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Abstract We formulate uncertainty relations for arbitrary finite number of incom-
patible observables. Based on the sum of variances of the observables, both
Heisenberg-type and Schrödinger-type uncertainty relations are provided. These new
lower bounds are stronger inmost of the cases than the ones derived from some existing
inequalities. Detailed examples are presented.
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1 Introduction

Uncertainty principle is one of themost remarkable features of quantummechanics. In
1927, Heisenberg [1] introduced the first uncertainty inequality for a pair of canonical
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observables—position x and momentum p. This inequality can be expressed in terms
of standard deviation-based product uncertainty relation,

�x�p ≥ h̄

2
,

where the standard deviation of an operator � is defined by �� = √〈�2〉 − 〈�〉2,
h̄ is the Planck constant, 〈�〉 is the mean value the operator �. After that, Robertson
[2] generalized the above inequality to any pair of observables A and B, and provided
the following uncertainty relation:

�A�B ≥ 1

2
|〈[A, B]〉|, (1)

where [A, B] = AB − BA is the commutator of A and B. The lower bound of
Robertson uncertainty relation (RUR) (1) has an explicit physical meaning. It can be
used to capture the noncommutativity of the two observables. A strengthened form of
RUR is due to Schrödinger [3], who derived the following Schrödinger uncertainty
relation (SUR):

(�A)2(�B)2 ≥
∣
∣
∣
∣
1

2i
〈[A, B]〉

∣
∣
∣
∣

2

+
∣
∣
∣
∣
1

2
〈{A, B}〉 − 〈A〉〈B〉

∣
∣
∣
∣

2

. (2)

Uncertainty inequalities of the types of (1) and (2) are often referred to as Heisenberg-
type and Schrödinger-type uncertainty relations, respectively.

Recently, Maccone and Pati [4] provided two stronger uncertainty relations based
on the sum of variances. These uncertainty inequalities are nontrivial whenever the
measured state is not a common eigenstate of the two observables. Thus, these new
lower bounds of uncertainty relations can capture better the incompatibility of the two
observables. After that, Chen and Fei [5] generalized one of the uncertainty relations
in Ref. [4] to arbitrary N incompatible observables.

Variance-based uncertainty relations have many useful applications in quantum
information theory, such as entanglement detection [6,7] and quantum spin squeezing
(see Ref. [8] and references therein). It is worth noting that there are many other
ways to formulate uncertainty relations, such as in terms of entropies [9–14], by use
of majorization approach [15–20], based on the skew information [21–23] and the
notion of fine-grained uncertainty relation [24–26]. Throughout the paper, we only
focus on the variance-based sum uncertainty relations.

In this paper,weprovide several newuncertainty relations for arbitraryfinite number
of incompatible observables. These new lower bounds are shown to be tighter than
the ones in the previous works via some examples of spin- 12 particle system. The
paper is organized as follows. In Sect. 2, we present a sum uncertainty relation for
n incompatible observables. When n = 2, 3, the inequality is shown to be stronger
than the ones in Ref. [4] and [5] in some cases. In Sect. 3, we derived a product
uncertainty relation, each of the factor in which is the sum of uncertainties in the
individual incompatible observables. We conclude the paper in Sect. 4.
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2 Stronger sum uncertainty relation for n incompatible observables

In this section, we first provide a stronger sum uncertainty relation for n incompatible
observables. We have the following Theorem.

Theorem 1 Let A1, A2, . . . , An ben incompatible observables andρ aquantumstate.
For each Ai , if �Ai �= 0, then we define Pi = Ãi

√
ρ/�Ai , where Ãi = Ai − 〈Ai 〉I ,

I is the identity operator. If �Ai = 0, we set Pi to be a zero operator. Let M be an
n × n matrix with entries Mi j = Tr(P†

i Pj ). Then, we have

n∑

i=1

(�Ai )
2 ≥ 1

λmax(M)

[

�

(
n∑

i=1

Ai

)]2
, (3)

where λmax(M) denotes the maximal eigenvalue of M.

Proof We first note that M is a positive semi-definite matrix, since
∑

i, j x
∗
i Mi j x j =

‖∑i xi Pi‖2 ≥ 0, ∀(x1, . . . xn) ∈ C
n . Then we have λmax(M) ≥ 0. Taking into

account that
∑̃

i Ai =∑i Ãi , we have

[

�

(
∑

i

Ai

)]2
=
〈(
∑̃

i

Ai

)2〉

=
〈
∑̃

i

Ai

∑̃

j

A j

〉

=
∑

i, j

〈
Ãi Ã j

〉

=
∑

i, j

�Ai Mi j�A j

≤ λmax(M)
∑

i

(�Ai )
2.

If λmax(M) = 0, then M is a zero matrix, and all �Ai = 0, which is con-
trary to the incompatibility of Ai s. Hence, λmax(M) > 0, and

∑
i (�Ai )

2 ≥
1

λmax(M)

[
�
(∑

i Ai
)]2 holds from the above inequality. �

In Ref. [4], the authors derived an uncertainty relation for two observables A1 and
A2:

(�A1)
2 + (�A2)

2 ≥ 1

2
[�(A1 + A2)]2. (4)

If A1 and A2 are incompatible, then the new bound in (3) is shown to be better than
the one in (4), which is given in the following corollary.
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Fig. 1 The blue solid line is the sum of the variances (�σ1)
2 + (�σ3)

2. The dot-dashed line is the bound
(3). The dashed line is the bound (4) (Color figure online)

Corollary 1 For two incompatible observables A1 and A2, we have

(�A1)
2 + (�A2)

2 ≥ 1

λmax(M)
[�(A1 + A2)]2 ≥ 1

2
[�(A1 + A2)]2, (5)

where M is defined in Theorem 1.

Proof We only need to prove that λmax(M) ≤ 2. If �A1 = 0 or �A2 = 0, then
λmax(M) = 1. Suppose that �A1 �= 0 and �A2 �= 0. Then, λmax(M) = 1 +
|Tr(P†

1 P2)|. Note that ‖P1‖ = ‖P2‖ = 1, we have |Tr(P†
1 P2)| ≤ 1 by the Cauchy-

Schwarz inequality. Hence, λmax(M) ≤ 2 and the last inequality in (5) holds. �

To see that our new lower bound (3) is strictly greater than the one in (4), consider
the standard Pauli matrices σ1 and σ3. Let the qubit state to be measured and the

measured state given by the Bloch vector −→r =
(√

3
2 cos θ,

√
3
2 sin θ, 0

)
. Then we

have �σ1 =
√
1 − 3

4 cos
2 θ , �σ3 = 1, �(σ1 + σ3) =

√
2 − 3

4 cos
2 θ , λmax(M) =

1 +
√
3| sin θ |√
1+3 sin2 θ

. The comparison between the lower bounds (3) and (4) is shown in

Fig. 1. Apparently, our new bound is strictly greater than (4).
Recently, Chen and Fei [5] generalize uncertainty relation (4) to the case of arbitrary

n incompatible observables, and present the following variance-based sum uncertainty
relation:

n∑

i=1

(�Ai )
2 ≥ 1

n−2

{
∑

1≤i< j≤n
[�(Ai +A j )]2− 1

(n−1)2
[∑

1≤i< j≤n �(Ai +A j )
]2
}

.

(6)
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Fig. 2 The blue solid line is the sum of the variances (�σ1)
2 + (�σ2)

2 + (�σ3)
2. The dot-dashed line is

the bound (3). The dashed line is the bound (6) (Color figure online)

To compare theuncertainty relation (3)with (6), let us consider again thePaulimatri-
cesσ1, σ2, σ3, and themeasured state given by theBloch vector−→r = (cos θ, 0, 0), θ ∈
(0, π). Then, we have (�σ1)

2 + (�σ2)
2 + (�σ3)

2 = 3 − cos2 θ , �(σ1 + σ2) =
�(σ1 + σ3) = √

2 − cos2 θ , �(σ2 + σ3) = √
2, �(σ1 + σ2 + σ3) = √

3 − cos2 θ ,
λmax(M) = 1 + | cos θ |. It is shown in Fig. 2 that for a wide range of θ , our new
uncertainty relation (3) is stronger than (6).

3 Uncertainty relation based on the product of sum of variances in the
individual observables

In Ref. [27], the author studied the product of sum of uncertainties in the individual
observables. They investigated a special case for a set of noncommuting observables.
Using the RUR (1) and the convexity of quantum uncertainty, they formulated the
product of sumof uncertainties in {Ai }ni=1 and {Bi }ni=1,which satisfy [Ai , Bj ] = iδi jC ,
and presented the following uncertainty relation:

(
n∑

i

�Ai

)(
n∑

i

�Bi

)

≥ n

2
|〈C〉|.

Here we generalize the idea to any two sets of incompatible observables. We have the
following Schrödinger-type uncertainty relation.

Theorem 2 Let {Ai }ni=1 and {Bj }mj=1 be two sets of incompatible observables and ρ a

quantum state. If �Ai �= 0, then we define Xi = Ãi
√

ρ/�Ai ; otherwise, define Xi =
O; similarly, if �Bj �= 0, we define Y j = B̃ j

√
ρ/�Bj , otherwise Y j = O,∀i, j . Let

G be an n × m matrix with entries Gi j = |Tr(X†
i Y j )|. If there exist Ai , Bj such that

〈 Ãi B̃ j 〉 �= 0, then we have
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[
n∑

i=1

(�Ai )
2

] 1
2
⎡

⎣
m∑

j=1

(�Bj )
2

⎤

⎦

1
2

≥ 1

σmax(G)

∑

i, j

(∣
∣
∣
∣
1

2i
〈[Ai , Bj ]〉

∣
∣
∣
∣

2

+
∣
∣
∣
∣
1

2
〈{Ai , Bj }〉 − 〈Ai 〉〈Bj 〉

∣
∣
∣
∣

2
) 1

2

, (7)

where σmax(G) is the maximal singular value of G.

Proof We first have

∑

i, j

|〈 Ãi B̃ j 〉| =
∑

i, j

�AiGi j�Bj

≤ σmax(G)

[
n∑

i=1

(�Ai )
2

] 1
2
⎡

⎣
m∑

j=1

(�Bj )
2

⎤

⎦

1
2

.

On the other hand,

|〈 Ãi B̃ j 〉| = |〈Ai B j 〉 − 〈Ai 〉〈Bj 〉|

=
(∣
∣
∣
∣
1

2i
〈[Ai , Bj ]〉

∣
∣
∣
∣

2

+
∣
∣
∣
∣
1

2
〈{Ai , Bj }〉 − 〈Ai 〉〈Bj 〉

∣
∣
∣
∣

2
) 1

2

.

If σmax(G) = 0, then all 〈 Ãi B̃ j 〉 = 0, which is contrary to our assumption. Taking
into account the above formulas, we get (7) directly. �
Remark It is reasonable to assume that not all 〈 Ãi B̃ j 〉 = 0, since otherwise we have∑

i (�Ai )
2∑

j (�Bj )
2 ≥∑i, j |〈 Ãi B̃ j 〉|2 = 0 by SUR (2), which gives rise to a trivial

uncertainty relation.

We can also obtain the following Heisenberg-type uncertainty relation from (7).

Corollary 2 Under the conditions of the Theorem 2, we have

[
n∑

i=1

(�Ai )
2

] 1
2
⎡

⎣
m∑

j=1

(�Bj )
2

⎤

⎦

1
2

≥ 1

2σmax(G)

∑

i, j

|〈[Ai , Bj ]〉|. (8)

Noting that the following uncertainty relation holds by RUR (1),

[
n∑

i=1

(�Ai )
2

] 1
2
⎡

⎣
m∑

j=1

(�Bj )
2

⎤

⎦

1
2

≥ 1

2

⎛

⎝
∑

i, j

|〈[Ai , Bj ]〉|2
⎞

⎠

1
2

, (9)
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Fig. 3 The blue solid line is the uncertainties �σ3
√

(�σ2)
2 + (�σ1)

2. The dot-dashed line is the bound
(9). The dashed line is the bound (8) (Color figure online)

we need to compare the lower bounds (8) and (9). Let A1 = σ3, B1 = σ1, B2 = σ2,
and the Bloch vector of the measured state −→r = ( 12 cos θ, 1

2 sin θ, 0). It is shown in
Fig. 3 that the uncertainty relation (8) we derived in this paper is stronger in this case
than the one trivially obtained by summing over RURs for all pairs of Ai and Bj .

Let us consider a special case for n = m and Ai = Bi . We have the following
uncertainty relation.

Corollary 3 Let A1, A2, . . . , An be n incompatible observables. We have

n∑

i=1

(�Ai )
2 ≥ 1

min{σmax(G), n − 1}
∑

1≤i< j≤n

|〈[Ai , A j ]〉|, (10)

where G is defined in Theorem 2.

Proof By using RUR (1) and the mean inequality for pairs of observables A1, . . . , An ,
we get

(�Ai )
2 + (�A j )

2 ≥ 2�Ai�A j ≥ |〈[Ai , A j ]〉|, ∀i �= j.

Summing over the above inequalities, we have

n∑

i=1

(�Ai )
2 ≥ 1

n − 1

∑

1≤i< j≤n

|〈[Ai , A j ]〉|. (11)

We now only need to show that σmax(G) < n − 1 for some n, when suitable
observables and measured state considered. Let n = 3 and Ai = σi , i = 1, 2, 3, ρ is
given by the Bloch vector −→r = (cos θ, 0, 0), θ ∈ (0, π). Then, we have σmax(G) =
1 + | cos θ | < 2. This completes the proof. �
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4 Conclusion

We have formulated uncertainty relations for arbitrary incompatible observables.
These new uncertainty inequalities are based on the sum of variances of the observ-
ables. The corresponding lower bounds we derived in this paper are shown to be
tighter than the previous ones. Thus our bounds capture better the incompatibility of
the observables. We have also studied the general form of product of sum of vari-
ances in the individual observables and obtained a stronger uncertainty relation. We
emphasize that these new bounds are physically realizable in general. These bounds
are tight and can be reached by detailed quantum systems, as shown in examples.
Moreover, they are also physically measurable. For the uncertainty relation (3), we
only need tomeasure the variance of sum of the observables, and the value of λmax(M)

can be estimated beforehand. Similarly, for the uncertainty relation (7), we need to
measure the mean value of each observable and the mean value of commutators and
anti-commutators of pairs of the observables. The value of σmax(G) can be computed
readily.More interesting results could be obtained ifmultipartite systems are taken into
account. As uncertainty relations are tightly related to many quantum tasks, our results
might shed new lights on investigating quantum information processing like entangle-
ment detection, quantum spin squeezing, quantum separability criteria, and security
analysis of quantum key distribution in quantum cryptography and nonlocality.
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