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Abstract Due to the lack of an effective quantum feature extraction method, there
is currently no effective way to perform quantum image classification or recognition.
In this paper, for the first time, a global quantum feature extraction method based on
Schmidt decomposition is proposed. A revised quantum learning algorithm is also pro-
posed that will classify images by computing the Hamming distance of these features.
From the experimental results derived from the benchmark database Caltech 101, and
an analysis of the algorithm, an effective approach to large-scale image classification
is derived and proposed against the background of big data.

Keywords Quantum image · Quantum learning · Feature extraction · Image
classification · Schmidt decomposition · Hamming distance

1 Introduction

In the context of big data, how to make full use of images, the maximum quantity of
unstructured big data in the internet, is a problem worthy of thorough consideration.
At present, tagging images (i.e., classifying them automatically into different classes)
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is the first step to further use. The end of this step can be understood by a simple
application scenario: A man wants to select some images from an image dataset to
make a web page, in that case selecting from a classified image dataset would be
more efficient than doing the same work from an unclassified dataset. However, when
the number of images exceeds 100,000, the time required to classify such a large
number of images becomes unwieldy.According to the related literature on this subject
[1,2], the total time of the classification task, including extracting image features and
training the classifier, would amount to several days or even as much as a week. This
problem of time consumption may be eased to a certain degree by taking advantage
of the computational power of cloud computing or distributed systems [3,4]. But
doing this would not solve the problem completely, because other related problems
(the cost of communication, memory constraints, and file I/O bottlenecks) would
remain. Is there a more efficient way to accomplish the task of large-scale image
classification?

In recent years, image processing via quantum computation, known as quantum
image processing (QIP), and machine learning via quantum computation, known as
quantum learning (QL), have brought a new perspective to large-scale image process-
ing. The present study shows that using quantum properties to encode images has
significantly improved the storage efficiency and time efficiency of certain operations,
such as rotation. However, due to the lack of an effective way to get the main infor-
mation (the features) from the quantum images, we still lack effective methods for
accomplishing certain other complicated operations, such as image classification or
recognition.

In this paper, for the first time, we address the problem of large-scale image clas-
sification using quantum computation. We discover that Schmidt decomposition, in
addition to its well-known function of describing entanglement, can condense themain
information of a quantum image into a few large coefficients; these can be deemed
to be global features of the quantum image. Meanwhile, we analyze the quantum
learning algorithm [5] and discuss its drawbacks. This algorithm judges the class to
which the quantum object (state) belongs by computing the Hamming distance. How-
ever, the algorithm becomes less efficient when the number of categories that require
classification is large. We redesign the key steps of the algorithm and propose a more
efficient algorithm for image classification by computing the selected Schmidt coeffi-
cients (features). From our experiments on the benchmark image data set Caltech101
[6] and our analysis of the algorithm, we argue that the new algorithm, combined
with the feature extraction method, presents an effective scheme for large-scale image
classification.

The remainder of the paper is organized as follows. Section 2 describes the related
works of QIP and QL and depicts a QL algorithm [5] in more detail. Section 3
describes the proposed method to extract quantum image features based on Schmidt
decomposition. Section 4 analyzes the drawbacks of the algorithm [5] and proposes
a revised version. Section 5 shows the experimental results and discusses them in
detail. Finally, conclusions and directions for possible future work are provided in
Sect. 6.
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2 Related works

2.1 Quantum image processing

Quantum image processing first appeared in 1997, when Vlasov proposed a method of
using quantum computation to recognize so-called orthogonal images [7]. However, in
the years that followed, few scholars noted this research and only a few related articles
werewritten.Then, in approximately 2010, this topic suddenly attracted active research
again and gradually developed into an independent research subfield. At present, the
researchofQIP focuses primarily onhow todefine and represent images usingquantum
states and on how to implement operations based on these states. Qubit Lattice [8],
Real Ket [9] and FRQI [10] are three principal quantum image formats. In addition to
these three, there are many others, most of which can be considered to be variants of
the three principal formats.

Taking Real Ket as an example, we note that it uses the probability amplitude of
each component of a superposition state to map and store the value of each pixel. The
representation method can be visualized via the model shown in Fig. 1, if we ignore its
renormalization procedure in classical-to-quantumconstruction. Equation (1) provides
its quantum representation format.

The Dirac representation of the quantum ground states corresponds to the pixel’ s
row and column coordinates.Ci j is the probability amplitude of |i〉⊗| j〉, which stores
the pixel normalized gray level value of the i th row and j th column.

|image〉 =
∑

i

∑

j

Ci j |i〉 ⊗ | j〉 st.
∑

i

∑

j

|Ci j |2 = 1 (1)

Let us compare the storage efficiency of Real Ket to a classical image format. For
a classical image of 2n × 2n , if the gray level value of one pixel is represented by 8
bits, then the total number of bits needed will be 2n × 2n × 8. However, Real Ket
requires only 2n qubits. For an image of 512 × 512, the classical method requires
2,097,152 bits, but quantum method only requires 18 qubits. These numbers suggest
the significant efficiency of quantum storage.

The reason for this remarkable improvement in efficiency of quantum over classical
methods of storage lies in the superposition property of quantum states. This property
can also lead to quantum parallel computing, which improves the execution efficiency
of many image operations. For example, the rotations of an image that can be realized

 |00…0> |00..1> |j> |11…1> 
 |00…0> C00 C01 … C0N 
 |00…1>   C10 C11 … … 
 |i> … … Cij … 
 |11…1> CN0 CN1 … CNN 

Fig. 1 Real Ket quantum image
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by one unitary operation on all components of the |image〉 are exponentially faster
than their classical counterparts.

Besides Real Ket, most of the other image representation schemes also use the
superposition property of quantum states. But Real Ket holds the highest storage
efficiency [11]. Thus, we select Real Ket to be the quantum image representation in
depicting our scheme.

2.2 Quantum learning

Compared to quantum image processing, the combination of quantum computation
andmachine learning could bewider and deeper. The term “quantum learning” evolves
from the term “quantum machine learning,” and it suggests a more independent sub-
discipline [12], which has had fruitful influential research results [13–16]. The success
rests on two aspects: Machine learning has many applications in the context of big
data, so it has aroused intense research interest when infused the properties of quan-
tum computation. On the other hand, previous quantum information studies, such as
Quantum State Discrimination [17], have established a solid theoretical foundation
for QL.

A full discussion of QL is beyond the scope of this article. The following section
describes a concrete QL algorithm [5], the revised version of which will be used in
our scheme.

This QL algorithm is intended to determine a new object belongs to which class
in the training set. The new object is indicated by a quantum state |x〉 (a normalized
n-dimensional feature vector |x1 . . . xn〉 ). The training set is indicated by N feature
vectors |v p〉, p = 1, . . . , N and the corresponding class cp ∈ {1, . . . , l}. This can be
written as {|v p

1 . . . v
p
n , cp〉} ∈ H⊗n

2 ⊗ Hl .
This algorithm uses Hamming distances to compute the distance between two

objects. The Hamming distance is defined as counting the number of positions at
which the corresponding symbols of two strings of equal length are different. For
example, the Hamming distance: 0110 ↔ 0001 has a distance of 3, while the Ham-
ming distance: 0110 ↔ 1110 has a distance of 1.

Step 1: Construct a “training set superposition.”

|T 〉 = 1√
N

∑

p

|v p
1 . . . v

p
n , cp〉 (2)

Step2:Prepare the unclassifiedquantumstate |x1 . . . xn〉 in thefirst register, prepare
the training set |T 〉 in the second register and prepare an ancilla qubit |0〉 in the
last register. The result can be written as |φ0〉 .

|φ0〉 = 1√
N

∑

p

|x1 . . . xn; v
p
1 . . . v

p
n , cp; 0〉 (3)
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Step 3: Put the ancilla qubit into a Hadamard gate, leading to Eq. (4).

|φ1〉 = 1√
N

∑

p

|x1 . . . xn; v
p
1 . . . v

p
n , cp〉 ⊗ 1√

2

(|0〉 + |1〉) (4)

Step 4: Compute the Hamming distance between |x1 . . . xn〉 and each |v p
1 . . . v

p
n 〉

in the training set, store the result |d p
1 . . . d p

n 〉 in the second register and reverse
the value.

|φ2〉 =
∏

k

X (xk)CNOT(xk, v
p
k )|φ1〉

= 1√
N

∑

p

|x1 . . . xn; d p
1 . . . d p

n , cp〉 ⊗ 1√
2

(|0〉 + |1〉)
(5)

CNOT(a, b)-gate overwrites the second entry b with 0 if a = b else with 1. X
gate is used to reverse the value.
Step 5: Construct the unitary operator U as Eq. (6) and apply it on |φ2〉.

U = e−i π
2n H with H = 1 ⊗

∑

k

(
σz + 1

2

)

dk

⊗ 1 ⊗ (σz)c (6)

|φ3〉 = U |φ2〉 = 1√
2N

∑

p

(
ei

π
2n d̄(x,v p)|x1 . . . xn; d p

1 . . . d p
n , cp; 0〉

+ e−i π
2n d̄(x,v p)|x1 . . . xn; d p

1 . . . d p
n , cp; 1〉

)
(7)

Step 6: Apply the Hadamard gate on the last register, yielding the final state |φ4〉.

|φ4〉 = 1 ⊗ 1 ⊗ 1 ⊗ H |φ3〉
= 1√

N

∑

p

(
cos

π

2n
d̄(x, v p)|x1 . . . xn; d p

1 . . . d p
n , cp; 0〉

+ sin
π

2n
d̄(x, v p)|x1 . . . xn; d p

1 . . . d p
n , cp; 1〉

)
(8)

Measure the last register. If the input |x〉 is far away from most training patterns,
the probability of the ancilla qubit being in the state |1〉 is much higher. Else if the
input is close to many patterns, the ancilla qubit ends up in state |0〉. This algorithm
is valid in the case of small categories, but it becomes inefficient when the categories
grow. In Sect. 4, we will give the reason for this assertion via a detailed analysis and
we will propose a revised version to overcome this drawback.
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3 Feature extraction of quantum image

3.1 Acquire the main energy of a quantum image

In classical image processing, transformations such as K_L, DCT and wavelet change
image data from the spatial domain to the frequency domain or the transform domain.
After transformation, the main energy of the image is concentrated upon a limited
number of coefficients, while other coefficients are equal to 0 or close to 0. A typical
method used for pattern recognition is to select the nonzero coefficients as the global
features of the image. The idea behind this method is also named as the principal
component analysis, which was used in the well-known Eigenface method 20 years
ago for human face recognition [18].

In quantum image processing, how to perform effective transformation on quantum
images (quantum states) to achieve a condensed form is an open question. We find
that Schmidt decomposition(SD), which is a basic tool used to study the entangle-
ment properties of composite systems, can do work that is similar to what classical
transformations can do.

The SD can be described as such a theorem [19]. Suppose |ϕ〉 is a pure state of a
composite system, AB. Then, there exist orthonormal states |ΦA〉 for system A and
orthonormal states |ΦB〉 of system B such that

|ϕ〉 =
∑

i

λi |ΦA〉|ΦB〉 (9)

where λi are nonnegative real numbers satisfying
∑

i λ
2
i = 1 known as Schmidt

coefficients.
The base |ΦA〉 and |ΦB〉 are called the Schmidt bases for A and B, respectively,

and the number of nonzero value λi is called the Schmidt number for the state |ϕ〉.
The Schmidt number is an important property of a composite quantum system, which
in some sense quantifies the amount of entanglement between systems A and B.

For example, the SD of Bell state 1√
2

(|00〉 + |11〉) is shown in Eq. (10) .

1√
2

(|00〉 + |11〉) = 1√
2
|00〉 + 1√

2
|11〉 (10)

where the coefficient of Schmidt bases λ1 = 1√
2
and λ2 = 1√

2
. The Schmidt bases are

{|0〉, |1〉}, and the Schmidt number is 2, which indicates the maximum entanglement
between two qubits.

Accomplishing the SD requires skills that are described in detail in [11]. Here,
we depict concisely the basic steps to perform the SD on the Real Ket image. For
convenient depiction, we rewrite the Real Ket image [Eq. (1)) as Eq. (11)].

|image〉 =
1∑

j1=0

1∑

j2=0

. . .

1∑

jn=0

C j1 j2... jn | j1〉 ⊗ | j2〉 ⊗ · · · ⊗ | jn〉 (11)
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We select the first qubit (| j1〉) as system A and the n − 1 remaining qubits (| j2〉 ⊗
· · · ⊗ | jn〉) as system B. Then, we execute the SD.

|image〉 =
∑

α1

λα1 |Φα1〉|Φ[2...n]
α1

〉 (12)

where α1 corresponds to the first SD and the superscript of the Schmidt base |Φ[2...n]
α1 〉

indicates the qubits of sub-systemB.We go on to compute the SD by splitting |Φ[2...n]
α1 〉

into qubit 2 and the n-2 remaining qubits; this is shown in Eq. (13).

|image〉 =
∑

α1

λα1 |Φα1〉
(∑

α2

λα2 |Φα2〉|Φ[3...n]
α2

〉
)

(13)

We continue to perform the SD on |Φ[3...n]
α2 〉, |Φ[4...n]

α3 〉, . . . via the same bipartite
splitting, until we finally derive equation (14).

|image〉 =
∑

α1

∑

α2

. . .
∑

αn−1

λα1λα2 . . . λαn−1 |Φα1α2...αn−1〉 (14)

Now, we obtain 22n−1 Schmidt coefficients, which correspond to a quantum state
of 2n qubits prepared from the image of 2n × 2n . In the experiments depicted in
Sect. 5, we find that most of these coefficients are 0 or close to 0. That is to say, after
the SD, the main energy (information) of the quantum image is condensed into a few
large coefficients, which can be understood as global features of the quantum image.
Therefore, using them to classify images is reasonable. The key to this approach is to
determine how many coefficients should be selected to perform classification reliably.
That is to say, we should choose neither toomany nor too few.What then is the optimal
value of k, the number of large coefficients to be selected? We will achieve this value
based on another experiment in Sect. 5.

Once we find the optimal value of k, we can use the Schmidt bases to construct
a projector operator such as

∑
i∈{λi≥λk } |Φi 〉〈Φi |, and we can apply it on |image〉 to

extract the global features of the quantum image.

|˜image〉 =
∑

i∈{λi≥λk }
|Φi 〉〈Φi ||image〉 (15)

Now, |˜image〉 can be used for the next step of image classification.

3.2 Feature coding

Before we execute the algorithm of image classification, we need to encode each

|˜imagei 〉 to another form for convenient calculation of the Hamming distance of each

class. That is to say, we must map 	
(|˜imagei 〉

)
from |˜imagei 〉 to a new vector |v p〉. A
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well-designed coding demands |v p〉 should be sparse. Usually the dimensionality of

|v p〉 is higher than original |˜imagei 〉 and the mapping 	(x) is nonlinear. According to

the theory of LCC [20], the nonlinear mapping can be relaxed as |˜imagei 〉 ≈ B|v p〉,
where B = Rd×n is a real matrix of d×n named as the codebook, as long as it satisfies
the following conditions:

• The approximation |˜imagei 〉 ≈ B|v p〉 is sufficiently accurate;
• The coding |v p〉 should be sufficiently local such that only those bases close to

|˜imagei 〉 are activated.
Usually we can map different classes of images to different orthogonal feature vectors
|v p〉. If the B is known, the rest of the work is to solve the Moore–Penrose pseudo-
inverse B−1. Then, we can derive the final feature code |v p〉. This work can be done
using an existing quantum algorithm, which has exponentially higher speed than its
classical counterparts [21].

4 The algorithm for image classification

Now, we have the feature vector |v p〉 for each class in the image training set. If a Real
Ket image |X〉 were to be classified, we would first use the SD to obtain the largest k
Schmidt coefficient and approximate it as |X̃〉. Then, we would encode it as the feature
vector |x1 . . . xn〉 according to the method described in Sect. 3.2. Finally, we would
use the revised version of Schuld’s algorithm to perform image classification.

The original Schuld’s algorithm is described in Sect. 2.2. In the following subsec-
tions, we will firstly analyze the drawbacks of the original algorithm as well as the
tricks used in the algorithm. Based on this, we further explain why the algorithm is
invalid for classification when the image scale is large. Then, we propose the revised
version to deal with such case.

4.1 The drawbacks of Schuld’s algorithm

The key of Schuld’s algorithm is the design of the operatorU in step (5). The key part

of U is e
∑

k

(
σz+1
2

)
dk . When executing spectral decomposition on σz+1

2 , we get:

σz + 1

2
=

(
1 0
0 0

)
= 1|0〉〈0| + 0|1〉〈1| (16)

Then, according to the operational rule of operator functions, we get:

e
σz+1
2 = e1|0〉〈0| + |1〉〈1| (17)

In step (4), after the original algorithm has executed
∏

k X (xk)CNOT(xk, v
p
k ), the

second register is overwritten by |d p
1 . . . d p

n 〉, which records the difference of |x1 . . . xn〉
with each feature vector |v p

1 . . . v
p
n 〉. Note that |d p

1 . . . d p
n 〉 uses ones-complement code.
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That is to say that, if xi = v
p
i then d p

i = 1; else d p
i = 0. So, the operational

result of e
σz+1
2 on each |d p

i 〉 is e1 when d p
i = 0, and otherwise, it is 1. Hence, the

summation e
∑

k

(
σz+1
2

)
dk stores the Hamming distance of |x1 . . . xn〉 with each feature

vector |v p
1 . . . v

p
n 〉 in the exponent of “e.”

This step is a key step to the final state |φ4〉 [Eq. (8)], in which the probability
amplitude of each class |cp〉 corresponds to the Hamming distance of |X〉 with each
class.

From the above analysis, we find two drawbacks:

• The original algorithm has prepared three registers. Among these registers, the
second one stores the data of the training set. In step (4), these data are overwritten
by |d p

1 . . . d p
n 〉. That means, the training set (database) should be reconstructed in

each run, which is a waste of time and unnecessary.
• In the final state |φ4〉, the probability amplitude of the component |cp〉 corresponds
to the Hamming distance. As long as we determine which |cp〉 has the largest
probability amplitude, we can determine to which class |X〉 actually belongs. For
the purpose of further analysis, we reduce |φ4〉 to a simple form by ignoring other
parts:

|φ4〉 = α1|c1〉 + α2|c2〉 + · · · + αp|cp〉 + · · · + αl |cl〉, st.
∑

α2
i = 1 (18)

The remaining work is to determine which αp is the largest amplitude. This work is
quantum state tomography [22], and the precision (standard deviation) is in proportion
to the measurement timem. Reference [19] gives the standard deviation for estimating
the αp as O( 1√

m
). That is to say that if we want to determine the classification of |x〉,

such inequality must meet:
1√
m

< min |αi − α j | (19)

where αi is the largest αp, p = 1, . . . , l and j 
= i .
Reference [5] gives the time efficiency of the algorithm as O(T Pn)6, where n is

the size of the feature vectors, P is the number of training examples and T is times to
get a sufficiently precise picture from the measurement results.

Now, we can estimate the value of T according to this inequality (Eq. 19). It is
straightforward that if there is just one αp = 1 (p = 1, . . . , l), then T = 1. This
scenario occurs with limited classes, and each class is very different from the other
classes. However, as the number of classes increases, the difference between the largest
αi and the second largestα j would be narrow. This would significantly increase the run
time T . Moreover, coupled with the exponential growth in the measurement settings
with the number of qubits, the total run time T would become unworkably large. Thus,
this algorithm is unrealistic for use in classifying large-scale images.

4.2 The revision of Schuld’s algorithm

Aiming to solve the two drawbacks discussed above, we propose two modifications:
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• In step 4, the difference between each xi and v
p
i is computed by a CNOT gate. As

we know, with the CNOT gate, swapping the control end and the controlled end
does not affect the operation result, but the controlled endwill be overwritten by the
result. In the original algorithm, |x1, · · · , xn〉 is the control end and |v p

1 , · · · , v
p
n 〉

is controlled end. After CNOT operation, |v p
1 , · · · , v

p
n 〉 is overwritten by |x1 ⊕

v
p
1 , · · · , xn ⊕ v

p
n 〉, which is namely |d p

1 , · · · , d p
n 〉.

Therefore, if we change
∏

k X (xk)CNOT(xk, v
p
k ) �⇒ ∏

k X (v
p
k )CNOT(v

p
k , xk),

the |x1 . . . xn〉 rather than |v p
1 . . . v

p
n 〉 is overwritten to be |d p

1 · · · d p
n 〉. That means,

in the next run, the |v p
1 . . . v

p
n 〉 is unchanged and we do not need to redo step 1.

This modification is straightforward, but improves the time efficiency.
• We propose to overcome too many run times T by setting the largest αi = 1 and
the other α j = 0 by executing an if statement as follows:

if hamming distance ≤ t then
|d p

1 . . . d p
n 〉 = |11 . . . 1〉

else
|d p

1 . . . d p
n 〉 = |00 . . . 0〉.

end if

The purpose of this step is to distinguish the nearest |v p
1 . . . v

p
n 〉 from the other

feature vectors, so that the final measurement can determine the correct classification
of |X〉 with a probability of 1 provided the appropriate t is set.

The if condition of “hamming distance ≤ t” can be written as CONDp:

COND_0p = d p
1 ∧ d p

2 ∧ · · · ∧ d p
n

COND_1p

= (¬d p
1 ∧ d p

2 ∧ · · · ∧d p
n ) ∨ (d p

1 ∧¬d p
2 ∧ · · ·∧ d p

n ) ∨ · · · ∨ (d p
1 ∧ d p

2 ∧ · · · ∧¬d p
n )

COND_2p

= (¬d p
1 ∧ ¬d p

2 ∧ · · · ∧ d p
n ) ∨ (¬d p

1 ∧ d p
2 ∧ ¬d p

3 ∧ · · · ∧ d p
n ) ∨ · · · ∨ (¬d p

1 ∧ d p
2

∧ · · · ∧ d p
n−1 ∧ ¬d p

n ) ∨ (d p
1 ∧ ¬d p

2 ∧ ¬d p
3 ∧ · · · ∧ d p

n ) ∨ · · · ∨ (d p
1 ∧ ¬d p

2 ∧ d p
3 ∧

· · · ∧ ¬d p
n ) ∨ · · · ∨ (d p

1 ∧ d p
2 ∧ d p

3 ∧ · · · ∧ ¬d p
n−1 ∧ ¬d p

n )

. . .

CONDp = COND_0p ∨ COND_1p ∨ COND_2p ∨ · · · ∨ COND_t p

In classical computing, this logic can be realized by AND gates, NOT gates and
OR gates. In quantum computing, we need to transform these gates to reversible gates
to meet quantum-mechanical properties. A quantum AND gate can be realized with a
Toffoli gate, and a quantum NOT gate can be realized with a X gate. These are shown
in Fig. 2. Meanwhile, because x ∨ y = x̄ ∧ ȳ, a quantum OR gate can be realized
using a quantum AND gate and a quantum NOT gate. So the entire CONDp logic can
be realized by the cascade of these reversible gates.

However, the cost of such straightforward way to realize CONDp is too high. For

each COND_i p (i = 1, · · · , t), there are

(
n
i

)
entries for ∨. In each entry, there are
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Fig. 2 a Quantum_AND gate
and b quantum_NOT gate |x〉 • |x〉

|y〉 • |y〉
|0〉 |x ∧ y〉

|x〉 X |x̄〉

a b

a0 • · · ·
a1 • · · ·
a2 • · · ·

a+ 1
...

...

an−2 · · · •
an−1 · · ·

1 • • • · · · • • X 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 3 Quantum a + 1 gate

i items for ¬ and n − 1 items for ∧. Therefore, the number of logic gates required to

realize COND_i p is

(
n
i

)
(n − 1 + i) and the entire CONDp is:

(n − 1) +
(
n
2

)
(n − 1 + 2) + · · · +

(
n
t

)
(n − 1 + t) (20)

The complexity will increase tremendously with the Hamming distance t . We need to
realize this logic more intelligently.

Given that d p
i uses ones-complement code to record the difference between xi and

each v
p
i at corresponding position i , we can rewrite the if condition of “hamming

distance ≤ t” as follows: ∑
di ≥ n − t (21)

Suppose 2k−1 ≤ n ≤ 2k , then, if we set a variable l = 2k − n, then the above
equation can be derived as:

∑
di + l ≥ n + l − t �⇒

∑
di + l + t ≥ 2k (22)

This equation means we can use additional circuits to determine whether the “ham-
ming distance ≤ t” or not. Set an initial value l + t to the left end of this circuit, and
then determine whether there is one “1” in the highest �log t� qubits (overflow qubits
≥ 2k) in this summation. This determination condition can be achieved with the aid
of an incremental circuit, which is proposed by Kaye [23] and shown in Fig. 3.
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di • • • • • • · · · • • • •
a0 • · · ·
a1 • · · ·
a2 • · · ·

a+ di
...

...

an−2 · · · •
an−1 · · ·

1 • • • · · · • • X 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

di • di

a0

inCk

a1 a+ di
...

...
an−1

1 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

a

b
Fig. 4 Quantum circuit of a + di

The idea of Fig. 3 is as follows: Incrementation by 1 means the flipping of the
sub-summation a[0…n-1] from the least significant qubit. If a[i] flips from 1 to 0,
the addition would continue. If a[i] flips from 0 to 1, which means no carry qubit is
produced, the addition should stop. The ancilla qubit in the circuit can be viewed as
a flag which signals the first time a qubit flips from 0 to 1. It should be reset to 1 for
the next run of addition. The work flow of this circuit can be depicted as the following
pseudo-code:
i = 0;
Do

if a[i] == 1 then {
a[i] : 1 → 0;
i++;

}
else

a[i] : 0 → 1;
Until (a[i] : 0 → 1)

As illuminated by the circuit shown in Fig. 3, we add another control end di to
realize a + di , which is shown in Fig. 4a and simplified in Fig. 4b. Once the addition
is done, we select the �logt� most significant qubits and use quantum OR gate to get

123



Quantum computation for large-scale image classification 4061

ov1 X •

ov2 X •

ov3 X •
...

ovt X • 2t − 1 qubits

0 •

0
...
0 •

0 X ov1 ∨ · · · ∨ ovt

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

ov1

ORt
...

...

ovt ov1 ∨ · · · ∨ ovt

a

b

Fig. 5 Quantum OR circuit

d0 • d0

d1 • d1
...

dn−1 • dn−1

inCk inCk

· · ·

inCk

...
......
...

· · ·
ORt�logt� qubits ...

...
...

· · · CONDp

⎧⎪⎨
⎪⎩

Fig. 6 Quantum circuit to generate CONDp

CONDp. The quantum OR gate is shown in Fig. 5, and the overall circuit to achieve
CONDp is shown in Fig. 6.

Once we get the CONDp, we can set |d p
1 . . . d p

n 〉 according to its value in the if

branches, i.e., we set each d p
i to d p′

i in accordance with truth Table 1. The logic in
Table 1 can be simplified as the derivation of Eq. (23). And the final circuit can be
realized by CNOT gates, which are shown in Fig. 7.

d p′
i = (CONDp ∧ d̄ p

i ) ∨ (CONDp ∧ d p
i ) = CONDp (23)
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Table 1 Truth table
CONDp d p

i d p′
i

0 0 0

0 1 0

1 0 1

1 1 1

Fig. 7 Circuit of Table 1 |CONDp〉 • • • |CONDp〉
|0〉

∣∣∣dp′
1

〉

|0〉
∣∣∣dp′

2

〉
...

...
...

|0〉
∣∣∣dp′

n

〉

Add another register to record the value of |d p′
1 . . . d p′

n 〉, and replace the original
|d p

1 . . . d p
n 〉. Therefore, the |φ2〉 [Eq. (5)] will be:

|φ2〉 = 1√
N

∑

p

|x p
1 . . . x p

n ; d p′
1 . . . d p′

n , cp〉 ⊗ 1√
2

(|0〉 + |1〉) (24)

Continue to do the remaining steps of the quantum learning algorithm discussed in
Sect. 2.2, and through a simple derivation, we find that the final state |φ4〉 will be:

|φ4〉 = 1√
N

(
|x1 . . . xn; 0 . . . 0, c1; 0〉 + · · · + |x1 . . . xn; 1 . . . 1, ck; 1〉

+ · · · + |x1 . . . xn; 0 . . . 0, cN ; 0〉
) (25)

Then, we perform the joint measurement of the cp and the ancilla qubit, and the
classification k can be derived with a probability of 1.

4.3 The analysis of the performance

In our revised algorithm, the main modification is the appending circuit to do if branch
statement as shown in Figs. 6 and 7. The cost of the core part (Fig. 4) of this circuit is
depicted as the following equation, which is measured by the number of “elementary
gates” {NOT,CNOT,Toffoli} [23].

the cost of inCk =

⎧
⎪⎨

⎪⎩

1, k = 1

10, k = 2

2k2 + k − 5, k ≥ 3

(26)
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In Fig. 6, the sub-circuit that generates the �log t� largest qubits calls module inCk n
times. The sub-circuit that generates CONDp has �logt�+1 NOT gates and �logt�−1
Toffoli gates. In Fig. 7, there are n CNOT gates. Hence, the cost of the total circuit is:

n(2n2 + n − 5) + (�log t� + 1) + (�log t� − 1) + n (27)

The time performance of the original Schuld’s algorithm is O(T Pn)6 [23]. When
we append a further step to execute Figs. 6 and 7, the extra cost to execute the algo-
rithm is O(n3) according to formula (27). Hence, the time performance of the revised
algorithm improves from O(T Pn)6 to O(Pn)6. This improvement would be greater
if the number of categories were more. For example, if min |αi − α j | ≤ 0.1 [Eq. (19)],
then the run time T would be more than 100. However, the revised algorithm need
only run one time to obtain the right classification.

5 Experiment and discussion

5.1 Experiments

5.1.1 Experiment 1 obtain the main energy of the image of Lena

At first, we normalize the gray-scale value of every pixel and reshape the 512 × 512
image of Lena to a vector in this order left to right and top to bottom, which is com-
mensurate with a quantum state of 18 qubits. Then, we execute the SD in the bipartite
splitting order according to Sect. 3.1. The SD gives us 217 Schmidt coefficients. Then,
we select the 216, 215, 213, 211 and 29 largest coefficients to reconstruct the quantum
state, which ultimately allows us to restore the image of Lena. The original image of
Lena and the effect of the restored images are shown in Fig. 8a–f.

Table 1 records the details of the reconstruction of the image of Lena after the SD.
Fidelity is a frequently used metric to judge how close two quantum states are. It is
defined by the inner product of two states, i.e., 〈φ|ϕ〉. Obviously, the closer the value
of 〈φ|ϕ〉 is 1, the closer |φ〉 and |ϕ〉 will be. Here, we use an approximate value of
fidelity to judge the quality of the recovered image.

fidelity =
∑

{the largest k coefficients}
|λk |2 (28)

With respect to Fig. 8, we discern that Fig. 8b–d shows almost the same as the
original Lena image (Fig 8a) as seenwith the naked eye, Fig 8e shows a little distortion,
and Fig. 8f shows significant distortion. From Table 2, we find that the fidelity of
Fig. 8b–d is above 99%. Given this, and the quality of the reconstruction image, we
can draw a conclusion that after the SD, the main energy of the quantum image has
been concentrated in a limited number of coefficients.
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Fig. 8 Original Lena image and recovery images. a The original image of 512 × 512. b–f The recovery
images by selecting the largest SD coefficients of 216, 215, 213, 211 and 29

Table 2 Detail of the SD and reconstruction of Lena image

The number of
selected coefficients

Total number of
Schmidt coefficients

Selected coefficients
to total coefficients
ratio (%)

Fidelity The corresponding
figure

216 217 50 0.9998 Figure 8b

215 217 25 0.9980 Figure 8c

213 217 6.25 0.9935 Figure 8d

211 217 1.56 0.9834 Figure 8e

29 217 0.39 0.9711 Figure 8f

5.1.2 Experiment 2 find the largest coefficients of the optimal k

The aim of selecting the largest Schmidt coefficients of k is to perform image classifi-
cation rather than to reconstruct the original image perfectly with fewer coefficients.
Thus, we do not need many of these coefficients provided that different classes can be
distinguished from each other via the distance computed by these coefficients.

Wehave conducted experiments on the benchmark image setCaltech101[23],which
has five image classes. Beginning with 15 coefficients, we add five coefficients in
each successive round to compute the hit rate of each class. Figure 9a–e depicts five
sample figures that correspond to 15, 45, 500, 1000 and 2000 coefficients. We find
that as the number of Schmidt coefficients increases, the hit rate of almost every
class also increases. But, different classes have different hit rates. We also discern
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that the classification of the class “camera” needs only a few coefficients to reach a
very high rate, and the hit rate of the class “cup” is lower even if a lot of coefficients
are computed. The class “butterfly” is the only class for which the hit rate decreases
after the number of coefficients selected reaches a climax. (Fig. 9c–e) This implies
that selecting more coefficients does not yield better results. The reason for this is
that too many coefficients may increase the probability of misjudgment, especially for
images with dispersive features. Figure 9f shows the average hit rate of all classes,
from which we discern that an amount of 13% of the large coefficients is sufficient
for image classification.

5.2 Discussion

Few published works have discussed the theme of image classification. However,
the technique used in some analogous works may be a potential way to accomplish
image classification. In order to highlight our contribution, we list these works for
comparison.

Image retrieval is the most relevant topic to image classification and is frequently
discussed; please see works [8,10,24–27]. In these papers, the technique used to per-
form image retrieval is the same: Do repeated measurements on identical copies of an
images to obtain probability distribution of a group of orthogonal bases, which allow
us to estimate the probability amplitude of each component of a quantum image (state)
with enough precision for retrieval. This technique (measurement) is also required for
quantum image classification, but it should be exploited with more elaboration. In
general, the retrieval must obtain complete information via measurements in order to
distinguish each different image.However, classification only requires partial informa-
tion via measurements provided this information is enough to classify similar images
into the same category.

Another relevant topic is how to search for simple patterns in binary images.
Schützhold proposes an algorithm for the searching of simple patterns, such as a
parallel straight line, in binary images. This algorithm takes advantage of quantum
Fourier transformation to speed up the process, but it does not search for patterns that
have no linear transformation relationship, such as a circle [28]. Venegas-Andraca
uses entanglement to describe the relationship among the vertexes of a triangle or a
rectangle. Based on this description, he also provides a method taking advantage of
Bell inequality to retrieve such simple patterns in binary images [29]. However, these
techniques can only be used for searching for simple patterns in binary image, and
they are unsuitable for natural images.

Li and Caraiman discuss image segmentation. Li prepares operators to judge the
gray-scale value of the pixels that are encoded by the same group of orthogonal
bases and speeds up this procedure by taking advantage of the Grover algorithm
[24]. Caraiman implements image segmentation based on setting a proper threshold
by calculating histogram [30]. These techniques may not be used in image classifica-
tion, because using raw image data directly to perform classification may lead to high
failure rates and low efficiency.
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Zhang discusses image registration.He binds a sequence number to different images
and then uses these numbers to match images by using the Grover algorithm [31]. The
essence of this algorithm is the comparison of the keyword that is bound to the image
rather than the content of the image itself.

Compared to these previous works, our method has the following novel features:

• We are the first to put forward the concept of quantum global image features.

Prior to our work, there were no works involving how to acquire the global features
of quantum images. The analogous works were all performed directly on the raw
image data. We select the large coefficients of the Schmidt decomposition as the
global features and use them to perform image classification. These features provide
an efficient condensed form that can be used to approximate the original image and
may also be used as an effective way to perform image classification.

• We put forward a new method to perform a similarity judgment of image classifi-
cation.

Prior to our work, the analogous works concerning image retrieval, image seg-
mentation and image registration all use the raw image data to judge the equivalence
between two quantum images. However, equivalence judgment (vs. than similarity
judgment) is invalid for tasks such as natural image classification. This is because
there is very little difference in the backgrounds of two images with the same object,
such as the face of the same person in various forms of illumination, and this can lead to
misjudging the two images as being two irrelevant images. In classical pattern recog-
nition, there are many ways to judge similarity: Euclidean distance, cosine distance,
Manhattan distance and Hamming distance are the most popular forms of distance.
In our revised algorithm, we set a threshold value t to judge the greatest similarity
by computing the Hamming distance among all the images in the dataset. According
to our analysis of the algorithm and the results of our experiments, we argue that the
revised algorithm is an effective way to compute similarity among quantum images.

6 Conclusions and future work

Based on our simulated experiments and our analysis of the algorithm, we argue that
our scheme is effective for large-scale image classification. The contributions of this
paper are:

• We discovered that the Schmidt decomposition doing on quantum image has an
effect like classical transformation doing on classical image. Based on this dis-
covery, we firstly defined Schmidt coefficients as the global features of quantum
image and extracted big values of these coefficients to encode as feature vectors
(states) to do image classification.

• We also analyzed the Schuld’s algorithm and found its vague recognition of the
nearest object in the large training set with the unclassified object by computing
Hamming distance. Aiming at this drawback, we added an extra step to discrim-
inate the nearest object from others by setting an appropriate threshold. By using
a simple trick, the time cost to do the extra step is O(n3). As a result, the time
efficiency of Schuld’s algorithm is improved from O(T Pn)6 to O(Pn)6.
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Although these contributions are noticeable, the work of this paper is still prelimi-
nary. Further work in the future may include:

• Seeking a more natural way to compute distance

Hamming distance is not a natural way to classify images. The main reason to
select it as the metric for determining the class of a quantum image is its ability to
discriminate among orthogonal quantum states. While orthogonal quantum states can
be distinguished reliably, this does not ensure the correct classification of 100% of
quantum images. Because the task of image classification is measuring for similarity,
the nature of this task implies that there is no way can be used to correctly classify
100% of the images studied. Previous studies have already presented certain methods
to improve the probability of the discrimination of nonorthogonal quantum states
[17]. Thus, it is possible to classify quantum images in a more natural way, such as
computing Euclidean distance between quantum images (states).

• Improve the ability of the classifier

The classifier is simple. More powerful tools, such as the quantum support vector
machine [13], could be incorporated in our scheme to improve the ability to perform
large-scale image classification.

QIP and QL are new research fields full of promise. In this paper, we presented
a combination of these two fields and demonstrated a promising application of such
a combination. The work of this paper has revealed directions that require further
research, and the promising combination of QIP and QL will motivate us to continue
this research and explore further.
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