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Abstract We study on the tripartite entanglement dynamics when each party is ini-
tially entangled with other parties, but they locally interact with their own Markovian
or non-Markovian environment. First we consider three GHZ-type initial states, all
of which have GHZ-symmetry provided that the parameters are chosen appropriately.
However, this symmetry is broken due to the effect of environment. The corresponding
π -tangles, one of the tripartite entanglement measures, are analytically computed at
arbitrary time. ForMarkovian case while the tripartite entanglement for type I exhibits
an entanglement sudden death, the dynamics for the remaining cases decays normally
in time with the half-life rule. For non-Markovian case the revival phenomenon of
entanglement occurs after complete disappearance of entanglement. We also consider
two W -type initial states. For both cases the π -tangles are analytically derived. The
revival phenomenon also occurs in this case. On the analytical ground the robustness
or fragility issue against the effect of environment is examined for both GHZ-type and
W -type initial states.

Keywords Markovian environment · Non-Markovian environment · Tripartite
entanglement dynamics

1 Introduction

Entanglement [1,2] is one of the important concepts from fundamental aspect of
quantummechanics andpractical aspect of quantum information processing.As shown
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for last two decades it plays a crucial role in quantum teleportation [3], superdense
coding [4], quantum cloning [5], and quantum cryptography [6,7]. It is also quantum
entanglement, which makes the quantum computer 1 outperform the classical one [9].

Quantummechanics is a physics, which is valid for ideally closed system. However,
real physical systems inevitably interact with their surroundings. Thus, it is important
to study how the environment modifies the dynamics of given physical system. There
are two different tools for describing the evolution of open quantum system: quantum
operation formalism [1] and master equation approach [10]. Both tools have their own
merits.

Since it is known that quantum system loses quantum properties by contacting the
environment [11], we expect that the degradation of entanglement occurs [12–14].
Sometimes entanglement exhibits an exponential decay in time by successive halves.
Sometimes, however, the entanglement sudden death (ESD) occurs when the entan-
gled multipartite quantum system is embedded in Markovian environments [15–18].
This means that the entanglement is completely disentangled at finite times. This ESD
phenomenon has been revealed experimentally [19,20]. When the ESD occurs, it is
natural to ask where the lost entanglement goes. It was found that when the entan-
glement of given quantum system suddenly disappears, the reservoir entanglement
suddenly appears, which is called entanglement sudden birth (ESB) [21]. Since we do
not consider the degrees of freedom for the environment, we do not examine the ESB
phenomenon in this paper.

The dynamics of entanglement was also examined when the physical system is
embedded in non-Markovian environment [10,22]. It has been shown that there is a
revival of entanglement after a finite period of time of its complete disappearance.
This is mainly due to the memory effect of the non-Markovian environment. This
phenomenon was shown in Ref. [22] by making use of the two-qubit system and
concurrence [23,24] as a bipartite entanglement measure. Subsequently, many works
have been done to quantify the non-Markovianity [25–30].

In this paper we consider the entanglement dynamics when the qubit system
interacts with the Markovian or non-Markovian environment. So far this issue was
investigated by making use of the bipartite system. Recently, the tripartite entangle-
ment dynamics was also explored in Ref. [30] numerically. Since entanglement is an
important physical resource in the quantum information processing, it is important
to control the entanglement dynamics when the environment is present. In order to
control the entanglement it is crucial to derive the entanglement analytically in the
entire range of time. For example, analytic derivation for the bipartite entanglement
dynamics enables us to explore the entanglement invariants [18,31]. It is also possible
to discuss the robustness or fragility issue against the environment by exploiting the
analytical results. Thus, we will explore the tripartite entanglement dynamics in this
paper on the analytical ground. For simplicitywe choose the physical setting, i.e., there
is no interaction between qubit and each qubit interacts with its own reservoir. We will
compute the entanglement at arbitrary time for three types of initial Greenberger–

1 The current status of quantum computer technology was reviewed in Ref. [8].
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Horne–Zeilinger (GHZ) states [32] and for two types of initial W -states [33] in the
presence of the Markovian or non-Markovian environment.

Typical tripartite entanglement measures are residual entanglement [34] and
π -tangle [35]. For three-qubit pure state |ψ〉 = ∑1

i, j,k=0 ai jk |i jk〉 the residual entan-
glement τABC becomes

τABC = 4|d1 − 2d2 + 4d3|, (1.1)

where

d1 = a2000a
2
111 + a2001a

2
110 + a2010a

2
101 + a2100a

2
011,

d2 = a000a111a011a100 + a000a111a101a010 + a000a111a110a001
+ a011a100a101a010 + a011a100a110a001 + a101a010a110a001,

d3 = a000a110a101a011 + a111a001a010a100. (1.2)

Thus, the residual entanglement of any three-qubit pure state can be computed by
making use of Eq. (1.1). Although the residual entanglement can detect the GHZ-type
entanglement, it cannot detect the W -type entanglement:

τABC (GHZ) = 1 τABC (W ) = 0, (1.3)

where

|GHZ〉 = 1√
2

(|000〉 + |111〉) |W 〉 = 1√
3

(|001〉 + |010〉 + |100〉) . (1.4)

For mixed states the residual entanglement is defined by a convex roof method
[36,37] as follows:

τABC (ρ) = min
∑

i

piτABC (ρi ), (1.5)

where the minimum is taken over all possible ensembles of pure states. The pure state
ensemble corresponding to the minimum τABC is called the optimal decomposition.
It is in general difficult to derive the optimal decomposition for arbitrary mixed states.
Hence, analytic computation of the residual entanglement can be done for rare cases
[38–42]. Furthermore, recently, three-tangle2 τ3 of the whole GHZ-symmetric states
[43] was explicitly computed [44].

Theπ -tangle defined inRef. [35] is easier for analytic computation than the residual
entanglement (or three-tangle) because it does not rely on the convex roof method.
The π -tangle is defined in terms of the global negativities [45]. For a three-qubit state
ρ they are given by

N A = ||ρTA || − 1, N B = ||ρTB || − 1, NC = ||ρTC || − 1, (1.6)

2 In this paper we will call τ3 = √
τABC three-tangle and τ23 = τABC residual entanglement.
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where ||R|| = Tr
√
RR†, and the superscripts TA, TB , and TC represent the partial

transposes of ρ with respect to the qubits A, B, and C , respectively. Then, the π -
tangle is defined as

πABC = 1

3
(πA + πB + πC ), (1.7)

where

πA = N 2
A(BC) −

(
N 2

AB + N 2
AC

)
πB = N 2

B(AC) −
(
N 2

AB + N 2
BC

)

πC = N 2
(AB)C −

(
N 2

AC + N 2
BC

)
. (1.8)

The remarkable property of the π -tangle is that it can detect not only the GHZ-type
entanglement but also the W -type entanglement:

πABC (GHZ) = 1 πABC (W ) = 4

9
(
√
5 − 1) ∼ 0.55. (1.9)

As commented earlier we will examine the tripartite entanglement dynamics of the
three-qubit states in the presence of theMarkovian or non-Markovian environment.We
will adopt the π -tangle as an entanglement measure for analytic computation as much
as possible. In Sect. 2 we consider how the three-qubit initial state is evolved when
each qubit interacts with its own Markovian or non-Markovian environment [22]. In
Sect. 3 we explore the entanglement dynamics of three GHZ-type initial states. The
initial states are local unitary (LU) with each other. Thus, their entanglement is the
same initially. Furthermore, if the parameters are appropriately chosen, they all have
GHZ-symmetry, i.e., they are invariant under (i) qubit permutation (ii) simultaneous
three-qubit flips (iii) qubit rotations about the z-axis. However, this symmetry is broken
due to the environment effect. As a result their entanglement dynamics are different
with each other. In Sect. 4 we examine the entanglement dynamics of two W -type
initial states. They are also LU to each other. However, the dynamics is also different
because of the environment effect. In Sect. 5 a brief conclusion is given.

2 General features

We consider three-qubit system, each of which interacts only and independently with
its local environment. We assume that the dynamics of single qubit is governed by
Hamiltonian

H = H0 + HI (2.1)

where

H0 = ω0σ+σ− +
∑

k

ωkb
†
kbk

HI = σ+ ⊗ B + σ− ⊗ B† with B =
∑

k

gkbk . (2.2)
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In Eq. (2.2) ω0 is a transition frequency of the two-level system (qubit), and σ± are
the raising and lowering operators. The index k labels the different field modes of the
reservoir with frequenciesωk , creation and annihilation operators b

†
k , bk , and coupling

constants gk . In the interaction picture the dynamics is governed by the Schrödinger
equation

d

dt
ψ(t) = −i HI (t)ψ(t) (2.3)

where

HI (t) ≡ ei H0t HI e
−i H0t = σ+(t) ⊗ B(t) + σ−(t) ⊗ B†(t)

σ±(t) ≡ ei H0tσ±e−i H0t = σ±e±iω0t

B(t) ≡ ei H0t Be−i H0t =
∑

k

gkbke
−iωk t . (2.4)

The Hamiltonian (2.1) represents one of the few exactly solvable models [46]. This
means that the Schrödinger equation (2.3) can be formally solved if ψ(0) is given.
Then, the reduced state of the single qubit ρ̂S(t) ≡ Trenv|ψ(t)〉〈ψ(t)| is given by
[10,47]

ρ̂S(t) =
(

ρS
00(0) + ρS

11(0)
(
1 − |Pt |2

)
ρS
01(0)Pt

ρS
10(0)P

∗
t ρS

11(0)|Pt |2
)

(2.5)

where ρ̂S(0) = Trenv|ψ(0)〉〈ψ(0)| and Trenv denotes the partial trace over the envi-
ronment. The function Pt satisfies the differential equation

d

dt
Pt = −

∫ t

0
dt1 f (t − t1)Pt1 (2.6)

and the correlation function f (t − t1) is related to the spectral density J (ω) of the
reservoir by

f (t − t1) =
∫

J (ω)exp[i(ω0 − ω)(t − t1)]. (2.7)

We choose J (ω) as an effective spectral density of the damped Jaynes–Cummings
model [10]

J (ω) = 1

2π

γ0λ
2

(ω0 − ω)2 + λ2
(2.8)

where the parameter λ defines the spectral width of the coupling, which is connected
to the reservoir correlation time τB by the relation τB = 1/λ and the relaxation time
scale τR on which the state of the system changes is related to γ0 by τR = 1/γ0.

By making use of the residue theorem in complex plane the correlation function
can be easily computed in a form

f (t − t1) = γ0λ

2
e−λ|t−t1|. (2.9)
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Inserting Eq. (2.9) into Eq. (2.6) andmaking use of Laplace transformone can compute
Pt explicitly. While in a weak coupling (or Markovian) regime τR > 2τB Pt becomes

Pt = e− λ
2 t

[

cosh

(
d̄

2
t

)

+ λ

d̄
sinh

(
d̄

2
t

)]

(2.10)

with d̄ = √
λ2 − 2γ0λ, in a strong coupling (or non-Markovian) regime τR < 2τB Pt

reduces to

Pt = e− λ
2 t

[

cos

(
d

2
t

)

+ λ

d
sin

(
d

2
t

)]

(2.11)

with d = √
2γ0λ − λ2. Since, in the Markovian regime λ > 2γ0, Pt in Eq. (2.10)

exhibits an exponential decay in time, it seems to make exponential decay of entan-
glement or ESD phenomenon. However, in the non-Markovian regime λ < 2γ0, Pt in
Eq. (2.11) exhibits an oscillatory behavior in time with decreasing amplitude. It seems
to be responsible for the revival phenomenon of entanglement [22], after a finite period
of time of its complete disappearance.

The state ρ̂T (t) at time t of whole three-qubit system, each of which interacts
only and independently with its own environment, can be derived by the Kraus oper-
ators [48]. Introducing, for simplicity, {|0〉 ≡ |000〉, |1〉 ≡ |001〉, |2〉 ≡ |010〉, |3〉 ≡
|011〉, |4〉 ≡ |100〉, |5〉 ≡ |101〉, |6〉 ≡ |110〉, |7〉 ≡ |111〉}, the diagonal parts of
ρ̂T (t) are

ρ̂T
11(t) = P2

t

[
ρ̂T
11(0) +

{
ρ̂T
33(0) + ρ̂T

55(0)
}

(1 − P2
t ) + ρ̂T

77(0)(1 − P2
t )2

]

ρ̂T
22(t) = P2

t

[
ρ̂T
22(0) +

{
ρ̂T
33(0) + ρ̂T

66(0)
}

(1 − P2
t ) + ρ̂T

77(0)(1 − P2
t )2

]

ρ̂T
33(t) = P4

t

[
ρ̂T
33(0) + ρ̂T

77(0)(1 − P2
t )

]

ρ̂T
44(t) = P2

t

[
ρ̂T
44(0) +

{
ρ̂T
55(0) + ρ̂T

66(0)
}

(1 − P2
t ) + ρ̂T

77(0)(1 − P2
t )2

]

ρ̂T
55(t) = P4

t

[
ρ̂T
55(0) + ρ̂T

77(0)(1 − P2
t )

]

ρ̂T
66(t) = P4

t

[
ρ̂T
66(0) + ρ̂T

77(0)(1 − P2
t )

]

ρ̂T
00(t) = 1 −

7∑

i=1

ρ̂T
ii (t) (2.12)

and the non-diagonal parts are

ρ̂T
01(t) = Pt

[
ρ̂T
01(0) +

{
ρ̂T
23(0) + ρ̂T

45(0)
}

(1 − P2
t ) + ρ̂T

67(0)(1 − P2
t )2

]

ρ̂T
02(t) = Pt

[
ρ̂T
02(0) +

{
ρ̂T
13(0) + ρ̂T

46(0)
}

(1 − P2
t ) + ρ̂T

57(0)(1 − P2
t )2

]

ρ̂T
04(t) = Pt

[
ρ̂T
04(0) +

{
ρ̂T
15(0) + ρ̂T

26(0)
}

(1 − P2
t ) + ρ̂T

37(0)(1 − P2
t )2

]
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ρ̂T
03(t) = P2

t

[
ρ̂T
03(0) + ρ̂T

47(0)(1 − P2
t )

]
ρ̂T
05(t) = P2

t

[
ρ̂T
05(0) + ρ̂T

27(0)(1 − P2
t )

]

ρ̂T
06(t) = P2

t

[
ρ̂T
06(0) + ρ̂T

17(0)(1 − P2
t )

]
ρ̂T
12(t) = P2

t

[
ρ̂T
12(0) + ρ̂T

56(0)(1 − P2
t )

]

ρ̂T
13(t) = P3

t

[
ρ̂T
13(0) + ρ̂T

57(0)(1 − P2
t )

]
ρ̂T
14(t) = P2

t

[
ρ̂T
14(0) + ρ̂T

36(0)(1 − P2
t )

]

ρ̂T
15(t) = P3

t

[
ρ̂T
15(0) + ρ̂T

37(0)(1 − P2
t )

]
ρ̂T
23(t) = P3

t

[
ρ̂T
23(0) + ρ̂T

67(0)(1 − P2
t )

]

ρ̂T
24(t) = P2

t

[
ρ̂T
24(0) + ρ̂T

35(0)(1 − P2
t )

]
ρ̂T
26(t) = P3

t

[
ρ̂T
26(0) + ρ̂T

37(0)(1 − P2
t )

]

ρ̂T
45(t) = P3

t

[
ρ̂T
45(0) + ρ̂T

67(0)(1 − P2
t )

]
ρ̂T
46(t) = P3

t

[
ρ̂T
46(0) + ρ̂T

57(0)(1 − P2
t )

]

ρ̂T
07(t) = ρ̂T

07(0)P
3
t ρ̂T

16(t) = ρ̂T
16(0)P

3
t ρ̂T

17(t) = ρ̂T
17(0)P

4
t ρ̂T

25(t) = ρ̂T
25(0)P

3
t

ρ̂T
27(t) = ρ̂T

27(0)P
4
t ρ̂T

34(t) = ρ̂T
34(0)P

3
t ρ̂T

35(t) = ρ̂T
35(0)P

4
t ρ̂T

36(t) = ρ̂T
36(0)P

4
t

ρ̂T
37(t) = ρ̂T

37(0)P
5
t ρ̂T

47(t) = ρ̂T
47(0)P

4
t ρ̂T

56(t) = ρ̂T
56(0)P

4
t

ρ̂T
57(t) = ρ̂T

57(0)P
5
t ρ̂T

67(t) = ρ̂T
67(0)P

5
t (2.13)

with ρ̂T
i j (t) = ρ̂T∗

j i (t). Now,we are ready to explore the tripartite entanglement dynam-
ics in the presence of the Markovian or non-Markovian environment.

3 Entanglement dynamics of GHZ-type initial states

In this section we examine the tripartite entanglement dynamics when the initial states
are GHZ-type states. All initial states have GHZ-symmetry [43] if the parameters
are appropriately chosen. However, this symmetry is broken due to the effects of
environment.

3.1 Type I

Let us choose the initial state in a form

ρ̂T
I (0) = |ψI 〉〈ψI | (3.1)

where |ψI 〉 = a|0〉 + beiδ|7〉 with a2 + b2 = 1. As commented before |ψI 〉 has a
GHZ-symmetry when a2 = b2 = 1/2 and δ = 0. Then, the spectral decomposition
of ρ̂T

I (t) can be read directly from Eqs. (2.12) and (2.13) as a form:

ρ̂T
I (t) = �+|ψ1〉〈ψ1|+�−|ψ2〉〈ψ2|+b2P2

t (1 − P2
t )2 {|1〉〈1|+|2〉〈2|+|4〉〈4|}

+ b2P4
t (1 − P2

t ) {|3〉〈3|+|5〉〈5|+|6〉〈6|} (3.2)

where

�± = 1

2

[{
1 − 3b2P2

t (1 − P2
t )

}
±

√
[
1 − 3b2P2

t (1 − P2
t )

]2 − 4b4P6
t (1 − P2

t )2
]

(3.3)
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and

|ψ1〉 = 1

NI

(
x |0〉 + yeiδ|7〉

)
|ψ2〉 = 1

NI

(
y|0〉 − xeiδ|7〉

)
(3.4)

with

x = 1 − b2P2
t (3 − 3P2

t + 2P4
t ) +

√
[
1 − 3b2P2

t (1 − P2
t )

]2 − 4b4P6
t (1 − P2

t )2

y = 2abP2
t (3.5)

and NI = √
x2 + y2 is a normalization constant.

Since ρ̂T
I (t) is a full rank, it seems to be highly difficult to compute the residual

entanglement (or three-tangle) analytically. However, from Eq. (3.2) one can realize
the upper bound of τABC as

τABC ≤
[
1 − 3b2P2

t (1 − P2
t )

] 4x2y2

(x2 + y2)2
. (3.6)

It is worthwhile noting that ρ̂T
I (t) does not have the GHZ-symmetry even at a2 =

b2 = 1/2 and δ = 0. Thus, the symmetry which ρ̂T
I (0) has is broken due to the effect

of environment.
In order to explore the tripartite entanglement dynamics on the analytical ground,

we compute the π -tangle of ρ̂T
I (t). Using Eq. (1.6) it is straightforward to compute

the induced bipartite entanglement quantitiesNA(BC),NB(AC), andN(AB)C . One can
show that they are all the same with

NA(BC) = NB(AC) = N(AB)C = max [Q(t), 0] , (3.7)

where

Q(t) =
√

b4P4
t (1 − P2

t )2(1 − 2P2
t )2 + 4a2b2P6

t − b2P2
t (1 − P2

t ). (3.8)

One can also show the two-tangles completely vanish, i.e.,NAB = NAC = NBC = 0,
easily. Thus, the π -tangle of ρ̂T

I (t) is

π I
GHZ(t) = N 2

A(BC). (3.9)

Equation (3.7) guarantees that regardless of Markovian or non-Markovian environ-
ment π I

GHZ(t) becomes zero if an inequality

a2 ≤ (1 − P2
t )3

1 + (1 − P2
t )3

(3.10)

holds because Q(t) becomes negative in this condition.
Now, let us examine the dynamics of the tripartite entanglement for ρ̂T

I (t) when
the quantum system interacts with Markovian environment. Since Pt in Eq. (2.10)
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Fig. 1 (Color online) π -tangle of ρ̂T
I (t) as a function of the parameters γ0t and a2 when the state interacts

with the Markovian and non-Markovian environments. We choose λ as a λ = 3γ0 and b λ = 0.01γ0

decays exponentially in time, one can expect that the tripartite entanglement exhibits
an asymptotic decay, i.e., decay with the half-life rule, similarly. In fact this is true
when the inequality (3.10) is violated. If the inequality holds at t ≥ t∗, the tripartite
entanglement becomes zero at t = t∗ abruptly. This is an ESD phenomenon. If the
inequality does not hold for all time, the tripartite entanglement decays with the half-
life rule as expected. This is shown clearly in Fig. 1a, where π I

GHZ(t) is plotted as a
function of γ0t and a2. In this figure we choose λ = 3γ0. As expected the tripartite
entanglement decreases with increasing γ0t . When a2 = 0.6 (blue line) it decays
exponentially in γ0t with the half-life rule. For a2 = 0.2 (red line), however, it becomes
zero in the region γ0t ≥ 1.21.

For non-Markovian regime the decay behavior of the tripartite entanglement in time
is completely different. This difference arises due to combination of the inequality
(3.10) and different form of Pt . Since Pt in Eq. (2.11) exhibits an underdamping
behavior in time with zeros at tn = 2[nπ − tan−1(d/λ)/d] (n = 1, 2, . . .), one may
expect that the tripartite entanglement also decays with oscillatory behavior. This is
true when the inequality (3.10) is violated for all time. This behavior is shown as a blue
line (a2 = 0.6) in Fig. 1b. In this figure we choose λ = 0.01γ0. If the inequality holds
for some time interval t∗1 ≤ t ≤ t∗2, the tripartite entanglement becomes zero in this
interval. After this time interval, however, nonzero tripartite entanglement reappears,
which makes a revival of entanglement after a finite period of time of its complete
disappearance. This is shown as a red line (a2 = 0.3) in Fig. 1b.

3.2 Type II

Let us choose the initial state in a form

ρ̂T
II (0) = |ψII〉〈ψII| (3.11)

where |ψII〉 = a|1〉 + beiδ|6〉 with a2 + b2 = 1. Since |ψI〉 = 1⊗ 1⊗ σx |ψII〉, (1⊗
1⊗ σx )ρ̂

T
II (0)(1⊗ 1⊗ σx )

† has a GHZ-symmetry provided that a2 = b2 = 1/2 and
δ = 0.
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Using Eqs. (2.12) and (2.13) one can show that the spectral decomposition of ρ̂T
II (t)

becomes

ρ̂T
II (t) = λ2|φII〉〈φII|+(1 − P2

t )
[
a2 + b2(1 − P2

t )
]
|0〉〈0|+b2P2

t (1 − P2
t ) (|2〉〈2|

+ |4〉〈4|) (3.12)

where

λ2 = P2
t (a2 + b2P2

t )

|φII〉 = 1
√
a2 + b2P2

t

(
a|1〉 + bPte

iδ|6〉
)

. (3.13)

Unlike the case of type I ρ̂T
II (t) is rank four tensor. From Eq. (3.12) one can derive the

upper bound of τABC for ρ̂T
II (t), which is

τABC ≤ 4a2b2P4
t

a2 + b2P2
t

. (3.14)

The negativitiesNA(BC),NB(AC), andN(AB)C of ρ̂T
II (t) can be computed bymaking

use of Eq. (1.6). The final expressions are

NA(BC) = NB(AC) =
√

b4P4
t (1 − P2

t )2 + 4a2b2P6
t − b2P2

t (1 − P2
t )

N(AB)C =
√

(1 − P2
t )2

[
a2 + b2(1 − P2

t )
]2 + 4a2b2P6

t − (1 − P2
t )

[
a2

+ b2(1 − P2
t )

]
. (3.15)

It is also easy to show NAB = NAC = NBC = 0. Thus, the π -tangle of ρ̂T
II (t) is

π II
GHZ(t) = 1

3

[
2N 2

A(BC) + N 2
(AB)C

]
. (3.16)

When t = 0, π II
GHZ(0) becomes 4a2b2 and it reduces to zero as t → ∞. Of course,

the entanglement of ρ̂T
II (t) is completely disentangled at t = tn (n = 1, 2, . . .) in the

non-Markovian regime.

3.3 Type III

Let us choose the initial state in a form

ρ̂T
III(0) = |ψIII〉〈ψIII| (3.17)

where |ψIII〉 = a|3〉 + beiδ|4〉 with a2 + b2 = 1. Since |ψI〉 = 1 ⊗ σx ⊗ σx |ψIII〉,
(1⊗σx ⊗σx )ρ̂

T
III(0)(1⊗σx ⊗σx )

† has a GHZ-symmetry provided that a2 = b2 = 1/2
and δ = 0.
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Using Eqs. (2.12) and (2.13) one can show that the spectral decomposition of ρ̂T
III(t)

becomes

ρ̂T
III(t) = λ3|φIII〉〈φIII|+(1 − P2

t )
[
a2(1 − P2

t ) + b2
]
|0〉〈0|

+ a2P2
t (1 − P2

t ) (|1〉〈1|+|2〉〈2|) (3.18)

where

λ3 = P2
t (a2P2

t + b2)

|φIII〉 = 1
√
a2P2

t + b2

(
aPt |3〉 + beiδ|4〉

)
. (3.19)

Unlike the case of type I ρ̂T
III(t) is rank four tensor. From Eq. (3.18) one can derive the

upper bound of τABC for ρ̂T
III(t), which is

τABC ≤ 4a2b2P4
t

a2P2
t + b2

. (3.20)

ThenegativitiesNA(BC),NB(AC), andN(AB)C of ρ̂T
III(t) canbe computedbymaking

use of Eq. (1.6), whose explicit expressions are

NA(BC) =
√

(1 − P2
t )2

[
a2(1 − P2

t ) + b2
]2 + 4a2b2P6

t − (1 − P2
t )

[
a2(1

− P2
t ) + b2

]

NB(AC) = N(AB)C =
√

a4P4
t (1 − P2

t )2 + 4a2b2P6
t − a2P2

t (1 − P2
t ). (3.21)

It is of interest to note thatNA(BC) andNB(AC) of type III are the same withN(AB)C

and NA(BC) of type II with a ↔ b, respectively. It is easy to show NAB = NAC =
NBC = 0. Thus, the π -tangle of ρ̂T

III(t) is

π III
GHZ(t) = 1

3

[
N 2

A(BC) + 2N 2
B(AC)

]
. (3.22)

One can also consider different types of initial GHZ-type states. For example, one
can consider ρ̂T

I V (0) = |ψI V 〉〈ψI V |, where |ψI V 〉 = a|2〉+ beiδ|5〉. Although, in this
case, ρ̂T

I V (t) is different from ρ̂T
II (t), one can show that its π -tangle is exactly the same

with that of type II. Thus, this case is not discussed in detail.
As shown in Eqs. (3.16) and (3.22) the dynamics of the tripartite entanglements

for type II and type III are not expressed in terms of an inequality like Eq. (3.10)
in type I. Thus, if |ψII〉 and |ψIII〉 interact with the Markovian surroundings, these
entanglements decay exponentially with the half-life rule. This means that there is no
ESD phenomenon in these cases. If |ψII〉 and |ψIII〉 interact with the non-Markovian
environment, π II

GHZ(t) and π III
GHZ(t) should exhibit an oscillatory behavior with rapid
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Fig. 2 (Color online) π -tangle for the initial states a a|001〉 + beiδ |110〉 and b a|011〉 + beiδ |100〉 as a
function of the parameters γ0t and a2. We choose λ as a λ = 0.01γ0

(a) (b)

Fig. 3 (Color online) γ0t dependence of π I
GHZ(t) (red solid), π II

GHZ(t) (black dashed), and π III
GHZ(t) (blue

dotted) when a a2 = 0.1 and b a2 = 0.9. We choose λ as a λ = 0.001γ0

decrease in amplitude due to Pt in Eq. (2.11). This can be seen in Fig. 2, where
π II
GHZ(t) and π III

GHZ(t) are plotted as a function of dimensionless parameter γ0t and a2.
We choose λ as a λ = 0.01γ0. As expected the tripartite entanglement reduces to zero
with increasing time with oscillatory behavior.

The π -tangles π I
GHZ(t) , π II

GHZ(t) , and π III
GHZ(t) are compared in Fig. 3 when

λ/γ0 = 0.001. They are represented by red solid, black dashed, and blue-dotted
lines, respectively. Figure 3a, b corresponds to a2 = 0.1 and a2 = 0.9. Both figures
clearly show the revival of the tripartite entanglement, after a finite period of time
of complete disappearance. The revival phenomenon seems to be mainly due to the
memory effect of the non-Markovian environment. It is of interest to note that while
π III
GHZ(t) ≥ π II

GHZ(t) ≥ π I
GHZ(t) when a2 = 0.1, the order is changed as π I

GHZ(t) ≥
π II
GHZ(t) ≥ π III

GHZ(t) when a2 = 0.9.

4 Entanglement dynamics ofW-type initial states

In this section we examine the tripartite entanglement dynamics when the initial states
are two W -type states. Both initial states are LU to each other. However, their entan-
glement dynamics are different due to Eqs. (2.12) and (2.13).
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4.1 Type I

In this subsection we choose the initial state as

ρ̂W
I (0) = |W1〉〈W1| (4.1)

where |W1〉 = a|1〉 + beiδ1 |2〉 + ceiδ2 |4〉 with a2 + b2 + c2 = 1. Then, it is straight-
forward to show that the spectral decomposition of ρ̂W

I (t) is

ρ̂W
I (t) = (1 − P2

t )|0〉〈0|+P2
t |W1〉〈W1|. (4.2)

Equation (4.2) guarantees that the residual entanglement and three-tangle of ρ̂W
I (t) are

zero because the spectral decomposition exactly coincides with the optimal decom-
position.

By making use of Eq. (1.6) one can compute the induced bipartite entanglement
quantities NA(BC), NB(AC), and N(AB)C of ρ̂W

I (t) directly, whose expressions are

NA(BC) =
√

(1 − P2
t )2 + 4c2(a2 + b2)P4

t − (1 − P2
t )

NB(AC) =
√

(1 − P2
t )2 + 4b2(a2 + c2)P4

t − (1 − P2
t )

N(AB)C =
√

(1 − P2
t )2 + 4a2(b2 + c2)P4

t − (1 − P2
t ). (4.3)

Also the two-tangles NAB , NAC , and NBC become

NAB =
√

[
(1 − P2

t ) + a2P2
t
]2 + 4b2c2P4

t −
[
(1 − P2

t ) + a2P2
t

]

NAC =
√

[
(1 − P2

t ) + b2P2
t
]2 + 4a2c2P4

t −
[
(1 − P2

t ) + b2P2
t

]

NBC =
√

[
(1 − P2

t ) + c2P2
t
]2 + 4a2b2P4

t −
[
(1 − P2

t ) + c2P2
t

]
. (4.4)

Thus, using Eqs. (1.7) and (1.8) one can compute the π -tangle of ρ̂W
I (t), whose

explicit expression is
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π I
W (t) = 2

3

[

2
[
(1 − P2

t ) + a2P2
t

]√
[
(1 − P2

t ) + a2P2
t
]2 + 4b2c2P4

t

+ 2
[
(1 − P2

t ) + b2P2
t

]√
[
(1 − P2

t ) + b2P2
t
]2 + 4a2c2P4

t

+ 2
[
(1 − P2

t ) + c2P2
t

]√
[
(1 − P2

t ) + c2P2
t
]2 + 4a2b2P4

t

− (1 − P2
t )

{√

(1 − P2
t )2 + 4a2(b2 + c2)P4

t

+
√

(1 − P2
t )2 + 4b2(a2 + c2)P4

t +
√

(1 − P2
t )2 + 4c2(a2 + b2)P4

t

}

− 2(a4 + b4 + c4)P4
t − (1 − P2

t )(3 + P2
t )

]
. (4.5)

When t = 0, Eq. (4.5) reduces to

π I
W (0) = 4

3

[
a2

√
a4 + 4b2c2 + b2

√
b4 + 4a2c2 + c2

√
c4 + 4a2b2 − (a4 + b4 + c4)

]
,

(4.6)
which exactly coincides with a result of Ref. [35]. Of course, when t = tn(n =
1, 2, . . .) and t = ∞, the entanglement of ρ̂W

I (t) is completely disentangled in the
non-Markovian regime.

4.2 Type II

In this subsection we choose the initial state as

ρ̂W
II (0) = |W2〉〈W2| (4.7)

where |W2〉 = a|6〉 + beiδ1 |5〉 + ceiδ2 |3〉 with a2 + b2 + c2 = 1. This initial state is
LU to |W1〉 because of |W2〉 = (σx ⊗ σx ⊗ σx )|W1〉. Then, by making use of Eqs.
(2.12) and (2.13) it is straightforward to show that ρ̂W

II (t) is

ρ̂W
II (t) = (1 − P2

t )2|0〉〈0|+P4
t |W2〉〈W2|+2P2

t (1 − P2
t )σII(t) (4.8)

where

σII(t) = 1

2

[
(b2 + c2)|1〉〈1|+(a2 + c2)|2〉〈2|+(a2 + b2)|4〉〈4|

+ ab
(
eiδ1 |1〉〈2|+e−iδ1 |2〉〈1|

)
+ ac

(
eiδ2 |1〉〈4|+e−iδ2 |4〉〈1|

)

+ bc
(
e−i(δ1−δ2)|2〉〈4|+ei(δ1−δ2)|4〉〈2|

)]
. (4.9)

The spectral decomposition of σII(t) cannot be derived analytically. Also, analytic
computation of π -tangle for ρ̂W

II (t) is impossible. Thus, we have to reply on the
numerical approach for computation of π -tangle.
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Fig. 4 (Color online) γ0t dependence of π I
W (red line) and π II

W (blue line) when |W1〉 and |W2〉 interact
with the Markovian environment. We choose λ = 3γ0 and a2 = b2 = c2 = 1/3

However, some special cases allow the analytic computation. In this paper we
consider a special case a2 = b2 = c2 = 1/3. In this case the spectral decomposition
of σII(t) can be derived as

σII(t) = 2

3
|α1〉〈α1|+1

6
|α2〉〈α2|+1

6
|α3〉〈α3| (4.10)

where

|α1〉 = 1√
3

(
|1〉 + e−iδ1 |2〉 + e−iδ2 |4〉

)

|α2〉 = 1√
2

(
|1〉 − e−iδ2 |4〉

)

|α3〉 = 1√
6

(
|1〉 − 2e−iδ1 |2〉 + e−iδ2 |4〉

)
. (4.11)

Thus, Eqs. (4.8) and (4.10) imply that ρ̂W
II (t) with a2 = b2 = c2 = 1/3 is rank-5

tensor, three of them are W -states, and the remaining ones are fully separable and
bi-separable states. Thus, its residual entanglement and three-tangles are zero.

Using Eq. (1.6) one can show that NA(BC), NB(AC), and N(AB)C are all identical
as

NA(BC) = NB(AC) = N(AB)C = 1

3
P2
t

[√

9 − 18P2
t + 17P4

t − 3(1 − P2
t )

]

.

(4.12)
Also NAB , NAC , and NBC are all identical as

NAB = NAC = NBC =
{ √

9−24P2
t +20P4

t +2P2
t (2−P2

t )

3 − 1 P2
t ≥ 2 − √

2
0 P2

t ≤ 2 − √
2.
(4.13)
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(a) (b)

Fig. 5 (Color online) a a2 and γ0t dependence of π I
W (t) when c2 = 1/3. We choose λ = 0.01γ0 and b

the γ0t dependence of πW
I (t) (solid line) and πW

II (t) (dashed line) when a2 = b2 = c2 = 1/3. We choose

λ = 0.001γ0. This figure implies that ρ̂W
I (t) is more robust against the environment than ρ̂W

II (t)

Thus, the π -tangle for ρ̂W
II (t) with a2 = b2 = c2 = 1/3 is given by π II

W = N 2
A(BC) −

2N 2
AB .
In Fig. 4 we plot π I

W (t) (red line) and π II
W (t) (blue line) as a function of γ0t when

|W1〉 and |W2〉 interact with the Markovian environment. We choose λ = 3γ0 and
a2 = b2 = c2 = 1/3. As expected both reduce to zero with the half-life rule. It is of
interest to note π I

W (t) ≥ π II
W (t) in full range of time. This means that |W1〉 is more

robust than |W2〉 against the Markovian environment.
In Fig. 5a we plot π I

W (t) as a function of a2 and γ0t when |W1〉 is embedded in the
non-Markovian environment. We choose c2 = 1/3 and λγ0 = 0.01. As expected the
π -tangle reduces to zero as t → ∞ with an oscillatory behavior. To compare π I

W (t)
with π II

W (t) we plot both π -tangles as a function of γ0t in Fig. 5b. In this figure we
choose a2 = b2 = c2 = 1/3 and λ/γ0 = 0.001. The π -tangles π I

W (t) and π II
W (t) are

plotted as solid and dashed lines, respectively. In this case, as in the other cases, the
revival of entanglement occurs after complete disappearance. It is interesting to note
that like a Markovian case ρ̂W

I (t) is more robust than ρ̂W
II (t) against non-Markovian

environment.

5 Conclusions

In this paperwehave examined the tripartite entanglement dynamicswhen eachparty is
entangledwith other parties initially, but they locally interactwith their ownMarkovian
or non-Markovian environment. First we have considered threeGHZ-type initial states
|ψI 〉 = a|000〉 + beiδ|111〉, |ψII〉 = a|001〉 + beiδ|110〉, and |ψIII〉 = a|011〉 +
beiδ|100〉. All states are LU to each other. It turns out that the GHZ-symmetry of
the initial states is broken due to the effect of environment. We have computed the
correspondingπ -tangles analytically at arbitrary time t in Eqs. (3.9), (3.16), and (3.22).
It was shown that while the ESD phenomenon occurs for type I, the entanglement
dynamics for the remaining types exhibits an exponential decay in the Markovian
regime. In the non-Markovian regime the π -tangles completely vanish when tn =
2[nπ − tan−1(d/λ)/d] (n = 1, 2, . . .) and t → ∞. As shown in Fig. 3 the revival
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Fig. 6 (Color online) γ0t dependence of concurrences Eqs. (5.1) and (5.2) when a2 = b2 = c2 = 1/3. a
In this figure we choose λ = 3γ0. This shows that while bipartite entanglement dynamics for type I (red
line) decays exponentially with the half-life rule, that for type II (blue line) exhibits an ESD and b in this
figure we choose λ = 0.01γ0. Although both entanglements decay in time, the decay rate for type II (blue
line) is much faster than that for type I (red line)

phenomenon of entanglement occurs after complete disappearance of entanglement.
Based on the analytical results it was shown that while the robustness order against
the effect of reservoir is |ψI 〉, |ψII〉, |ψIII〉 for large a2 region, this order is reversed
for small a2 region.

We also have examined the tripartite entanglement dynamics for twoW -type initial
states |W1〉 = a|001〉 + beiδ1 |010〉 + ceiδ2 |100〉 and |W2〉 = a|110〉 + beiδ1 |101〉 +
ceiδ2 |011〉 with a2 + b2 + c2 = 1. Like GHZ-type initial states they are LU to each
other. For initial |W1〉 state the π -tangle is analytically computed in Eq. (4.5). Since,
however, |W2〉 propagates to higher-rank state with the lapse of time, the analytic
computation is impossible except few special cases. Thus, we have computed the π -
tangle analytically for special case a2 = b2 = c2 = 1/3. In Figs. 4 and 5 it was
shown that |W1〉 is more robust than |W2〉 against the Markovian and non-Markovian
environments. The bipartite entanglements measured by the concurrence [23,24] for
ρ̂W
I (t) and ρ̂W

II (t) are

C I
AB(t) = 2|bc|P2

t C I
AC (t) = 2|ac|P2

t C I
BC (t) = 2|ab|P2

t (5.1)

and

CIIAB(t) = 2P2
t max

[

0, |bc| − |a|
√

(1 − P2
t )(1 − a2P2

t )

]

CIIAC (t) = 2P2
t max

[

0, |ac| − |b|
√

(1 − P2
t )(1 − b2P2

t )

]

CIIBC (t) = 2P2
t max

[

0, |ab| − |c|
√

(1 − P2
t )(1 − c2P2

t )

]

. (5.2)

One can show C I ≥ CII in the entire range of time like a tripartite entanglement
regardless of Markovian or non-Markovian environment. The γ0t-dependence of the
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concurrences is plotted in Fig. 6 as red line for type I and blue line for type II when (a)
Markovian (λ = 3γ0) and (b) non-Markovian (λ = 0.01γ0) environments are intro-
duced. Figure 6a shows that while the entanglement for type I exhibits an exponential
decay with the half-life rule, that for type II exhibits an ESD. For non-Markovian case
the decay rate for type II is much faster than that for type I although both exhibit a
revival phenomenon of entanglement.

It is of interest to study the effect of non-Markovian environment when the initial
state is a rank-2 mixture

ρ(p) = p|GHZ〉〈GHZ|+(1 − p)|W 〉〈W | (5.3)

where |GHZ〉 = (|000〉 + |111〉)/√2 and |W 〉 = (|001〉 + |010〉 + |100〉)/√3. The
residual entanglement of ρ(p) is known as

τ(p) =
⎧
⎨

⎩

0 0 ≤ p ≤ p0
gI (p) p0 ≤ p ≤ p1
gII(p) p1 ≤ p ≤ 1

(5.4)

where

p0 = 4 3
√
2

3 + 4 3
√
2

= 0.626851 . . . p1 = 1

2
+ 3

√
465

310
= 0.70868 . . .

gI (p) = p2 − 8
√
6

9

√

p(1 − p)3 gII(p) = 1 − (1 − p)

(
3

2
+ 1

18

√
465

)

.(5.5)

It is interesting, at least for us, how the non-Markovian environment modifies
Coffman–Kundu–Wootters inequality 4min[det(ρA)] ≥ C(ρAB)2 + C(ρAC )2 in this
model. Similar issue was discussed in Ref. [49].

Since we have derived the π -tangles analytically, we tried to find the entanglement
invariants [18,31], which was originally found in four-qubit system. In our three-qubit
systems we cannot find any invariants. It is of interest to examine the entanglement
invariants in the higher-qubit and qudit systems.
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