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Abstract We put forward a new scheme for implementing the measurement-device-
independent quantum key distribution (QKD) with weak coherent source, while using
only two different intensities. In the new scheme, we insert a beam splitter and a
local detector at both Alice’s and Bob’s side, and then all the triggering and non-
triggering signals could be employed to process parameter estimations, resulting in
very precise estimations for the two-single-photon contributions. Besides, we com-
pare its behavior with two other often used methods, i.e., the conventional standard
three-intensity decoy-state measurement-device-independent QKD and the passive
measurement-device-independent QKD. Through numerical simulations, we demon-
strate that our new approach can exhibit outstanding characteristics not only in the
secure transmission distance, but also in the final key generation rate.

Keywords Quantum key distribution · Decoy state · Weak coherent light

1 Introduction

In the past few decades, the quantum key distribution (QKD) has attracted extensive
attention from the scientific world, which is mainly attributed to its theoretical uncon-
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ditional security ensured by laws of quantum mechanics [1–3]. But unfortunately,
practical legitimate users, usually named Alice and Bob, can only possess imper-
fect devices, e.g., non-ideal single-photon sources, imperfect single-photon detectors
and lossy channels. Then a malicious eavesdropper, Eve, who might own the most
advance computational power and technology, can carry out corresponding attacks
by making use of the loopholes due to imperfections [4–10]. In order to countermea-
sure the so-called photon-number-splitting (PNS) attack [4–6], the decoy-statemethod
was created [11–16]. Moreover, the measurement-device-independent quantum key
distribution (MDI-QKD) [17,18] has been invented to defeat the more powerful side-
channel attacks [7–10]. Hitherto, under current technology the MDI-QKD seems to
possess the highest level security among different protocols.

Recently, different schemes of MDI-QKD have been widely studied both theoret-
ically and experimentally. For example, some apply different number of decoy states
[19,20], and others employ either weak coherent states (WCS) [20–22] or heralded
single-photon sources (HSPS) [23–25]. However, for those schemes applying decoy
states with one, two or three intensities, the performance is poorer than the asymp-
totic case of using infinite number of decoy states. In this paper, we propose a new
method of the decoy-state MDI-QKD that uses a weak coherent source. Although
it only needs two intensities, it offers better performance compared with most other
existingMDI-QKDmethods, e.g., the standard three-intensity decoy-state MDI-QKD
and the passive decoy-state MDI-QKD.

Our paper is organized as follows: In Sect. 2, we introduce some basic notations
for the configuration of our QKD setups and then describe our new proposed two-
intensity decoy-state MDI-QKD step by step. In Sect. 3, we derive a formula giving
the lower bound of the counting rate and the upper bound of quantum-bit error rate
(QBER) from the two-single-photon pulses. In Sect. 4, we present the corresponding
numerical simulations and compare our new proposal with other existing schemes,
e.g., the standard three-intensity decoy-state MDI-QKD and the passive MDI-QKD.
In Sect. 5, we analyze the finite data size effect in practical implementations. In Sect. 6,
a summary and conclusions are given.

2 The new proposed MDI-QKD with two-intensity weak coherent light

Before describing our new two-intensityMDI-QKD protocol, let us first briefly review
the local triggering setup [26]. As is illustrated in Fig. 1, denote the two input states of
the beam splitter (BS) as ρ and σ (Fock diagonal states) , where t is the transmittance
of the BS. The two Fock diagonal states (ρ and σ ) can be expressed as:

ρ =
∞∑

n=0

pn |n〉 〈n| , σ =
∞∑

n=0

rn |n〉 〈n| . (1)

If we properly select the above two input modes, then we can get a classical
correlationbetween the twooutcome signals,whichmeanswecanget different photon-
number statistics in the signal mode a by conditional detecting the signal in mode b.
Here we suppose that the Fock states in the two input ports are both weak coherent

123



The enhanced measurement-device-independent quantum key. . . 3801

Fig. 1 Local triggering setup: ρ
and σ (two states which are
diagonal in the Fock basis)
represent the two input states of
a beam splitter (BS); t is the
transmittance of the BS; the two
output modes of the BS are
denoted as a and b, respectively;
ρout represents the output state
from mode a, PD the
single-photon detector

BS

PD

ρoutρ
t

a

b

sources (WCS), which are generated by attenuated lasers. Hence, they can be written
as:

ρ = e−μ1

∞∑

n=0

μ1
n

n! |n〉 〈n| , σ = e−μ2

∞∑

n=0

μ2
n

n! |n〉 〈n| , (2)

whereμ1 andμ2 are the average photon numbers of the two input signals, respectively.
The expression for pn,m , which is the joint probability of having n photons in mode a
and m photons in output mode b, can be expressed:

pn,m = νn+meν

n!m!
1

2π

∫ 2π

0
γ (θ)n(1 − γ (θ))mdθ. (3)

The parameters ν, γ (θ), and ζ are defined as follows:

ν = μ1 + μ2, (4)

γ (θ) = μ1t + μ2(1 − t) + ζ cos θ

ν
, (5)

ζ = 2
√

μ1μ2(1 − t)t . (6)

Here the parameter t means the transmittance of a beam splitter. If Alice does not
consider the measurement result in mode b, then the probability of having n photons
in mode a can be given as:

pn(ν) =
∞∑

m=0

pn,m = νn

n!
1

2π

∫ 2π

0
γ (θ)ne−νγ (θ)dθ. (7)

When considering the detection results of Alice, the joint probability for finding n
photons in mode a and no click in Alice’s threshold photon detector can be denoted

as p
−
t
n . We can express it as:
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Fig. 2 Schematic setup of the new two-intensity decoy-state MDI-QKD. At Alice (Bob)’s side, ρ and σ

interfere at a BS with a transmittance t . μi (i = 1, 2) corresponds to the intensity of the input light; a and
b each denotes one of the output modes; D0 represents the local threshold single-photon detector, with
a detection efficiency ηA (ηB) at Alice’s (Bob’s) side. At the UTP’s (Charlie’s) side, pulses from Alice
and Bob interfere at a 50:50 BS and then each enters a polarizing beam splitter (PBS); Di (i = 1, 2, 3, 4)
represents the single-photon detector, with a detection efficiency ηC; PR represents a polarization rotator

p
−
t
n (ν) = (1 − ε)

∞∑

m=0

(1 − ηA)m pn,m

= (1 − ε)
νne−ηAν

n!
1

2π

∫ 2π

0
γ (θ)ne−(1−ηA)νγ (θ)dθ. (8)

Here ε refers to thedark count rate andηA is thedetection efficiencyofAlice’s threshold
detector. In the same way, we can denote another parameter ptn , which represents the
probability of having n photons in mode a and observing a click in Alice’s threshold
detector at the same time. We finally get the following expression:

ptn(ν) = pn(ν) − p
−
t
n (ν). (9)

In our new protocol, both Alice and Bob possess this kind of BS devices, separately
sending out optical pulses to the untrusted third part (UTP), named Charlie. Charlie
who may be controlled by Eve applies a joint measurement on the two-pulse signals
from both Alice and Bob and publicly announces the measurement results after all
signal transmission is finished. The schematic of our experimental setup is shown in
Fig. 2.

Now let us describe our new proposal step by step by using a polarization coding
scheme as an example:

First, both Alice and Bob randomly modulate their pulses in input 1 into two
different intensities,μ andμ′, and interfere it with the local reference beam from input
2 at a BS. The two output modes are denoted as mode a and mode b, respectively.
Mode b is used for detectionwith the local detector (D0);Mode a is randomly encoded
into one of the four polarization states, i.e., horizontal (H), vertical (V), 45◦ (+) and
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135◦ (−) polarizations, and sent out to the UTP. Meantime, Alice (Bob) sends out a
triggering signal whenever D0 clicks.

Second, theUTPcarries out partialBell-state projectionmeasurements on the pulses
fromAlice and Bob, recording all the successful events. Besides, the UTP classifies all
the successful events into two species, the triggered and the non-triggered. After all
the signal transmission finished, the UTP publicly announces his measurement results.

Third, based on the UTP’s announcement, Alice (Bob) applies post-selection and
bit-flip operations on the qubits in her (his) hand, obtaining the raw key.

Fifth, Alice andBob carry out error correction and a privacy amplification processes
to achieve the final key.

It is worth noting that the main differences between our new scheme and the old
passive QKD schemes are the following: At both Alice and Bob’s side, light in input
2 (σ ) is fixed with intensity μ2, and light in input 1 (ρ) is randomly modulated into
two different intensities, μ and μ′ (μ < μ′), where μ refers to the decoy state and
μ′ represents the signal state. According to Eq. (4), for each μ and μ′, we have
corresponding ν and ν , with ν = μ + μ2, and ν′ = μ′ + μ2 individually. Moreover,

we also have relevant values for pn , p
−
t
n and ptn for each μ and μ′. That is to say,

by modulating light (in input 1) into μ and μ′, we can obtain six types of nonzero
counting events. By properly choosing two of them, i.e., ptn(ν) and pn(ν′), we can
denote them as c and c

′
, respectively. Then in the photon-number space, we have

ρl =
∑

n

ln |n〉 〈n| , (l = c, c
′
) (10)

where

cn(μi ) = pn(νi ) − p
−
t
n (νi ),

c
′
n(μ

′
i ) = pn(ν

′
i ), (11)

with i = A, B.
In order to analyze our new scheme, we firstly assume the following condition holds

true for any μ
′ ≥ μ and n � 2 [19]:

c
′
n(μ

′
)

cn(μ)
≥ c

′
n−1(μ

′
)

cn−1(μ)
≥ c

′
1(μ

′
)

c1(μ)
. (12)

This assumption will be readdressed later on.

3 Derivation of Y L
11 and eU11

In order to calculate the final key generation rate, the counting rate and the QBER of
the two-single-photon pluses should first be estimated. Here Alice and Bob randomly
modulate their pulses in input 1 intoμi andμ′

i , (μi < μ′
i , i = A, B), individually. For

simplicity, we denote the intensity from Alice or Bob as x and y, respectively, where
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x ∈ {μA, μ′
A} and y ∈ {μB, μ′

B}. Then we can calculate the average gain (SWx,y) and
average quantum-bit error (TW

x,y =: EW
x,y S

W
x,y) with the following expressions:

SWx,y =
∞∑

m,n=0

ln(x)lm(y)YW
nm, (13)

EW
x,y S

W
x,y =

∞∑

m,n=0

ln(x)lm(y)eWnmY
W
nm, (14)

where W represents the X or Z basis; l = c, c
′
; YW

nm and eWnm each corresponds to the
yield and the QBER when Alice sends out an n-photon pulse and Bob sends out an
m-photon pulse; EW

x,y is the average QBER. In the MDI-QKD, two bases (Z and X )
have been used for preparing, transmitting and measuring. Usually the Z basis is used
for distilling the secure keys, while the X basis is only for error testing. For simplicity,
we suppose the MDI-QKD has been implemented with the two bases independently.
Hereafter, the superscript W will be omitted without causing any confusion.

With Eq. (13), Sμ,μ and Sμ′,μ′ can be written as:

Sμ,μ = S̃00 + c21(μ)Y11 + c1(μ)

∞∑

m=2

cm(μ)Y1m

+c1(μ)

∞∑

n=2

cn(μ)Yn1

+
∞∑

n,m=2

cn(μ)cm(μ)Ynm, (15)

Sμ′,μ′ = S̃′
00 + c

′
1
2
(μ′)Y11 + c

′
1(μ

′)
∞∑

m=2

c
′
m(μ′)Y1m

+ c
′
1(μ

′)
∞∑

n=2

c
′
n(μ

′)Yn1

+
∞∑

n,m=2

c
′
n(μ

′)c′
m(μ′)Ynm, (16)

where S̃00 = Sμ,0 + S0,μ − S0,0, S̃′
00 = Sμ′,0 + S0,μ′ − S′

0,0. Denote κ =: c
′
1(μ

′)c′
2(μ

′)
c1(μ)c2(μ)

.
By combining Eqs. (15) and (16), we get

Y11 = κ(Sμ,μ − S̃00) − (Sμ′,μ′ − S̃′
00) + τ

κc21(μ) − c
′
1
2
(μ′)

, (17)
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where

τ =
∞∑

m=2

[
c

′
1(μ

′)c′
m(μ′) − κc1(μ)cm(μ)

]
Y1m

+
∞∑

n=2

[
c

′
1(μ

′)c′
n(μ

′) − κc1(μ)cn(μ)
]
Yn1

+
∞∑

n,m=2

[
c

′
n(μ

′)c′
m(μ′) − κcn(μ)cm(μ)

]
Ynm .

Below we denote τ = h1 + h2 + h3. According to Eq. (12), we have τ > 0, which
follows from

h1 =
∞∑

m=2

[
c

′
1(μ

′)c′
m(μ′) − κc1(μ)cm(μ)

]
Y1m

=
∞∑

m=2

c
′
1(μ

′)
c2(μ)

[
c2(μ)c

′
m(μ′) − c

′
2(μ

′)cm(μ)
]
Y1m ≥ 0;

h2 =
∞∑

n=2

[
c

′
1(μ

′)c′
n(μ

′) − κc1(μ)cn(μ)
]
Yn1

=
∞∑

n=2

c
′
1(μ

′)
c2(μ)

[
c2(μ)c

′
n(μ

′) − c
′
2(μ

′)cn(μ)
]
Yn1 ≥ 0;

h3 =
∞∑

m,n=2

[
c

′
n(μ

′)c′
m(μ′) − κcn(μ)cm(μ)

]
Ynm

≥
∞∑

m,n=2

cn(μ)c
′
m(μ′)

c1(μ)c2(μ)

[
c1(μ)c

′
2(μ

′) − c
′
1(μ

′)c2(μ)
]
Ynm ≥ 0.

With the conditions above, we can get the lower bound for the two-single-photon
counting rate in the Z basis (Y Z

11):

Y Z
11 ≥ YZ ,L

11 := c1′(μ′)c2′(μ′)(SZ
μ,μ − S̃Z

00) − c1(μ)c2(μ)(SZ
μ′,μ′ − S̃Z

00
′
)

c1′(μ′)c1(μ)
[
c1(μ)c2′(μ′) − c1′(μ′)c2(μ)

] . (18)

Similarly, we can get the upper bound of the QBER for two-single-photon pulses
in the X basis (eX11):

eX11 ≤ eX,U
11 := EX

μ,μS
X
μ,μ − EX

μ,0S
X
μ,0 − EX

0,μS
X
0,μ + EX

0,0S
X
0,0

c21(μ)Y X
11

. (19)
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With the formulae above, we can now calculate the final key generation rate with
[18,24]:

R ≥ c
′
1
2
(μ′)Y Z

11[1 − H2(e
X
11)] − SZ

μ′,μ′ f H2(E
Z
μ′,μ′), (20)

where f is a factor for the cost of error correction efficiency, andherewe take f = 1.16.
H2(x) is the binary Shannon information function, given by H2(x) = −x log2(x) −
(1 − x)log2(1 − x).

4 Numerical simulation for MDI-QKD

We can now numerically calculate the key generation rate and compare the per-
formance of our method with other schemes, e.g., the passive MDI-QKD and the
three-intensity MDI-QKD. Here we assume that the UTP is located in the middle of
Alice’s and Bob’s transmission link and that the detectors of the UTP are identical,
e.g., have the same dark count rate Y0 and detection efficiency ηC. Moreover, the
detection efficiency ηC does not depend on the incoming signals. The gains and error
rates, which can be observed in the experiment, could be estimated with linear model
channels. According to the linear model in [24], the state |n〉 〈n| from Alice can be

changed into
n∑

k=0
Ck
nη

k(1 − η)n−k |k〉 〈k|, when it arrives to the UTP. Here Ck
n is the

binomial coefficient, defined as Ck
n =: n!

k!(n−k)! ; η is the transmittance from Alice to
the UTP.

Depending on the transmittance distance, we can set the values for Sμ,μ, Sμ′,μ′ ,
Eμ,μ and Eμ′,μ′ , which probably would be the observed in real experiments. So after
setting the values mentioned above, the parameters of Y Z

11 and eX11 can be obtained.
Furthermore, we can calculate the key generation rate with the formula in Eq. (20).

For a fair comparison, we use the same the numerical parameters as in [18,23], with
α = 0.2 dB/km, ηC = 0.145, dC = 3 × 10−6, ed = 0.015, ηi = 0.75 and di = 10−6

(i = A, B) in our simulations. Moreover, we use the same value of μ2 as in [26],
μ2 = 10−4. Then we do a simulation for the two-single-photon contributions (Y11
and e11), the optimal intensity for the signal state (μ′) and the final key generation
rate by using different methods. The corresponding simulation results are shown in
Figs. 3, 4 and 5. Here, we need to stress that during our simulationwe have numerically
checked that all the parameters used can satisfied the conditions in Eq. (12).

In Fig. 3, we compare the estimated values for the counting rate of two-single-
photon pulses (Y11) (a) and the QBER of two-single-photon pulses (e11) (b) by using
different methods. W1 and W3 each represents the passive MDI-QKD (W1) and the
standard three-intensity decoy-state MDI-QKD (W3), respectively.W2 corresponds to
the new proposed two-intensity MDI-QKD. Moreover, we also plot for the ideal case
of using infinite number of decoy states (W0) (W0 corresponds to the experimental
setup in Fig. 2, and it is the same hereafter). In order to give a fair comparison, at each
distance we have used the optimal intensity for the signal state (μ

′
) in all the above

methods and set a reasonable value for the decoy state (μ = 0.1) in both the new
proposed two-intensity decoy-state scheme and the standard three-intensity decoy-
state method. From Fig. 3a, b, we find that all the three practical schemes (W1, W2
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(a)

(b)

Fig. 3 Comparison for the counting rate (Y11) (a) and the quantum-bit error rate (e11) (b) from two-single-
photon pulses by using different methods, i.e., the passive MDI-QKD (W1), the standard three-intensity
decoy-state MDI-QKD (W3) and the new proposed two-intensity decoy-state method (W2). W0 represents
the case of using an infinite number of decoy states. Here we reasonably set μ = 0.1 for the decoy state
in both the new proposed two-intensity decoy-state scheme and the standard three-intensity decoy-state
method, and in all the schemes we use the optimal intensity for the signal state (μ′) at each distance

and W3) show similar estimation values of Y11, while they show drastically different
performance for e11. Obviously, our new proposed two-intensity scheme (W2) exhibits
significantly lower estimation value of e11 than the other two.

In Fig. 4, we plot the optimal intensity (μ
′
) at each distance with different methods.

Similar in Fig. 3,W0 represents the ideal case of using infinite number of decoy states,
W1 and W3 each corresponds to the result of using the passive decoy-state scheme
and the conventional three-intensity decoy-state method, respectively, and W2 refers
to the result of using our new proposal. From Fig. 4, we find that the optimal intensity
(μ

′
) in our new method is much higher than in the other two practical methods (W1

and W3), getting much closer to the asymptotic case of using an infinite number of
decoy states (W0).

In Fig. 5a, b, we compare either the absolute key generation rate or the relative
key generation rate between using different methods. In Fig. 5a, W0, W1 and W3
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Fig. 4 Comparison of the optimal value of signal state (μ
′
) for MDI-QKD in different methods, i.e., the

passive MDI-QKD method with WCS (W1), the three-intensity MDI-QKD method with WCS (W3) and
the new method proposed by us (W2). Besides, the solid curve (W0 ) represents the MDI-QKD method
with infinite decoy states

each corresponds to the asymptotic case of using infinite number of decoy states, the
passive decoy-state scheme and the conventional decoy-state method.W2 refers to the
result of using our new proposal. Obviously, our new method (W2) presents a much
higher key generation rate than the other two practical methods (W1 and W3) and
approaches the ideal case of using infinite number of decoy states (W0) very closely.
Moreover, in order to give a vivid comparison between these three practical methods,
we plot the ratio of the key generation rate between using our new scheme and other
two practical methods (W1 and W3) in Fig. 5b. Excitingly, our new proposal exhibits
more than two times improvement in the key generation rate than conventional three-
intensity decoy-state method at longer distance (>150km), and more than ten times
improvement compared to the passive decoy-state scheme at distances longer than
120km, see the left axis in Fig. 5b. The improvement is on the one hand due to the
relatively high optimal intensity used in our new scheme as shown in Fig. 4, and on the
other hand, it is attributed to themore precise estimation on theQBERof single-photon
pulses (e11), see Fig. 3b.

5 Statistical fluctuations

In the practical implementation of QKD, Alice and Bob can only send finite number
of pulses within reasonable experimental time, which will inevitably induce statistical
fluctuation.Belowwewill account for thefinite data size effect in real-life experiments.

As we know, the statistical fluctuation effect can be calculated by applying the
deviation theory, e.g., the Chernoff bound [27]. The measurement outcome of the
overall gain and the quantum-bit errors in the W basis satisfies

NW
x,y Ŝ

W
x,y = NW

x,y S
W
x,y + δx,y, (21)

123



The enhanced measurement-device-independent quantum key. . . 3809

(a)

(b)

Fig. 5 Comparison of the absolute key generation rate (a) and the relative key generation rate (b) for
MDI-QKD between using different methods. In a, from the bottom to the top, each line corresponds to the
passive MDI-QKD (W1), the three-intensity MDI-QKD (W3), the new proposed two-intensity MDI-QKD
(W2) and the asymptotic case of using infinite decoy states (W0). In b, it shows the ratio of the key generation
rates between our new scheme and the passive MDI-QKD method in the left axis and displays the ratio of
the key generation rates between our scheme and conventional three-intensity decoy state in the right axis.
Here we reasonably set μ = 0.1 for the decoy state and optimize the value of μ′ for the signal state at each
distance in all the methods

NW
x,y T̂

W
x,y = NW

x,yT
W
x,y + δ̃x,y, (22)

with probability 1-2εx,y , where TW
x,y := EW

x,y S
W
x,y , δx,y ∈ [−�x,y, �̂x,y], δ̃x,y ∈

[−�1, �̂2], �x,y = g(NW
x,y Ŝ

W
x,y, ε

4
x,y/16), �̂x,y = g(NW

x,y Ŝ
W
x,y, ε

3/2
x,y ), �1 =

g(NW
x,y Ê

W
x,y Ŝ

W
x,y, ε

4
x,y/16), �2 = g(NW

x,y Ê
W
x,y Ŝ

W
x,y, ε

3/2
x,y ) and g(a, b) = √

2a ln(b−1).

Here εx,y denotes the following probabilities: Pr(NW
x,y S

W
x,y − NW

x,y Ŝ
W
x,y ≥ �x,y) ≤

εx,y , Pr(NW
x,y Ŝ

W
x,y − NW

x,y S
W
x,y ≥ �̂x,y) ≤ εx,y ; Pr(NW

x,yT
W
x,y − NW

x,y T̂
W
x,y ≥ �1) ≤

εx,y , Pr(NW
x,y T̂

W
x,y − NW

x,yT
W
x,y ≥ �2) ≤ εx,y [27]. NW

x,y is the number of pulses in
the W basis, with the intensities of x and y sent by Alice and Bob, respectively.
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According to Eq. (21), we have

SWx,y − �x,y

NW
x,y

≤ ŜWx,y ≤ SWx,y + �̂x,y

NW
x,y

. (23)

Then we can obtain the following inequalities

SWx,y ≤ ς
(
SWx,y

)
:= ŜWx,y + �x,y

NW
x,y

, (24)

SWx,y ≥ ς̃
(
SWx,y

)
:= ŜWx,y − �̂x,y

NW
x,y

, (25)

TW
x,y ≤ ξ

(
TW
x,y

)
:= T̂ W

x,y + �1

NW
x,y

, (26)

TW
x,y ≥ ξ̃

(
TW
x,y

)
:= T̂ W

x,y − �2

NW
x,y

. (27)

According to Eqs. (18), (24) and (25), we obtain

Y Z
11 ≥ YZ ,L

11 :=
c1′(μ′)c2′(μ′)

[
ς̃

(
SZ
μ,μ

) − ς
(
S̃Z
00

)]
− c1(μ)c2(μ)

[
ς

(
SZ
μ′,μ′

)
− ς̃

(
S̃Z
00

′)]

c1′(μ′)c1(μ) [c1(μ)c2′(μ′) − c1′(μ′)c2(μ)]
.

(28)
Similarly, we can obtain the modified upper bound of single-photon quantum-bit error
rate

eX11 ≤ eX,U
11 :=

ξ
(
T X
μ,μ

)
− ξ̃

(
T X
μ,0

)
− ξ̃

(
T X
0,μ

)
+ ξ

(
T X
0,0

)

c21 (μ) Y X,L
11

+ �
(
N ZY Z

11, N
XY X

11, εe

)
,

(29)

where�(a, b, c) =
√

(a + 1) ln
(
c−1

)/
[2b (a + b)]. Therefore, Eq. (20) can bemod-

ified as:

R � −SZ
μ′,μ′ f H2(EZ

μ′,′μ) + c1′(μ′)2Y Z ,L
11 [1 − H2(e

X,U
11 )]

− 1
Ntol

(log2
8

εcor
+ 2log2

2
ε1ε2

+ 2log2
1

2εPA
). (30)

The protocol is εsec-secret and εcor-correct, where εsec = 2(2εe + ε1 + ε2) + 3εμ,μ +
2εμ′,μ′ + εb + εPA [27]. Ntol denotes number of total pulses emitted by Alice and Bob.
For simplicity, we fix εsec = 10−10, εcor = 10−15 and set each error term to a common
value ε , thus εsec=15ε. Besides, we suppose that the length of pulses is the same for
each pair of intensities of Alice and Bob. Moreover, we have assumed the number of
pulses sent by Alice (or Bob) have the proportion: NW

μ′ : NW
μ = 1 : 1.

In practical QKD implementation, the data size usually ranges between 1012 and
1014 [28–30]. We draw out corresponding numerical simulation results for our new
proposed two-intensity decoy-stateMDI-QKD and the standard three-intensity decoy-
state protocols by accounting for statistical fluctuations, see Fig. 6. Obviously, the
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Fig. 6 Key generation rates ofMDI-QKD using the newmethod proposed by us with statistical fluctuation,
compared with the finite data case of using the three-intensity MDI-QKD method with WCS . The black
solid curve W2 (W3) refers to the case without statistical fluctuation, and the rest of the curvesW2-f (W3-f)
represent the case when taking statistical fluctuation into account

secure key generation rates will drop down with reducing the total number of pulses.
However, it decreases more slowly in our new two-intensity scheme than the three-
intensity one, e.g., in our new scheme a quite high key rate can still be obtained at the
distance of 170km with the data size of 1012.

6 Conclusion

In summary, we have presented a practical scheme of implementing two-intensity
weak coherent light into theMDI-QKD. In contrast to the conventional three-intensity
decoy-state MDI-QKD, in our new proposal we insert a beam splitter and a local
detector at both Alice’s and Bob’s side, and then both the triggering and non-triggering
signals could be employed to process parameter estimations. While compared with
the original passive decoy-state MDI-QKD, the main differences are: Alice (or Bob)
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randomly modulates her (or his) seeding pulses into two different intensities. By
combing with both their triggering and non-triggering characteristics, the detection
results at Charlie’s side could be divided into many different events. Therefore, we
could obtain more input parameters and achieve more precise estimations for the
two-single-photon contributions.

To analyze our proposal, we carry out corresponding numerical simulations. Our
simulation results demonstrate that our new scheme exhibits drastically enhanced per-
formance compared with two other existing methods both in the transmission distance
and in the final key generation rate, approaching very closely to the asymptotic case
of using infinite number of decoy states. Moreover, even when taking statistical fluc-
tuation into account, our scheme can still give a quite high key generation rate at
a long transmission distance (>170km). In addition, our scheme only needs linear
optics and can be easily realized with current technology. Therefore, it may have a
promising application in the future of the quantum key distribution.
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