 0.9856

0 −5% 0.9930

−5% −5% 0.9697

5% −5% 0.9935

−5% 5% 0.9907

the Rabi frequency of laser pulses �, which are denoted by δt f and δ�, respectively.
In Fig. 5, we plot the final fidelity F(t f ′) of the system’s state in cavity versus the
variations (δt f and δ�) in total operation time t ′f (t ′f = t f + δt f ) and laser amplitude
�′ (�′ = � + δ�) with t f = 50/λ and x1 = x2 = x3 = x4 = 1/2. Moreover, we
calculate the exact values of F(t f ′) at some boundary points of Fig. 5 and show the
results in Table 1. We find that the final fidelity F(t f ′) is still 0.996% even when the
deviation δ�0/�0 = δt f /t f = 5%. So, we can say the protocol is robust against the
variations of the parameters t f and �. Furthermore, from Fig. 5 and Table 1, we find
that F(t f ′) decreases little when δt f and δ� have the opposite sign (one positive and
the other negative). On the contrary, F(t f ′) decreases larger when δt f and δ� have
the same sign (both positive or both negative). That is easy to understand, as t f and
� should satisfy the condition �t f = π . Therefore, when � ( t f ) decreases, t f (�)
should increase.
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Fig. 6 The final fidelity F(t f ) of the two-photon phase gate versus δλ/λ and δ�/�

Table 2 Samples of the final
fidelity F(t f ) with
corresponding δ�/� and δλ/λ

δλ/λ δ�/� F(t f )

5% 5% 0.9864

5% 0 0.9934

0 5% 0.9922

0 0 1.0000

−5% 0 0.9907

0 −5% 0.9903

−5% −5% 0.9856

5% −5% 0.9882

−5% 5% 0.9834

On the other hand, once we set t f = C/λ (C = constant), we have δt f = δ(C/λ) 

−Cδλ/λ2. The deviation of λ will directly lead the deviation of t f . So, the influence
due to the deviation of λ has similar effects as the influence due to the deviation of
t f on the final fidelity F(t f ). Therefore, for the sake of integrality for discussion,
taking δλ instead of δt f , we plot F(t f ) versus δ� and δλ in Fig. 6. Also, samples of
F(t f ) with δ�/� and δλ/λ are shown in Table 2. Seeing from Fig. 6 and Table 2, the
protocol is also robust against the variations of � and λ. Therefore, we can conclude
that the protocol is robust against the variations of the parameters t f , � and λ.

Thirdly, let us discuss the fidelity F(t) of the system’s state in cavity with deco-
herence mechanisms, such as the atomic spontaneous emission and the cavity decay
being considering. The evolution of the system can be described by a master equation
in Lindblad form as following with the decoherence being considered,
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Fig. 7 The fidelity F(t) of the evolution in the cavity versus λt when decoherence is considered

ρ̇ = i[ρ, HI ] +
∑

l

[

LlρL
†
l − 1

2

(
L†
l Llρ + ρL†

l Ll

)]

, (19)

where Ll (l = 1, 2, . . . , 5) is the Lindblad operator. There are six Lindblad operators

L1 = √
�L |g〉〈eL |, L2 = √

�R |g〉〈eR |,
L3 = √

�0|g〉〈e0|, L4 = √
κLaL ,

L5 = √
κRaR, (20)

in which �s (s = R, L , 0) are the atomic spontaneous emissions, κr (r = R, L) are
the cavity decays. We suppose �s = �/2 (s = R, L , 0) and κr = κ (r = R, L) for
simplicity.

We plot the fidelity F(t) versus λt with t f = 50/λ, κ = 0.001λ, � = 0.001λ and
x1 = x2 = x3 = x4 = 1/2 in Fig. 7. From Fig. 7, we can see that the fidelity increases
from 0.25 to 1 during the evolution. Comparing with the result shown in Fig. 3, where
the decoherence mechanism has been considered, the final fidelity F(t f ) with these
parameters is 0.9392 here, and it is 1 in Fig. 3. We also consider the final fidelity F(t f )
versus κ/λ and �/λ in Fig. 8, with t f = 50/λ and x1 = x2 = x3 = x4 = 1/2. The
trend of evolution is similar to that in Fig. 4, but F(t f ) cannot reaches 1. Because
the gate is based on photon polarization, photon losses leading by cavity decays will
destroy the gate. On the other hand, the atomic spontaneous emissionsmay not destroy
photons, but it will lead the uncertain phase shifts because the evolution will not go
along the path been designed. This also deceases the fidelity of the gate. Therefore, a
strong coupling regime may require here to restrain the atomic spontaneous emission
and the cavity decay. In current experimental conditions, it is reported by protocols
[47–49] that λ = 2π × 750, κ = 2π × 3.5 and � = 2π × 2.62MHz are realizable
with the optical cavity mode wavelength in a range between 630 and 850nm. These
data give the ratios κ/λ = 0.0047 and �/λ = 0.0035. By submitting the ratios
into Eq. (20), we have the gate fidelity F(t f ) = 0.7745. By adding nondemolition
measurement detectors [20,50] on paths a and b, we can know whether or not the
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Fig. 8 The final fidelity F(t f ) of the evolution in the cavity versus κ/λ and �/λ

Fig. 9 The energy level
structure of 87Rb

photon losses are occurred in the process. If there is no photon loss, the gate fidelity
will be 0.9263. Therefore, nondemolition measurement detectors are quite helpful
here. When photon losses are occurred, we can know that from the nondemolition
measurement detectors’ results, and then, restart the process. Moreover, with the rapid
development in strong coupling regime, the atomic spontaneous emission and the
cavity decay will be restrained better in the near feature, so that our protocol can work
better as well.

Fourthly, in experiment, the atomic energy level structure can be realizedwith 87Rb,
whose structure is shown in Fig. 9. The state |g〉 corresponds to F = 1, m = 0 of
hyperfine state of 52S1/2 electronic ground state. The state |e0〉 (|eL〉, |eR〉) corresponds
to F = 1, m = 0 (m = −1, m = 1) of hyperfine state of 52P1/2 electronic state.

Fifthly, the linear optical elements such as HWPs and PBSs are used in our protocol.
They are simple, powerful, effective and widely used in optical protocols [51–61]. For
example, Sheng and Deng [54] have proposed a protocol for deterministic entangle-
ment purification and complete nonlocal Bell-state analysis with hyperentanglement,
where PBSs are exploited to preform unitary transformations for polarization and
spatial degrees of freedom of photons. Deng [58] has proposed an optimal nonlocal
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entanglement concentration protocol for multiphoton systems in a partially entangled
pure state with the projection measurement on an additional photon, in which PBSs
are used to offer helps to the parity checks.

In conclusion, we have proposed a protocol for implementing π phase gate of
two photons with linear optical elements and atom–cavity system. The evolution of
the atom–cavity system is based on the quantum Zeno dynamics. The devices in
the present protocol are simple, and feasible with current experimental technology.
The implementation of the two-photon phase gate can be achieved in only one step.
The method is deterministic with a high fidelity. Numerical simulation shows that the
evolution in cavity is efficient and robust. Moreover, auxiliary photons are not required
in our protocol, which can save physical resources. Therefore, our protocol may be
helpful for quantum computation field.
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