
Quantum Inf Process (2016) 15:4773–4783
DOI 10.1007/s11128-016-1423-8

Deterministic remote preparation of an arbitrary qubit
state using a partially entangled state and finite classical
communication

Congyi Hua1 · Yi-Xin Chen1

Received: 24 May 2016 / Accepted: 11 August 2016 / Published online: 20 August 2016
© Springer Science+Business Media New York 2016

Abstract We propose a deterministic remote state preparation (RSP) scheme for
preparing an arbitrary (including pure and mixed) qubit, where a partially entangled
state and finite classical communication are used. To our knowledge, our scheme is
the first RSP scheme that fits into this category. One other RSP scheme proposed by
Berry shares close features, but can only be used to prepare an arbitrary pure qubit.
Even so, our scheme saves classical communication by approximate 1 bit per prepared
qubit under equal conditions. When using a maximally entangled state, the classical
communication for our scheme is 2 bits, which agrees with Lo’s conjecture on the
resource cost. Furthermore Alice can switch between our RSP scheme and a standard
teleportation scheme without letting Bob know, which makes the quantum channel
multipurpose.

Keywords Remote state preparation · Quantum information · Quantum protocol

1 Introduction

Relying on quantum entanglement [1], quantum communication protocols can present
abilities that are unachievable by their classical counterparts.Notable examples include
quantumkey distribution [2–4], quantum teleportation [5,6] and quantum secure direct
communications [7–12]. By using two entangled qubits and 2 bits of classical com-
munication as resources, quantum teleportation enables Alice to transmit an unknown
qubit state to Bob without physically transporting it. A variation of teleportation is
remote state preparation (RSP) [13–17], wherein Alice produces a known qubit state at
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Bob’s location by using entanglement and classical communication. Depending on the
resource requirement, preparable state ensemble, and even successful rate, different
kind of RSP scheme has been devised for carrying out the specific task.

In most RSP schemes, maximal entanglement, oftenest a Bell state, is assumed to
be accessible. For example, the first RSP scheme proposed by Pati [14] uses a Bell
state, realizing deterministic preparation of a qubit from a fixed great circle on the
Bloch sphere. Other later proposed schemes extended the preparable ensembles to
varying degrees for preparing more general qubits, like deterministic preparations of
arbitrary pure qubits [18–20], probabilistic preparations of arbitrary qubits [20,21],
and more resently, schemes for deterministic preparations of arbitrary qubits were
also implemented [22,23]. Unfortunately, these mentioned schemes are unadaptable
to partially entangled resource states, which may occur in the real world. To devise
RSP schemes that work with partial entanglement, new ways must be found.

Although it is more difficult to devise RSP schemes employing partial entangle-
ment, Ye et al. [24] proved that, at the expense of increased classical communication,
it is possible to use a partially entangled state to perform deterministic RSP of an
arbitrary pure state. Based on the proof, Berry [25] proposed an explicit scheme for
performing such an RSP. Thus, the two-dimensional case of Berry’s scheme pro-
vides a complete technique for preparing an arbitrary pure qubit. In Ref. [26], we
also proposed an optimization procedure that can be incorporated into Berry’s scheme
to reduce unnecessary classical communication. Despite all these efforts, to our best
knowledge, as yet there is no deterministic RSP scheme that use partial entangle-
ment to prepare arbitrary (include pure and mixed) qubit states, which we reported
here.

In Sect. 2, by utilizing the ensembles that can be prepared using partial entangle-
ment with only two bits of classical communication, we give our RSP scheme which
trades off classical communication against entanglement to implement the prepara-
tion of an arbitrary qubit. Our results agree with Lo’s conjecture on the resource cost
for deterministic RSP. At the end of Sect. 2, we briefly summarize our scheme, and
show Alice can switch between this RSP and a standard teleportation without letting
Bob know. In Sect. 3, we introduce a geometrical tool called Voronoi diagram for the
calculation of the classical communication requirement for our scheme. The calcu-
lation shows our scheme saves approximate 1 bit of classical communication when
compared with Berry’s scheme for the preparation of an arbitrary pure qubit. The
underlying cause of the resource saving will be explained. In Sect. 4, we draw our
conclusions.

2 Deterministic remote preparation of an arbitrary qubit

In this section, we present a remote state preparation (RSP) scheme for Alice to
prepare an arbitrary qubit state at Bob’s location deterministically. The resources for
performing this task are a partially entangled two-qubit state and finite bits of classical
communication from Alice to Bob. The qubit to be prepared is known to Alice but
unknown to Bob. Furthermore, we restrict the scheme to be oblivious, where the state
to be prepared is known to Alice but unknown to Bob.
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The initial setup of our RSP scheme is as follows. Assume Alice and Bob have
shared an entangled resource state in the form

|r〉 = r0 |00〉AB + r1 |11〉AB ,

or, equivalently,

|r〉 = cos
θr

2
|00〉AB + sin

θr

2
|11〉AB , (1)

where 0 ≤ r1 ≤ r0 and 0 ≤ θr ≤ π . Any entangled pure two-qubit state can be
brought to this form via local unitary operations. The entanglement of |r〉 is quantified
by the Von Neumann entropy of either of |r〉’s reduced states, namely,

E(|r〉) = −r20 log r
2
0 − r21 log r

2
1 . (2)

The scheme starts by a positive operator valued measurement (POVM) [27,28] on
Alice’s system A. POVM is the most general kind of quantum measurements, it has
some features that cannot be achieved within the context of projective measurement.
The POVM operators Alice performs in our RSP scheme are given by

{
Mm = pm

(
1

r0
|0〉 〈0| + 1

r1
|1〉 〈1|

)
ρT
m .

(
1

r0
|0〉 〈0| + 1

r1
|1〉 〈1|

)}3

m=0
, (3)

where the superscript T denotes the transposition, and the values of pm andρm are to be
determined later. By implementing this POVM, Alice obtains a measurement outcome
mwith probability calculated as 〈r | Mm |r〉 = pm , and the corresponding state ofBob’s
post-measurement system will be trA (Mm |r〉 〈r |) /pm = ρm . Based on the nature of
measurement on quantum system, Bob’s collapsed system is always interrelated with
Alice’s measurement result, but intrinsically random. In order to transform Bob’s
system to the state as Alice desired every time, Alice needs to instruct Bob to perform
a unitary operation Um chosen from {I ,σ3,σ1, − σ3σ1} according her measurement
outcome m. This can be done by sending to Bob 2 bits of classical information from
Alice. The unitary operation set {I ,σ3,σ1, − σ3σ1} is purposely duplicated from a
standard teleportation scheme, as we will discuss at the end of the section. After the
unitary operation, no matter whichUm Bob performs, allUmρmU

†
m should lead to the

same state.
Now, based on the above setup, we give the preparable ensemble of pure qubits in

Theorem 1. This ensemble will be generalized to include mixed qubits by Corollary 1.

Theorem 1 Using apreshared resource state |r〉 given byEq. (1)and2bits of classical
communication from Alice to Bob, any pure qubit from the ensemble

{
|i(θi , φi )〉 = cos

θi

2
|0〉 + eiφi sin

θi

2
|1〉

∣∣∣∣ φi ∈ [0, 2π)

and θi ∈ [0, θr ] ∪ [π − θr , π ]
}
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can be remotely prepared. Particularly if |r〉 is a maximal entangled state, the above
ensemble is represented by the entire Bloch sphere consisting of every pure qubit.

Proof Assume the pure qubit that Alice wants to prepare is expressed as

|i〉 = cos
θi

2
|0〉 + eiφi sin

θi

2
|1〉 ≡ i0 |0〉 + eiφi i1 |1〉 , 0 ≤ θi ≤ π , 0 ≤ φi < 2π.

Here θi and φi are the polar and azimuthal angles of |i〉 in the Bloch sphere represen-
tation. For Bob, before he receives the 2 classical bits from Alice, his system is in the
state

3∑
m=0

pmρm = r20 |0〉 〈0| + r21 |1〉 〈1| . (4)

Substitute ρm ≡ U †
m |i〉 〈i |Um with Um ∈ {I ,σ3,σ1, − σ3σ1} into Eq. (4), we obtain

(
i20 P1 + i21 P2

)
|0〉 〈0| +

(
i20 P2 + i21 P1

)
|1〉 〈1| = r20 |0〉 〈0| + r21 |1〉 〈1| , (5)

where P1 ≡ 2p0 = 2p1 and P2 ≡ 2p2 = 2p3. Moreover, for a legitimate POVM
in Eq. (3), P1, P2 ≥ 0 and P1 + P2 = 1 are implied. Equation (5) can be used as
the necessary and sufficient condition for checking the preparablity of a pure qubit |i〉
(also see Eq. (3) in Ref. [24]). It is easy to see, as long as r0 ≤ max {i0, i1}, Eq. (5) is
soluble for non-negative P1, P2 with P1 + P2 = 1. Except for r0 = i0 = 1√

2
, where

P1 can be any value in [0, 1], the universal solution to Eq. (5) is

P1 =
(
r20 − i20

)
/2

(
1

2
− i20

)
. (6)

For consistency, we only use the universal solution in the follow discussion.
On the Bloch sphere, the ensemble of states that satisfies r0 ≤ max {i0, i1} is

represented by an antipodal pair of spherical caps with θi ∈ [0, θr ] ∪ [π − θr , π ].
Particularly when |r〉 is maximally entangled, we have θi ∈ [0, π/2] ∪ [π/2, π ],
which means the ensemble is represented by the entire Bloch sphere consisting of
every pure qubit. 
�

A mixed qubit describes a two-dimensional quantum system whose state is not
completely known. One can suppose such a system is in a pure qubit state |i〉 with
probability p and in the maximally mixed qubit state with probability 1 − p. The
density matrix for such a mixed qubit can be expressed as

ρi (p, θi , φi ) = p |i(θi , φi )〉 〈i(θi , φi )| + (1 − p)
I

2
,

where

|i(θi , φi )〉 = cos
θi

2
|0〉 + eiφi sin

θi

2
|1〉 .
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Here p, θi and φi uniquely identify the Bloch vector r i = (p sin θi cosφi ,

p sin θi sin φi , p cos θi ), which is related to the position of ρi in the Bloch ball. When
p = 1, ρi degenerates into the pure qubit |i〉, while from the pure |i〉 to the mixed
ρi , the Bloch vector shrinks by a factor p. One can verify, if Alice sends Bob totally
random classical bits (00, 01, 10 or 11 each with probability 1/4), Bob’ s system will
end up with the maximally mixed qubit represented by the density matrix I/2. There-
fore, if Alice wants to remotely prepare ρi , she only needs to replace the bits used for
preparing |i〉 by totally random bits with probability 1 − p. Obviously we have the
following corollary.

Corollary 1 Using a preshared resource state ketr given by Eq. (1) and 2 bits of
classical communication from Alice to Bob, any qubit state from the ensemble

{
ρi (p, θi , φi ) = p |i(θi , φi )〉 〈i(θi , φi )| + (1 − p)

I

2

∣∣∣∣ p ∈ [0, 1], φi ∈ [0, 2π)

and θi ∈ [0, θr ] ∪ [π − θr , π ]
}

can be remotely prepared. Particularly if |r〉 is maximally entangled, the above ensem-
ble is represented by the entire Bloch ball consisting of every pure and mixed qubit.

Lo [13] conjectured that, with unlimited entanglement resource, deterministic
preparation of an arbitrary pure qubit at Bob’s location requires 2 bits of classical
communication. Bennet et al. [15] have proved in a more restricted condition, where
Bob is restricted to perform a unitary operation and is oblivious to the prepared state,
theRSPmust use at least 2 bits of classical communication.Our setupmeets this condi-
tion, because when |r〉 is maximally entangled we have P1 = 1/2 from Eq. (6), which
means Bob cannot extract from the classical communication any information about
the prepared state (thus is oblivious). Now, by treating Theorem 1 and Corollary 1 as
complements to Bennet et al.’s proof, we know 2 bits of classical communication are
both necessary and sufficient (even for preparing an arbitrary qubit).

Due to the strictly increasing relation between θr and E(|r〉), a less entangled
|r〉 will lead to smaller preparable ensembles in Theorem 1 and Corollary 1. In the
following discussion, we will show how to trade off classical communication for
reduced entanglement to enable preparation of an arbitrary target qubit ρt .

We use C1 to denote the spherical cap lying at the north pole mentioned in The-
orem 1, and C−1 the antipodal one. C1,−1 is used to denote the pair of C1 and C−1.
The size of C1,−1 can be directly measured by the parameter θr . Obviously, if |r〉 is
partially entangled, C1,−1 will not cover the entire Bloch sphere. In order to prepare
a target state ρt with Bloch vector r t outside the convex hull of C1,−1, Alice and
Bob need to proceed as follows. First, before the preparation begins, they need to
determine a K -element rotation operation set

{
R j

}K
j=1 which is |r〉-dependent. After{

R j
}K
j=1 is determined, Alice deliberately prepares the intermediate state ρi that is

exactly R−1
j ρt R j and has a Bloch vector inside the convex hull of C1,−1. Lastly, by
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sending Bob log K bits, Alice instructs him to choose R j from
{
R j

}K
j=1 to transform

his system into the target state ρt .
Visually, the effect of a rotation operation on a state is rotating the state’s Bloch

vector by a fixed angle about some axis of the Bloch ball. Let’s suppose each R j

maps the spherical cap C1 to C j (and thus C−1 to C− j ). Although the position of

C j,− j may vary, all of them are the same size as C1,−1 and the union of
{
C j,− j

}K
j=1

must cover the entire Bloch sphere. As pointed out earlier, if E(|r〉) decreases, the
size of C j,− j will decrease simultaneously. This generally results in an increased
classical communication cost as K tends to become larger to ensure total coverage. The
resource trade-off is inevitable for an RSP scheme of this type, but making

{
C j,− j

}K
j=1

uniformly distributed can avoid overcommunication. The problemof how to uniformly
distribute

{
C j,− j

}K
j=1 can be rephrased as how to construct uniformly distributed 2K

points with antipodal symmetry on the Bloch sphere, since we can use these points as
the spherical caps’ centers. The points construction method we use has been put into
Appendix.

Now we summarize our scheme for remote preparation of an arbitrary qubit ρt as
the two-stage procedure below.

Stage 1. Using the POVM (3) and the unitary operations I , σ3, σ1, − σ3σ1 to
prepare an intermediate state ρi = R−1

j ρt R j that belongs to the ensemble given
in Corollary 1. The classical communication cost here is 2 bits. If |r〉 is maximally
entangled, by setting

{
R j

}K
j=1 ≡ {I }, ρt can be prepared within this stage.

Stage 2. If |r〉 is non-maximally entangled, Bob performs R j from the predefined

set
{
R j

}K
j=1 to transform ρi to ρt . The classical communication cost in this stage is

log K bits, which is traded off against E(|r〉).
Different from RSP, teleportation can only be carried out when a maximally entan-

gled resource state is available [5]. In a standard teleportation scheme, where a Bell
state |Ψ +〉 ≡ 1√

2
|00〉+ 1√

2
|11〉 is used, Bob needs to apply a unitary operation chosen

from {I ,σ3,σ1, − σ3σ1} after he receives the outcome of Alice’s Bell basis measure-
ment. The same unitary operation set is used in our RSP scheme. As we have said,
this choice is made on purpose, because one can see when |r〉 is maximally entangled,
i.e., |r〉 = |Ψ +〉, regardless of the target state the probability that Bob uses any one
of these unitary operations in both schemes is always 1/4. There is no chance for Bob
to tell which scheme is being performed, and Alice can switch between teleportation
and RSP unilaterally.

3 Classical communication cost

The total classical communication cost for our scheme is 2 + log K bits. For a given
K , the entanglement of the resource state |r〉 cannot below a certain lower bound,
otherwise there always exist some unpreparable qubit states for our scheme. To cal-
culate the lower bound of E(|r〉), we need to make use of a geometry tool called
Voronoi diagram. A Voronoi diagram is a partition of a space into regions based on
distance to some specific points called sites. For each site, the corresponding region,

123



Deterministic remote preparation of an arbitrary qubit. . . 4779

Fig. 1 Voronoi diagram generated from uniformly distributed 64 points with antipodal symmetry on the
Bloch sphere. The mesh on the sphere shows the Voronoi cells corresponding to these points. The green
segment is the longest site-vertex geodesic line. To cover the entire Bloch sphere, every C j must be no
smaller than the green area (Color figure online)

called Voronoi cell, consists all points closer to this site than to any other. All Voronoi
cells are polygon-shaped with edges equidistant from two sites and vertices equidis-
tant from three or more sites. Figure 1 gives an illustration of the Voronoi diagram
generated from uniformly distributed 64 (K = 32) points with antipodal symmetry.

If we treat the centers of C j , j = ±1, . . . ,±K , as sites denoted by s j , a Voronoi
diagram can be generated. The necessary and sufficient condition for the union of
all C j ’s to cover the entire Bloch sphere is that every C j covers the Voronoi cell
corresponding to s j . We denote by v j,k the kth vertex of the Voronoi cell based on
s j . After obtaining the coordinates of all vi, j numerically by computer [29], the lower
bound of E(|r〉) can be calculated from Eq. (2) and

max
{
arccos(v j,k · s j )

∣∣ for all valid ( j, k)
} ≤ θr .

In the extreme situation where the resource state |r〉 is unentangled, i.e., θr = 0, C j is
a point. In this situation, K needs to be infinite large if we want the union of all C j ’s
to cover the entire Bloch sphere. For a finite K , using the point sets from Appendix,
the results for K = 2n, n = 1, 2, . . . , 10 are presented both in Table 1 and in Fig. 2.

An earlier RSP scheme proposed by Berry [25] can be used for preparing arbitrary
pure qubits.We find it also fits into our two-stage procedure summarized in Sect. 2, just
by replacing mixed ρi and ρt with pure |i〉 and |t〉, respectively. The main difference
is the intermediate state ensemble in Berry’s scheme is represented by the spherical
cap on Bloch sphere given by
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Table 1 For K with a value no more than 128, we use the optimal point sets as input in calculation, while
when K = 256, 512, 1024 we use Koay’s point sets (see “Appendix”)

K 2 4 8 16 32

Total bits cost 3 4 5 6 7

Lower bound of E(|r〉) 1 0.744008 0.502988 0.236295 0.155618

K 64 128 256 512 1024

Total bits cost 8 9 10 11 12

Lower bound of E(|r〉) 0.094967 0.056478 0.033252 0.018274 0.010069

Total classical bits cost

Low
erbound

ofE
(|r 〉 )

1 3 4 5 6 7 8 9 10 11 12

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.

Fig. 2 The total classical bits cost versus the lower bound of E(|r〉) for RSP of general qubits. The
circles represent the required resource in the RSP scheme proposed in this paper for preparing an arbitrary
(including pure and mixed) qubit. The squares represent the result of Berry’s scheme (after optimization)
for preparing an arbitrary pure qubit based on the data from Ref. [26]{

|i〉 = cos
θi

2
|0〉 + eiφi sin

θi

2
|1〉

∣∣∣∣ θi ∈ [0, θr ]
}
,

which is only half-size of the intermediate state ensemble in the Theorem 1. So two
classical bits of communication will not be sufficient for Berry’s scheme for prepar-
ing an arbitrary pure qubit, even when the resource state is maximally entangled.
The double-sized intermediate state ensemble in our scheme reduces the number of
elements in devising the unitary operation set

{
R j

}K
j=1 to nearly half and eventually

cut down the total classical communication cost by approximate 1 bit per pure qubit.
The approximation is caused by the different symmetries employed in constructing
uniformly distributed spherical caps in these two schemes. In Fig. 2, we include the
result from [26] for comparison.

4 Conclusions

We have proposed an RSP scheme for remotely preparing a general qubit by using any
pure entangled state and finite classical bits. Our scheme can be treated as a two-stage

123



Deterministic remote preparation of an arbitrary qubit. . . 4781

procedure. If a maximally entangled resource state is available, the target qubit can be
directly prepared in the first stage with 2 bits of classical communication, which agrees
with Lo’s conjecture on the resource cost for deterministic RSP. If the resource state
is only partially entangled, an additional rotation operation will be performed in the
second stage to transform the intermediate state prepared in the first stage to the final
target state. The total classical communication cost is shown to be traded off against
the resource state’s entanglement. To the best of our knowledge, our scheme is the first
deterministic RSP scheme for preparing an arbitrary qubit using a partially entangled
state and finite classical communication. Theoretically, Our technique can be general-
ized to a higher dimension, but the geometry of qudits (d > 2)maybe hard to dealwith.

Our scheme also shares the same unitary operation set with the standard teleporta-
tion scheme. The benefit is when the resource state |r〉 is maximally entangled, Alice
can switch between teleportation and RSP without letting Bob know, because no mat-
ter in which scheme Bob always performs a unitary operationUm ∈ {I ,σ3,σ1, − σ3σ1}
with probability 1/4. This feature can make an entangled channel more versatile with-
out sacrificing flexibility.

Acknowledgments We thank Cheng Guan Koay and Lin Chen for valuable discussion. We also gratefully
acknowledge the support by NNSF of China, Grant No. 11375150.

Appendix: Uniform distribution of antipodally symmetric points on the
unit sphere

On a sphere, point sets with antipodal symmetry have special importance in both
scientific and engineering fields, many works has been published for generating such
sets. The methods for generating a 2K -element set with antipodal symmetry usually
contain a minimization procedure of electrostatic potential energy. For the number of
elements within a few hundreds, the point sets are tabulated online [30]. However,
for the number of points in these point sets beyond a few hundreds, the optimization
procedure will become unwieldy. To solve this problem, we can use instead some
constructive methods to generate nearly uniform point sets with antipodal symmetry,
which give very close results especially when K is large. In this work for generating
antipodally symmetric point sets with K ≥ 256 , we use a simple deterministic
points construction scheme proposed by Koay [31]. For the unit sphere, the spherical
coordinates

(
1, θi , φi, j

)
of the points on the upper hemisphere are given by:

θi =
(
i − 1

2

)
π

[N ] , i = 1, 2, . . . , [N ],

φi, j =
(
j − 1

2

)
2π

Ki
, j = 1, 2, . . . , Ki .

where N is the solution to N = K
2 sin π

4N , [·] is the function which gives the integer
closest to the input, and
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Ki =
⎧⎨
⎩

[
2π sin θi

π csc π
4[N ]

K

]
, i = 1, 2, . . . , [N ] − 1,

K − ∑[N ]−1
i=1 Ki , i = [N ].
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