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Abstract This study investigates unitary equivalent classes of one-dimensional quan-
tum walks. We prove that one-dimensional quantum walks are unitary equivalent to
quantumwalks of Ambainis type and that translation-invariant one-dimensional quan-
tum walks are Szegedy walks. We also present a necessary and sufficient condition
for a one-dimensional quantum walk to be a Szegedy walk.
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1 Introduction

This study investigates unitary equivalent classes of one-dimensional quantum walks.
Aquantumwalk is definedbyapair (U, {Hv}v∈V ),whereV is a countable set, {Hv}v∈V
is a family of separable Hilbert spaces, andU is a unitary operator onH = ⊕

v∈V Hv

[17]. For a given quantum walk (U, {Hv}v∈V ), we can define a digraph G = (V, D)

[7,8,17]. In this paper, we consider primarily one-dimensional quantum walks, which
have been the subject of many studies [1–6,10–14,16–18,20].

It is important to clarify whenwe think of two quantumwalks as being the same.We
consider unitary equivalence of quantum walks in the sense of [17]. If two quantum
walks are unitary equivalent, then their digraphs and dimensions of their Hilbert spaces
are the same. Furthermore, the probability distributions of the quantum walks are also
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the same. Consequently, we can think of unitary equivalent quantum walks as being
the same.

Unitary equivalent classes of simple quantum walks have been shown to be para-
meterized by a single parameter [5]. We extend this result and show that every
translation-invariant one-dimensional quantum walk is unitary equivalent to a sim-
ple quantum walk. Moreover, we prove that every one-dimensional quantum walk is
unitary equivalent to one of Ambainis type.

The Szegedy walk, whose original form was introduced in [19], is one of the
well-investigated quantumwalks (see also [9,15–17]).We prove that every translation-
invariant one-dimensional quantum walk is a Szegedy walk and present a necessary
and sufficient condition for a one-dimensional quantum walk to be a Szegedy walk.

Relation between Szegedy walks and staggered quantum walks was considered
in [15]. The evolution operator of a staggered quantum walk is the product of two
(or more) self-adjoint unitary operators. On the other hand, the evolution operator
of a quantum walk considered in this paper is just a unitary operator. Therefore, the
approach used in this paper is different from that used in [15].

The remainder of this paper is organized as follows. We introduce some notations
for quantum walks in Sect. 2. In Sect. 3, we describe the unitary equivalence of
quantum walks. In Sect. 4, we reveal the form of standard quantum walks. In Sect. 5,
we prove that every one-dimensional quantum walk is unitary equivalent to one of
Ambainis type. In Sect. 6, we clarify when a one-dimensional quantum walk becomes
a Szegedy walk and show that every translation-invariant one-dimensional quantum
walk is a Szegedy walk.

2 Preliminaries

Let us recall the definition of quantum walks in the sense of [16,17].

Definition 1 Let V be a countable set, {Hv}v∈V a family of separable Hilbert spaces,
and U a unitary on H = ⊕

v∈V Hv . A quantum walk is a pair (U, {Hv}v∈V ), and we
write (U, {Hv}v∈V ) ∈ FQW .

A (pure) quantum state is represented by a unit vector in a Hilbert space. For λ ∈ R,
quantum states ξ and eiλξ in H are identified. Hence, quantum walks (U, {Hv}v∈V )

and (eiλU, {Hv}v∈V ) are also identified.
Let (U, {Hv}v∈V ) be a quantum walk. Pv ∈ B(H) is a projection onto Hv , and

Uuv ∈ B(H) is an operator defined by Uuv = PuU Pv for all u, v ∈ V . An operator
Uuv is also considered as an operator in B(Hv,Hu), and we use the same notation if
there is no confusion.

Given a quantum walk (U, {Hv}v∈V ) ∈ FQW , we can construct a digraph G =
(V, D). For vertices u, v ∈ V , the number of directed edges from v to u is denoted by
card(u, v); i.e.,

card(u, v) = card{e ∈ D : t (e) = u, o(e) = v},
where o(e) and t (e) are the origin and the terminus of the directed edge e, respectively,
and card indicates the cardinal number of a set.
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Definition 2 For a quantumwalk (U, {Hv}v∈V ) ∈ FQW , define the number of directed
edges from v to u by

card(u, v) = rankUuv.

Then, a digraph (V, D) is called a digraph of the quantum walk (U, {Hv}v∈V ).

Next, we define a translation-invariant quantum walk. Translation-invariant one-
dimensional quantumwalks are well known. Here, we extend the notion of translation-
invariant quantum walk to arbitrary digraphs.

Definition 3 A bijection γ on V is called an automorphism on a digraph (V, D) if

card(u, v) = card(γ (u), γ (v))

for all u, v ∈ V . A quantum walk (U, {Hv}v∈V ) is called translation invariant for γ if

Hv = Hγ (v) and Uuv = Uγ (u)γ (v)

for all u, v ∈ V .

A digraph G = (V, D) is called symmetric if card(u, v) = card(v, u) for any
u, v ∈ V . A digraph G = (V, D) is called locally finite if card{e ∈ D : o(e) = v}
and card{e ∈ D : t (e) = v} are finite for any v ∈ V .

Now, we introduce three classes of quantum walks.

Definition 4 A quantum walk (U, {Hv}v∈V ) ∈ FQW is called standard if the digraph
is locally finite and symmetric, and satisfies

card{e ∈ D : o(e) = v} = dimHv

for all v ∈ V .

Note that a symmetric digraph satisfies

card{e ∈ D : o(e) = v} = card{e ∈ D : t (e) = v}.

Definition 5 A quantum walk is called one-dimensional if dimHn = 2, and the
digraph of the quantum walk satisfies V = Z and

D = {(n, n + 1), (n + 1, n) : n ∈ Z}

with card(n, n + 1) = card(n + 1, n) = 1 for all n ∈ Z, i.e., the digraph has no
multiple edges.

We can canonically define an automorphism γ on the digraph of a one-dimensional
quantum walk, i.e., γ (n) = n + 1 for n ∈ Z.
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Definition 6 [16,17,19] A standard quantum walk (U, {Hv}v∈V ) is called a Szegedy
walk if there exist a self-adjoint unitary operator S on H, a real number λ ∈ R, and
unit vectors φv ∈ Hv such that eiλSU has the form

C =
⊕

v∈V
Cv,

where Cv = 2|φv〉〈φv| − IHv
on Hv . Here, the unitary operators S and C are called

shift and coin operators, respectively.

Since a self-adjoint unitary operator S satisfies S2 = I , a Szegedy walk is repre-
sented as

U = e−iλSC.

In the case of one-dimensional quantum walks, the operator Cv is a traceless self-
adjoint unitary operator.

Finally, we recall the probability distribution of a quantum walk.

Definition 7 Let (U, {Hv}v∈V ) ∈ FQW , and let �0 be an initial state in H. The
probability μ

�0
t (v) of finding the quantum walker at time t ∈ Z+ and at vertex v is

defined by

μ
�0
t (v) = ‖PvU

t�0‖2.

3 Unitary equivalence of quantum walks

In this section, we consider the unitary equivalence of quantum walks.

Definition 8 (U1, {H(1)
v1 }v1∈V1) ∈ FQW and (U2, {H(2)

v2 }v2∈V2) ∈ FQW are unitary

equivalent, written (U1, {H(1)
v1 }v1∈V1) � (U2, {H(2)

v2 }v2∈V2), if there exist a unitary W
from

⊕
v1∈V1 Hv1 to

⊕
v2∈V2 Hv2 and a bijection φ from V1 to V2 such that

WHv1 = Hφ(v1) and WU1W
∗ = U2.

We would like to regard unitary equivalent quantum walks as being the same. The
next proposition says that unitary equivalent quantum walks have the same digraphs.

Proposition 1 Let (U1, {H(1)
v1 }v1∈V1) and (U2, {H(2)

v2 }v2∈V2) be quantum walks, and
let G1 = (V1, D1) and G2 = (V2, D2) be their digraphs. If quantum walks
(U1, {H(1)

v1 }v1∈V1) and (U2, {H(2)
v2 }v2∈V2) are unitary equivalent by a unitary W, the

digraphs G1 = (V1, D1) and G2 = (V2, D2) are isomorphic; that is, there exists a
bijection φ from V1 to V2 such that

card(u, v) = card(φ(u), φ(v)).
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Unitary equivalent classes of one-dimensional quantum walks 3603

Proof From the definition of unitary equivalence, there exists a bijection φ from V1
to V2. A unitaryW mapsHv1 toHφ(v1), with the result thatWPv1W

∗ = Pφ(v1). Since
card(u, v) = rankPuU1Pv for u, v ∈ V1,

card(u, v) = rankPuU1Pv = rankWPuU1PvW
∗ = rankPφ(u)U2Pφ(v)

= card(φ(u), φ(v)).

Hence, we obtain the proposition. �	

When (U1, {H(1)
v1 }v1∈V1) ∈ FQW and (U2, {H(2)

v2 }v2∈V2) ∈ FQW are unitary equiva-
lent, we can identify V2 with V1 using the bijection φ, and write V = V1. Similarly, D1

and D2, andH(1)
v andH(2)

φ(v) can be identified, and we write D = D1 andHv = H(1)
v .

Here, the unitary W can be decomposed as

W =
⊕

v∈V
Wv,

where Wv = PvWPv .
The following corollary is an immediate consequence of Proposition 1.

Corollary 1 Let quantum walks (U1, {Hv}v∈V ) and (U2, {Hv}v∈V ) be unitary equiv-
alent. If (U1, {Hv}v∈V ) is standard or one-dimensional, then so is (U2, {Hv}v∈V ).

Unitary equivalence also preserves the properties of a Szegedy walk.

Proposition 2 Let quantum walks (U1, {Hv}v∈V ) and (U2, {Hv}v∈V ) be unitary
equivalent by a unitary W. If (U1, {Hv}v∈V ) is a Szegedy walk, then so is
(U2, {Hv}v∈V ).

Proof By the assumption, there exist a self-adjoint unitary S on H, a real number
λ ∈ R, and unit vectors φv ∈ Hv such that eiλSU1 has the form

C =
⊕

v∈V
Cv,

where Cv = 2|φv〉〈φv| − IHv
. Then, WSW∗ is also a self-adjoint unitary on H.

Moreover,

eiλWSW∗U2 = eiλWSU1W
∗ = W

⊕

v∈V
CvW

∗ =
⊕

v∈V
2|Wφv〉〈Wφv| − IHv

,

from which it follows that (U2, {Hv}v∈V ) is a Szegedy walk. �	
In general, a quantumwalk that is unitary equivalent to a translation-invariant quan-

tum walk is not translation invariant. However, if we add a condition, then translation
invariance is also preserved.
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Proposition 3 Let (U, {Hn}n∈Z) be a translation-invariant one-dimensional quantum
walk such that Hn = Hn+1 for all n ∈ Z, and let W be a unitary on H that has the
form

W =
⊕

n∈Z
Wn,

where Wn is a unitary on Hn, and Wn = Wn+1 for all n ∈ Z. The quantum walk
(WUW∗, {Hn}n∈Z) is a translation-invariant one-dimensional quantum walk.

Proof It is sufficient to prove that WUW∗ is translation invariant; i.e., PnWUW∗Pm
= Pγ (n)WUW∗Pγ (m). Since U is translation invariant,

PnWUW∗Pm = WnPnUPmW
∗
m = WnUnmW

∗
m = Wγ (n)Uγ (n)γ (m)W

∗
γ (m)

= Wγ (n)Pγ (n)U Pγ (m)W
∗
γ (m) = Pγ (n)WUW∗Pγ (m).

Hence, WUW∗ is translation invariant. �	
Finally, we consider the probability distribution of a quantum walk. This does not

change under unitary equivalence.

Proposition 4 Let quantum walks (U1, {Hv}v∈V ) and (U2, {Hv}v∈V ) be unitary
equivalent by a unitary W, let �0 and W�0 inH be an initial state of (U1, {Hv}v∈V )

and (U2, {Hv}v∈V ), respectively, and letμ(1),�0
t andμ

(2),W�0
t be the probability distri-

butions of the quantum walks (U1, {Hv}v∈V ) and (U2, {Hv}v∈V ), respectively. Then,

μ
(1),�0
t (v) = μ

(2),W�0
t (v)

for all t ∈ Z+ and v ∈ V .

Proof By the definition,

μ
(2),W�0
t (v) = ‖Pv(WU1W

∗)tW�0‖2 = ‖WPvU
t
1�0‖2 = ‖PvU

t
1�0‖2

= μ
(1),�0
t (v).

Therefore, we obtain the proposition. �	
One of the primary topics of study in connection with quantum walks is the prob-

ability distributions of quantum walks, by virtue of which we can think of unitary
equivalent quantum walks as being the same. When we consider other properties of
quantum walks, additional properties, such as Proposition 3, must be considered.

4 Standard quantum walk

This study investigates one-dimensional quantum walks and Szegedy walks. Since
both kinds of quantum walk are standard, we clarify the form of a standard quantum
walk.

123



Unitary equivalent classes of one-dimensional quantum walks 3605

Theorem 1 Let (U, {Hv}v∈V ) ∈ FQW be a standard quantum walk. There exist
orthonormal bases {ξe}e∈D and {ζe}e∈D of H with ξe ∈ Ht (e) and ζe ∈ Ho(e), such
that

U =
∑

e∈D
|ξe〉〈ζe|.

Moreover, Uuv has the form

Uuv =
∑

e:t (e)=u,o(e)=v

|ξe〉〈ζe|

for any u, v ∈ V .

Proof Since rankUuv = card{e ∈ V : t (e) = u, o(e) = v}, we can set {ξe : t (e) =
u, o(e) = v, e ∈ D} ⊂ Hu = Ht (e) as an orthonormal basis of ranUuv for all u, v ∈ V ,
where ranUuv is the range of Uuv . Then, {ξe : o(e) = v, e ∈ D} is an orthonormal
system ofH. An operator U Pv is a partial isometry with an initial projection Pv . The
range of this operator is contained in

⊕
u∈V ranUuv = span{ξe : o(e) = v, e ∈ D},

that is,
ranU Pv ⊂ span{ξe : o(e) = v, e ∈ D}. (1)

From the definition of a standard quantum walk, dimHv = card{e ∈ D : o(e) = v}.
Since the rank of the range projection ofU Pv is equal to the rank of the initial projection
Pv, rankU Pv = card{e ∈ D : o(e) = v}. Considering the dimensions of the subspaces
in (1),

ranUPv = span{ξe : o(e) = v, e ∈ D}.

Moreover, the range projectionUPvU∗ leaves span{ξe : o(e) = v, e ∈ D} unchanged.
Therefore,U PvU∗ξe = ξe for all e ∈ Dwith o(e) = v, and this implies that PvU∗ξe =
U∗ξe, with the result that U∗ξe ∈ Hv = Ho(e).

Let ζe = U∗ξe. Since {ξe : o(e) = v, e ∈ D} is an orthonormal system, {ζe : o(e) =
v, e ∈ D} is an orthonormal basis ofHv . Hence, {ζe : e ∈ D} is an orthonormal basis
of H. Since U is unitary and Uζe = ξe, {ξe : e ∈ D} is also an orthonormal basis of
H, and

U =
∑

e∈D
|ξe〉〈ζe|.

By the definition of Uuv , the equation

Uuv =
∑

e:t (e)=u,o(e)=v

|ξe〉〈ζe|

also holds. �	
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Corollary 2 For a standard quantum walk (U, {Hv}v∈V ) ∈ FQW , there exist a self-
adjoint unitary operator S on H and a unitary operator Tv on Hv(v ∈ V ) such that
U = ST , where T = ⊕

v∈V Tv .

Proof Since the digraph of a standard quantum walk is symmetric, there exists a
bijection on D, denoted by e �→ ē, for which t (e) = o(ē), o(e) = t (ē), and ¯̄e = e.

By Theorem 1, U can be written as

U =
∑

e∈D
|ξe〉〈ζe|.

Define S by Sξe = ξē.S is a self-adjoint unitary; hence, S2 = I . Then,

SU =
∑

e∈D
|ξē〉〈ζe| =

⊕

v∈V

∑

o(e)=v

|ξē〉〈ζe|.

The operator

Tv =
∑

o(e)=v

|ξē〉〈ζe|

satisfies the assertion. �	
Now, to clarify the explicit form of a shift operator S of a Szegedy walk, we present

the next lemma.

Lemma 1 Let (U, {Hv}v∈V ) be a Szegedy walk with a shift operator S and a coin
operator C, such that U = eiλSC for some λ ∈ R. Then,

S(ranUuv) = ranUvu

for any u, v ∈ V .

Proof By Theorem 1, we can assume that there exist orthonormal bases {ξe}e∈D and
{ζe}e∈D of H with ξe ∈ Ht (e) and ζe ∈ Ho(e), such that

U =
∑

e∈D
|ξe〉〈ζe|.

Then, ranUuv = span{ξe : t (e) = u, o(e) = v, e ∈ D}. Since the coin operator C is
written as a direct sum of Cv ,

Sξe = SUζe = eiλCζe ∈ Hv = Ho(e)

for all e ∈ D with t (e) = u and o(e) = v. This implies that S(ranUuv) ⊂ Hv .
Furthermore, by the form of U,Hv is decomposed as

Hv =
⊕

w∈V
ranUvw.
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Here,

ranUuv = S2(ranUuv) ⊂ SHv =
⊕

w∈V
S(ranUvw).

Since S(ranUvw) ⊂ Hw and ranUuv ⊂ Hu, ranUuv ⊂ S(ranUvu). Considering the
inversion formula,

S(ranUuv) = ranUvu

for all u, v ∈ V . �	
Using this lemma, we have the next theorem.

Theorem 2 Let (U, {Hv}v∈V ) be a Szegedy walk with a shift operator S and a coin
operator C, such that U = eiλSC for some λ ∈ R. There exist orthonormal bases
{ξe}e∈D and {ζe}e∈D of H with ξe ∈ Ht (e) and ζe ∈ Ho(e) such that

U =
∑

e∈D
|ξe〉〈ζe| and S =

∑

e∈D
|ξe〉〈ξē|.

Proof By Theorem 1, we can assume that there exist orthonormal bases {ξe}e∈D and
{ζe}e∈D of H with ξe ∈ Ht (e) and ζe ∈ Ho(e) such that

U =
∑

e∈D
|ξe〉〈ζe|.

By Lemma 1, S(ranUuv) = ranUvu . Moreover, in the proof of Theorem 1, the choice
of an orthonormal basis of ranUuv is arbitrary. Therefore, for an orthonormal basis
{ξe : t (e) = u, o(e) = v, e ∈ D} of ranUuv , we can redefine ξē = Sξe. Then,
{ξē : t (e) = u, o(e) = v, e ∈ D} is an orthonormal basis of ranUvu . Consequently,
we can obtain orthonormal bases {ξe}e∈D and {ζe}e∈D of H with ξe ∈ Ht (e) and
ζe ∈ Ho(e) such that

U =
∑

e∈D
|ξe〉〈ζe| and S =

∑

e∈D
|ξe〉〈ξē|.

This completes the proof. �	

5 One-dimensional quantum walk

In this section, we consider a one-dimensional quantum walk (U, {Hn}n∈Z). With-
out loss of generality, we can assume that Hn = C

2 for all n ∈ Z. Here,
D = {(n, n + 1), (n + 1, n) : n ∈ Z}. By Theorem 1, there exist orthonormal
bases {ξn,n+1, ξn+1,n}n∈Z and {ζn,n+1, ζn+1,n}n∈Z ofH with ξn,n+1, ζn+1,n ∈ Hn and
ξn+1,n, ζn,n+1 ∈ Hn+1 such that
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U =
∑

n∈Z

(|ξn,n+1〉〈ζn,n+1| + |ξn+1,n〉〈ζn+1,n|
)

=
∑

n∈Z

(|ξn−1,n〉〈ζn−1,n| + |ξn+1,n〉〈ζn+1,n|
)
.

There is a substantial literature on one-dimensional quantum walks, which fall
into four principal types. The first type is represented as follows. Let {en1 , en2} be a
canonical orthonormal basis ofHn = C

2. We consider eni as |n〉|i〉. We take ξn−1,n =
en−1
1 , ξn+1,n = en+1

2 , and ζn−1,n = ānen1 + b̄nen2 , ζn+1,n = c̄nen1 + d̄nen2 . Then,

Un−1,n = |en−1
1 〉〈ānen1 + b̄ne

n
2 | = |n − 1〉〈n| ⊗

[
an bn
0 0

]

Un+1,n = |en+1
2 〉〈c̄nen1 + d̄ne

n
2 | = |n + 1〉〈n| ⊗

[
0 0
cn dn

]

.

A quantum walk of this type is said to be of Ambainis type [2,3]. A set of all quantum
walks of this type is denoted by C1. Note that

[
an bn
cn dn

]

is unitary.
The second type is represented by taking ξn−1,n = ane

n−1
1 + cne

n−1
2 , ξn+1,n

= bne
n+1
1 + dne

n+1
2 , and ζn−1,n = en1 , ζn+1,n = en2 , such that

Un−1,n = |anen−1
1 + cne

n−1
2 〉〈en1 | = |n − 1〉〈n| ⊗

[
an 0
cn 0

]

Un+1,n = |bnen+1
1 + dne

n+1
2 〉〈en2 | = |n + 1〉〈n| ⊗

[
0 bn
0 dn

]

.

A quantum walk of this type is said to be of Gudder type [6]. A set of all quantum
walks of this type is denoted by C2.

Similarly, the third type is represented by taking ξn−1,n = en−1
2 , ξn+1,n = en+1

1 ,
and ζn−1,n = c̄nen1 + d̄nen2 , ζn+1,n = ānen1 + b̄nen2 , such that

Un−1,n = |en−1
2 〉〈c̄nen1 + d̄ne

n
2 | = |n − 1〉〈n| ⊗

[
0 0
cn dn

]

Un+1,n = |en+1
1 〉〈ānen1 + b̄ne

n
2 | = |n + 1〉〈n| ⊗

[
an bn
0 0

]

.

A set of all quantumwalks of this type is denoted by C3. The fourth type is represented
by taking ξn−1,n = bne

n−1
1 + dne

n−1
2 , ξn+1,n = ane

n+1
1 + cne

n+1
2 , and ζn−1,n =

en2 , ζn+1,n = en1 , such that
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Un−1,n = |bnen−1
1 + dne

n−1
2 〉〈en2 | = |n − 1〉〈n| ⊗

[
0 bn
0 dn

]

Un+1,n = |anen+1
1 + cne

n+1
2 〉〈en1 | = |n + 1〉〈n| ⊗

[
an 0
cn 0

]

.

A set of all quantum walks of this type is denoted by C4.
Summarizing, we have four types of one-dimensional quantum walks:

(1) Un−1,n = |n − 1〉〈n| ⊗
[
an bn
0 0

]

, Un+1,n = |n + 1〉〈n| ⊗
[
0 0
cn dn

]

,

(2) Un−1,n = |n − 1〉〈n| ⊗
[
an 0
cn 0

]

, Un+1,n = |n + 1〉〈n| ⊗
[
0 bn
0 dn

]

,

(3) Un−1,n = |n − 1〉〈n| ⊗
[
0 0
cn dn

]

, Un+1,n = |n + 1〉〈n| ⊗
[
an bn
0 0

]

,

(4) Un−1,n = |n − 1〉〈n| ⊗
[
0 bn
0 dn

]

, Un+1,n = |n + 1〉〈n| ⊗
[
an 0
cn 0

]

.

These four types of one-dimensional quantum walks are also represented as follows:

(1) U =
∑

n∈Z

(
|en−1
1 〉〈ζn−1,n| + |en+1

2 〉〈ζn+1,n|
)

,

(2) U =
∑

n∈Z

(|ξn−1,n〉〈en1 | + |ξn+1,n〉〈en2 |
)
,

(3) U =
∑

n∈Z

(
|en−1
2 〉〈ζn−1,n| + |en+1

1 〉〈ζn+1,n|
)

,

(4) U =
∑

n∈Z

(|ξn−1,n〉〈en2 | + |ξn+1,n〉〈en1 |
)
.

Theorem 3 Let (U, {Hn}n∈Z) be a one-dimensional quantum walk. For each
k = 1, 2, 3, 4, there exists a one-dimensional quantum walk in Ck that is unitary
equivalent to (U, {Hn}n∈Z).

Proof By Theorem 1, U can be written as

U =
∑

n∈Z

(|ξn−1,n〉〈ζn−1,n| + |ξn+1,n〉〈ζn+1,n|
)
,

where {ξn,n+1, ξn+1,n}n∈Z and {ζn,n+1, ζn+1,n}n∈Z are orthonormal bases of H with
ξn,n+1, ζn+1,n ∈ Hn and ξn+1,n, ζn,n+1 ∈ Hn+1.

First, we prove that (U, {Hn}n∈Z) is unitary equivalent to a quantum walk in C1.
Let

Wn = |en1〉〈ξn,n+1| + |en2〉〈ξn,n−1|
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3610 H. Ohno

for all n ∈ Z. It is easily seen that Wn is a unitary on Hn , with the result that W =⊕
n∈Z Wn is a unitary on H that satisfies WHn = Hn . Moreover, from a direct

calculation,

WUW ∗ = W

(
∑

n∈Z

(|ξn−1,n〉〈ζn−1,n| + |ξn+1,n〉〈ζn+1,n|
)
)

W ∗

=
∑

n∈Z

(
|en−1
1 〉〈Wζn−1,n| + |en+1

2 〉〈Wζn+1,n|
)

.

Since W = ⊕
n∈Z Wn is unitary, {Wζn−1,n,Wζn+1,n} is an orthonormal basis of

Hn . Hence, (WUW ∗, {Hn}n∈Z) is in C1, and we obtain that (U, {Hn}n∈Z) is unitary
equivalent to a quantum walk in C1.

Second, we prove that (U, {Hn}n∈Z) is unitary equivalent to a quantum walk in C2.
Let

Wn = |en1〉〈ζn−1,n| + |en2〉〈ζn+1,n|

for all n ∈ Z. It is easily seen that Wn is a unitary on Hn , with the result that W =⊕
n∈Z Wn is a unitary on H. Moreover, from a direct calculation, we have

WUW∗ = W

(
∑

n∈Z

(|ξn−1,n〉〈ζn−1,n| + |ξn+1,n〉〈ζn+1,n|
)
)

W ∗

=
∑

n∈Z

(|Wξn−1,n〉〈en1 | + |Wξn+1,n〉〈en2 |
)
.

Since W = ⊕
n∈Z Wn is unitary, {Wξn,n−1,Wξn,n+1} is an orthonormal basis of

Hn . Hence, (WUW ∗, {Hn}n∈Z) is in C2, and we obtain that (U, {Hn}n∈Z) is unitary
equivalent to a quantum walk in C2.

The proofs of the remaining parts are similar to these. �	
As a corollary of the theorem, we have the following.

Corollary 3 Let (U, {Hn}n∈Z) be a translation-invariant one-dimensional quantum
walk. For each k = 1, 2, 3, 4, there exists a translation-invariant one-dimensional
quantum walk in Ck that is unitary equivalent to (U, {Hn}n∈Z).

Proof By Theorem 1, U can be written as

U =
∑

n∈Z

(|ξn−1,n〉〈ζn−1,n| + |ξn+1,n〉〈ζn+1,n|
)
,

where {ξn,n+1, ξn+1,n}n∈Z and {ζn,n+1, ζn+1,n}n∈Z are orthonormal bases of H with
ξn,n+1, ζn+1,n ∈ Hn and ξn+1,n, ζn,n+1 ∈ Hn+1. Moreover, by translation invariance,
we can assume that

ξn,n+1 = ξn−1,n, ξn+1,n = ξn,n−1, ζn,n+1 = ζn−1,n and ζn+1,n = ζn,n−1
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Unitary equivalent classes of one-dimensional quantum walks 3611

for all n ∈ Z. Therefore, in the proof of Theorem 3, Wn = Wn+1 for all n ∈ Z. Then,
the assertion of the corollary follows from Proposition 3. �	

6 One-dimensional Szegedy walk

In this section, we consider a necessary and sufficient condition for a one-dimensional
quantumwalk to be a Szegedy walk. Let (U, {Hn}n∈Z) be a one-dimensional quantum
walk. Considering the unitary equivalence, we can assume Hn = C

2 for all n ∈ Z

without loss of generality. By Theorem 3, we can assume that U is represented as

U =
∑

n∈Z

(
|en−1
1 〉〈ζn−1,n| + |en+1

2 〉〈ζn+1,n|
)

,

where {ζn−1,n, ζn+1,n} is an orthonormal basis ofHn . Here,

Un−1,n = |en−1
1 〉〈ζn−1,n| = |n − 1〉〈n| ⊗

[
an bn
0 0

]

,

Un+1,n = |en+1
2 〉〈ζn+1,n| = |n + 1〉〈n| ⊗

[
0 0
cn dn

]

,

where the matrix

[
an bn
cn dn

]

is unitary for all n ∈ Z.
If this is a Szegedy walk, there exists a shift operator S such that eiλSU is a

direct sum of traceless self-adjoint unitary operators for some λ ∈ R. By Lemma 1,
S(ranUn,n+1) = ranUn+1,n . Moreover, ranUn+1,n = Cen+1

2 and ranUn,n+1 = Cen1 .
Therefore, Sen1 = eiθn en+1

2 for some θn ∈ R. Consequently, S has the form

S =
∑

n∈Z

(
eiθn |en+1

2 〉〈en1 | + e−iθn |en1〉〈en+1
2 |

)
. (2)

Then, SU is described as

SU =
⊕

n∈Z

[
e−iθn cn e−iθn dn
eiθn−1an eiθn−1bn

]

.

Let cn = eiμn rn and bn = eiνn rn with rn ≥ 0 and μn, νn ∈ R. Then,

eiλSU =
⊕

n∈Z

[
ei(−θn+λ+μn)rn ei(−θn+λ)dn
ei(θn−1+λ)an ei(θn−1+λ+νn)rn

]

. (3)

123



3612 H. Ohno

When rn �= 0, the 2 × 2 matrices on the right-hand side are traceless self-adjoint
unitary if and only if

− θn + λ + μn = 0 (mod π), −θn + μn = θn−1 + νn + π (mod 2π). (4)

Indeed, assume that the 2 × 2 matrices on the right-hand side of (3) are traceless
self-adjoint unitary. Then, the diagonal entries are real, and the sum of them is zero.
Therefore,

−θn + λ + μn = θn−1 + λ + νn = 0 (mod π),

and

−θn + λ + μn = θn−1 + λ + νn + π (mod 2π).

These equations imply (4). Conversely, assume (4). Then, the matrices in (3) are
traceless, and their diagonal entries are real. Since SU is unitary by the definitions of
S and U , the matrices in (3) are also unitary. It is easy to see that a 2 × 2 traceless
unitary matrix with real and nonzero diagonal entries is self-adjoint.

In the case rn = 0, |an| = |dn| = 1, because SU is unitary. Let an = eiσn and
dn = eiτn for some σn, τn ∈ R. Then, (3) is represented as

eiλSU =
⊕

n∈Z

[
0 ei(−θn+λ+τn)

ei(θn−1+λ+σn) 0

]

.

Therefore, the 2 × 2 matrices on the right-hand side are traceless self-adjoint unitary
if and only if

θn−1 + λ + σn = θn − λ − τn (mod 2π). (5)

Hence, θn and λ satisfy conditions (4) and (5).
Conversely, if there exist θn and λ satisfying these conditions, the quantum walk

(U, {Hn}n∈Z) is a Szegedy walk. Indeed, define a shift operator S by (2). Then, it is
easily seen that eiλSU is a direct sum of traceless self-adjoint unitary operators.

Therefore, (U, {Hn}n∈Z) is a Szegedy walk if and only if the above simultaneous
equations for λ and θn have a solution.

Now, we have the next theorem.

Theorem 4 Let (U, {Hn}n∈Z) be a one-dimensional quantum walk given by

Un−1,n = |en−1
1 〉〈ζn−1,n| = |n − 1〉〈n| ⊗

[
eiσn sn eiνn rn
0 0

]

,

Un+1,n = |en+1
2 〉〈ζn+1,n| = |n + 1〉〈n| ⊗

[
0 0

eiμn rn eiτn sn

]

, (6)
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where rn, sn ≥ 0 and μn, νn, σn, τn ∈ R, and let eiδn (δn ∈ R) be the determinant of

Un =
[
eiσn sn eiνn rn
eiμn rn eiτn sn

]

.

(U, {Hn}n∈Z) is a Szegedy walk if and only if the simultaneous equations

θn − θn−1 − 2λ = δn (mod 2π) (7)

for all n ∈ Z and
θn − λ = μn (mod π) when rn �= 0 (8)

with respect to λ and {θn}n∈Z have a solution.

Proof The determinant of Un is calculated as

eiδn = ei(σn+τn)s2n − ei(μn+νn)r2n .

Since s2n + r2n = 1 and |eiδn | = 1,

δn = σn + τn (if sn �= 0) and δn = μn + νn + π (if rn �= 0)

modulo 2π . Hence, equation (5) is calculated as

θn − θn−1 − 2λ = σn + τn = δn (mod 2π).

On the other hand, the first equation in (4) is equivalent to

−2θn + 2λ + 2μn = 0 (mod 2π),

with the result that

−θn + μn = θn − 2λ − μn (mod 2π).

Therefore, the second equation in (4) is calculated as

θn − θn−1 − 2λ = μn + νn + π = δn (mod 2π).

Equation (8) is equivalent to the first equation in (4). Consequently, the simultaneous
equations (4) and (5) have a solution if and only if the simultaneous equations (7) and
(8) have a solution. �	

Another necessary and sufficient condition for a one-dimensional quantum walk to
be a Szegedy walk is easier to check in some cases.
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Corollary 4 Let {nk}k∈� ⊂ Z be numbers indexed by � ⊂ Z that satisfy rnk �= 0
with nk < nk+1. Suppose that � �= ∅ and 0 ∈ �. A one-dimensional quantum walk
(U, {Hn}n∈Z) given by (6) is a Szegedy walk if and only if there exists η ∈ R such that

μnk−1 + νnk +
nk−1∑

n=nk−1+1

δn = η(nk − nk−1) (mod π)

for all k ∈ � with k − 1 ∈ �.

Proof First, we assume that the simultaneous equations (7) and (8) have a solution
{λ, θn}. By (7)

θnk − θnk−1 =
nk−1∑

n=nk−1

(θn+1 − θn) = 2λ(nk − nk−1) +
nk−1∑

n=nk−1

δn+1

= 2λ(nk − nk−1) + μnk + νnk +
nk−1∑

n=nk−1+1

δn (mod π). (9)

Since θnk and θnk−1 satisfy (8),

μnk − μnk−1 = 2λ(nk − nk−1) + μnk + νnk +
nk−1∑

n=nk−1+1

δn (mod π),

with the result that

μnk−1 + νnk +
nk−1∑

n=nk−1+1

δn = −2λ(nk − nk−1) (mod π).

On the other hand, assume that there exists η ∈ R such that

μnk−1 + νnk +
nk−1∑

n=nk−1+1

δn = η(nk − nk−1) (mod π) (10)

for all k ∈ � with k − 1 ∈ �. Set λ = −η/2, θn0 = μn0 + λ, and

θn =
{

θn−1 + 2λ + δn (n > n0)
θn+1 − 2λ − δn+1 (n < n0)

,

inductively. Then, λ and θn satisfy (7). Moreover, if θnk−1 with nk−1 ≥ n0 satisfies
(8), then θnk also satisfies (8). Indeed, by (9) and (10),
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θnk = θnk−1 + 2λ(nk − nk−1) + μnk + νnk +
nk−1∑

n=nk−1+1

δn

= θnk−1 + μnk − μnk−1 = λ + μnk (mod π).

Similarly, if θnk with nk ≤ n0 satisfies (8), then θnk−1 also satisfies (8). Indeed, by (9)
and (10),

θnk−1 = θnk − 2λ(nk − nk−1) − μnk − νnk −
nk−1∑

n=nk−1+1

δn

= θnk − μnk + μnk−1 = λ + μnk−1 (mod π).

This completes the proof. �	
As a special case of Corollary 4, we have the next corollary.

Corollary 5 A one-dimensional quantumwalk (U, {Hn}n∈Z) given by (6)with rn �= 0
for all n ∈ Z is a Szegedy walk if and only if there exists η ∈ R such that

μn−1 + νn = η (mod π).

When rn = 0 for all n ∈ Z, a one-dimensional quantum walk is a Szegedy walk.

Corollary 6 A one-dimensional quantumwalk (U, {Hn}n∈Z) given by (6)with rn = 0
for all n ∈ Z is a Szegedy walk.

Proof Set λ = 0, θ0 = 0, and

θn =
{

θn−1 + δn (n ≥ 1)
θn+1 − δn+1 (n ≤ −1)

,

inductively. This is a solution of simultaneous equations (7). �	
Using these corollaries, we prove that every translation-invariant one-dimensional

quantum walk is a Szegedy walk.

Corollary 7 A translation-invariant one-dimensional quantum walk is a Szegedy
walk.

Proof If rn = 0 for all n ∈ Z, then it is a Szegedy walk by Corollary 6. If rn �= 0
for all n ∈ Z, then μn−1 + νn is a constant, because the quantum walk is translation
invariant. Therefore, it is a Szegedy walk by Corollary 5. �	

Now, we consider some known models of one-dimensional quantum walks.

Corollary 8 A one-dimensional quantumwalk (U, {Hn}n∈Z)with 2 coins [4,10], i.e.,

Un−1,n = |n − 1〉〈n| ⊗
[
a+ eiν+r+
0 0

]

(n ≥ 0),
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Un+1,n = |n + 1〉〈n| ⊗
[

0 0
eiμ+r+ d+

]

(n ≥ 0),

Un−1,n = |n − 1〉〈n| ⊗
[
a− eiν−r−
0 0

]

(n < 0),

Un+1,n = |n + 1〉〈n| ⊗
[

0 0
eiμ−r− d−

]

(n < 0),

where r+, r− > 0, is a Szegedy walk if and only if

μ+ = μ− (mod π), ν+ = ν− (mod π). (11)

Proof By Corollary 5, (U, {Hn}n∈Z) is a Szegedy walk if and only if there exists
η ∈ R such that

μ+ + ν+ = μ− + ν+ = μ− + ν− = η (mod π).

This condition is equivalent to

μ+ = μ− (mod π), ν+ = ν− (mod π).

�	
Using Corollary 5, we have following two corollaries.

Corollary 9 The following quantum walk, considered in [12],

Un−1,n = |n − 1〉〈n| ⊗ 1√
2

[
eiωn 1
0 0

]

, Un+1,n = |n + 1〉〈n| ⊗ 1√
2

[
0 0
1 −e−iωn

]

is a Szegedy walk.

Corollary 10 The following quantum walk, considered in [13,14],

Un−1,n = |n − 1〉〈n| ⊗ 1√
2

[
1 eiωn

0 0

]

, Un+1,n = |n + 1〉〈n| ⊗ 1√
2

[
0 0

−e−iωn 1

]

is a Szegedy walk if and only if there exists η ∈ R such that

−ωn−1 + ωn = η (mod π).

Using Theorem 4, we can prove that a quantumwalk of the Shikano–Katsura model
[18] is a Szegedy walk.

Corollary 11 A quantum walk of the Shikano–Katsura model, i.e.,

Un−1,n = |n − 1〉〈n| ⊗
[
cos(2παn) − sin(2παn)

0 0

]

,
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Un+1,n = |n + 1〉〈n| ⊗
[

0 0
sin(2παn) cos(2παn)

]

is a Szegedy walk for any α ∈ R.

Proof By the definition ofU, δn is 0, andμn is 0 or π for all n ∈ Z. Set λ = 0, θn = 0
for all n ∈ Z. This is a solution of (7) and (8). �	
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