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Abstract Two families of new asymmetric quantum codes are constructed in this
paper. The first family is the asymmetric quantum codes with length n = qm − 1
over Fq , where q ≥ 5 is a prime power. The second one is the asymmetric quantum
codes with length n = 3m − 1. These asymmetric quantum codes are derived from
the CSS construction and pairs of nested BCH codes. Moreover, let the defining set
T1 = T−q

2 , then the real Z -distance of our asymmetric quantum codes are much
larger than δmax + 1, where δmax is the maximal designed distance of dual-containing
narrow-sense BCH code, and the parameters presented here have better than the ones
available in the literature.

Keywords Asymmetric quantum code · BCH code · CSS construction

1 Introduction

Quantum codes are powerful tool for fighting against noise in quantum communication
and quantum computation. In general, symmetric quantum codes are adapted to deal
with the qubit-flip errors σx , phase-flip errors σz and the combined qubit-phase-flip
errors σy , which are all equally likely [1–3]. However, in most cases, qubit-flip and
phase-flip errors have different probabilities. In fact, the noise in physical qubits is
fundamentally asymmetric. That is to say, the phase-flip errors occur more frequently
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than qubit-flip errors. This concept was first noted by Steane in [4]. In this error model,
asymmetric quantum codes are more efficient to protect quantum information than the
symmetric quantum codes [5,6]. Therefore, in recent papers, quantum error-correcting
codes theory has been extended to the asymmetric case, and some good parameters of
asymmetric quantum codes were presented. Aly et al. [7–9] derived some families of
asymmetric quantum codes from classical BCH and RS codes over finite fields, these
asymmetric quantum codes based on imprimitive narrow-sense BCH codes for certain
values of code lengths, dimensions, and various minimum distance were presented.
Sarvepalli et al. [10] exploited the construction of some new families of asymmetric
quantum stabilizer codes from pairs of nested classical BCH codes and finite geometry
LDPC codes. Wang et al. [11] extend the characterization of nonadditive symmetric
quantum codes to the asymmetric case, established a relationship of asymmetric quan-
tum codes with classical error-correcting codes and obtained an asymptotic bound on
asymmetric quantum codes from algebraic geometry codes. Ezerman [12,13] pro-
posed CSS-like constructions and utilized pairs of nested subfield linear codes under
one of the Euclidean, trace Euclidean, Hermitian, and trace Hermitian inner products
constructed many best-performing CSS-like asymmetric quantum codes. La Guardia
[14–16] presented the parameters of new asymmetric quantum codes which derived
from the CSS construction as well as the Hermitian construction applied, respectively,
to two classical nested BCH codes where one of them was additionally Euclidean
(Hermitian) dual-containing.

In this paper, we study the construction of q-ary asymmetric quantum codes from
pairs of nested primitive narrow-sense BCH codes. Here we present the parameters
of asymmetric quantum codes of length n = qm − 1 where q ≥ 5 and q = 3.
We give our discussion in two cases, one case is m = 2l(l ≥ 2) and the other case
is m = 2l + 1(l ≥ 2). Get rid of the restriction on δz ≤ δmax, our Z -distance of
asymmetric quantum codes can be much larger than δmax + 1 given in [16], where
δmax = q

m
2 − 1,m = 2l and δmax = q�m

2 � − q + 1,m = 2l + 1 are the maximal
designed distances of dual containing narrow-sense BCH code of length n = qm − 1,
see [17].

This paper is organized as follows: In Sect. 2, we recall the concept of cyclotomic
cosets, BCH codes and asymmetric quantum codes. In Sect. 3, we construct new
families of asymmetric quantum codes derived from Euclidean dual-containing BCH
codes. In Sect. 4, we compare the parameters of the new codes with the ones available
in the literature. Finally, the paper is summarized with a discussion in Sect. 5.

2 Preliminary

It is well known that there is a close relationship between cyclotomic cosets and cyclic
codes. This suggests us to use q-cyclotomic cosets of modulo n to characterize BCH
codes over Fq . Let n = qm − 1 denote the code length where gcd(n, q) = 1 and
m = ordn(q), B⊥ denotes the Euclidean dual of BCH code B, and an asymmetric
quantum BCH code Q is denoted by [[n, k, dz/dx ]]q . For more details, we refer the
reader to [18–21].
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Definition 2.1 [20] If gcd(q, n) = 1, the q-cyclotomic coset of modulo n containing
x is defined by

Cx = {x, xq, xq2, . . . , xqk−1}(mod n),

where k is the smallest positive integer such that qkx ≡ x(mod n).

A cyclic code of length n = qm − 1 over Fq is called a BCH code with designed
distance δ if its generator polynomial

g(x) =
∏

z∈T
(x − ξ z), T = Cb ∪ Cb+1 ∪ · · · ∪ Cb+δ−2,

where Cx denotes the q-cyclotomic coset of modulo n containing x , ξ is a primitive
element of Fqm and m = ordn(q) is the multiplicative order of q modulo n given
by [21–23]. According to the concept of defining set, such a BCH code can also be
defined, see following Definition 2.2.

Definition 2.2 [20,21] Let gcd(q, n) = 1. If ξ is a primitive n-th root of unity in some
field containing Fq , T = Cb ∪ Cb+1 ∪ · · · ∪ Cb+δ−2 = T[b,b+δ−2], the cyclic code of
length n with defining set T is called a BCH code of designed distance δ. If b = 1,
then C is called a narrow-sense BCH code, if n = qm − 1, then C is called primitive.

Lemma 2.1 [20] If gcd(q, n) = 1, C is a cyclic code over Fq with defining set T ,
C⊥ ⊆ C if and only if T ∩ T−1 = ∅, where T−1 = {n − t (mod n) | t ∈ T }.

Let B1 and B2 be q-ary BCH codes of length n, and with defining set T1 and T2,
respectively. From above lemma 2.1, we know B⊥

1 ⊆ B2 if and only if T
−1
1 ∩ T2 = ∅.

Thus, we have

Lemma 2.2 [20] Let B1 and B2 be q-ary BCH code with defining set T1 and T2, then
B⊥
1 ⊆ B2 if and only if T⊥

1 ⊇ T2.

According to [3,7,8,10], if a q-ary asymmetric quantum code be denoted by
[[n, k, dz/dx ]]q , which can control all � dx−1

2 � qubit-flip errors and all � dz−1
2 � phase-

flip errors. At the same time, which can detect dx − 1 qubit-flip errors and dz − 1
phase-flip errors. However, the standard CSS construction for symmetric quantum
code can be extended to the constructions of asymmetric quantum code, see [8,10].
The following Theorem 2.3 is CSS construction for asymmetric quantum codes.

Theorem 2.3 [8,10] For i = 1, 2, let Ci be a classical linear code with parameters
[n, ki , di ]q . IfC⊥

1 ⊆ C2, then there exists an asymmetric quantum codewith parameters
[[n, k(δ1) + k(δ2) − n, dz/dx ]]q , where {dx , dz} = {d1, d2}.

3 Construction of asymmetric quantum codes

There are many previous works which discuss the construction of asymmetric quan-
tum codes from two nested codes as well as restrict themselves to binary or quaternary
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codes. To such a problem, the main obstacle is the construction of dual distances, a
knowledge of which is required to determine the error-correcting capability of the
quantum code. In [14–16], La Guardia generalize their previous work and construct
asymmetric stabilizer codes over Fq , where q ≥ 3 is an arbitrary prime power. How-
ever, the values of Z -distance of the asymmetric quantum codes provided in the
literature were not enough greater. Thus, in this section, we focus on construction
of [[n, k, dz/dx ]]q asymmetric quantum codes with greater values of Z -distance over
Fq for q ≥ 5 and q = 3, respectively. To construct good parameters asymmetric quan-
tum codes, one need to determine the maximal designed distance of nested primitive
narrow-sense BCH codes. In the following, we will discuss such a problem in two
cases for each q, one case is m = 2l + 1 and the other case is m = 2l.

3.1 Construction of asymmetric quantum codes [[n, k, dz/dx]]q≥5

In this subsection, let q ≥ 5, we apply the CSS construction to construct asymmetric
quantum codes of length n = qm − 1 from two nested BCH codes where one of them
is Euclidean dual-containing. we first make some notations. Similar to [20], for fixed
n, denote T = ⋃r

i=1 Ci , define u = min{x |x ∈ T−1} and v = max{y|y ∈ T−1}, and
we have following Lemma 3.1.

Lemma 3.1 If B is a q-ary narrow-sense BCH code of length n with defining set
T = ∪r

i=1Ci where r < δmax, and T⊥ = Zn\T−1. Then B and B⊥ have designed
distances δ(B) = r + 1 and δ(B⊥) ≤ max{u, n − v − 1}, respectively.
Proof The defining set of BCH code B is T = ∪r

i=1Ci = T[1,r ], so we have the
maximal designed distance of narrow-sense BCH code B is r + 1, and then we have
δ(B) = r + 1.

Since T⊥ = Zn \(T−1) = {0, 1, 2, . . . , n−1}−{n−x |x ∈ T } = {0, 1, 2, . . . , n−
1}−{u, u+s, . . . , v− t, v} ⊇ {0, 1, 2, . . . , u−1, v+1, . . . , n−1}, T⊥ contains u or
n− v −1 integer. From the Definition 2.2, thus, we have δ(B⊥) ≤ max{u, n− v −1}.

Case 1. n = qm − 1 where m = 2l + 1
According to Theorem 2.3, we know that if q-ary BCH codes satisfying B⊥

1 ⊆ B2
take advantage of CSS construction, one can construct q-ary asymmetric quantum
codes from these BCH codes. Hence, we first discuss the conditions regarding Euclid-
ean dual-containing BCH codes in the following Theorem 3.2.

Theorem 3.2 Let n = qm − 1, q ≥ 5, and m = 2l + 1.
(I) If 1 ≤ i ≤ � q−1

2 �− 1. For δ1 = � q
2 �+ i , δ1 < δ2 ≤ � q

2 � · q2l − (i − 1) · q2l − 1,
then there exist narrow-sense BCH codes satisfying B⊥

1 (n, δ1) ⊆ B2(n, δ2).
(II) If 1 ≤ i ≤ q − 1, 1 ≤ j ≤ l. For δ1 = i · q j + 1, δ1 < δ2 ≤ q2l− j+1 − i , then

there exist narrow-sense BCH codes satisfying B⊥
1 (n, δ1) ⊆ B2(n, δ2).

(III) If 1 ≤ i ≤ q−2, 1 ≤ j ≤ l−1. For δ1 = q j+1−i , δ1 < δ2 ≤ (i+1)·q2l− j−1,
then there exist narrow-sense BCH codes satisfying B⊥

1 (n, δ1) ⊆ B2(n, δ2).

Proof We only show (II) since the other cases are similar.
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New asymmetric quantum codes over Fq 2763

Let n = qm −1,m = 2l+1. Since δ1 = i ·q j +1 where 1 ≤ i ≤ q−1, 1 ≤ j ≤ l,

then narrow-sense BCH code B1(n, δ1) with defining set T1 = ∪δ1−1
t=1 Ct = ∪i ·q j

t=1Ct .
If δ1 < δ2 ≤ min{n − xi |xi ∈ T1} = q2l− j+1 − i , then B2(n, δ2) with defining set
T2 = ∪δ2−1

t=1 Ct . Especially, if δi = q · t + 1 where t ≥ 1, i = 1, 2, then we can assume

Ti = ∪δi−2
t=1 Ct .

Let T−1
1 = {n − xi |xi ∈ T1}, since B⊥

1 with defining set T⊥
1 = Zn\T−1

1 =
{0, 1, 2, . . . , n − 1} − {n − xi |xi ∈ T1}, we can assume T2 = C1 ∪ C2 ∪ · · ·Cδ2−1.
If for any j ∈ T2, from Lemma 3.1, we can deduce that j /∈ T−1

1 , that is to say
T−1
1 ∩ T2 = ∅, then j ∈ Zn\T−1

1 , and thus one can deduce that T2 ⊆ T⊥
1 . From

Lemma 2.2, we can conclude B⊥
1 (n, δ1) ⊆ B2(n, δ2) holds.

We know that if two BCH codes satisfy the dual-containing conditions, then an
asymmetric quantumcodes can be constructed from these twoBCHcodes. Fortunately,
the aboveTheorem3.2 presented the exact designed distances for theBCHcodes under
the dual-containing conditions. Therefore, applying CSS construction, we can derive
the following asymmetric quantum codes. In the following Theorem 3.3, our main
construction results can be provided. Here, we always use Tδ to denote Tδ = ⋃δ−1

i=1 Ci

and denote the cardinality of Tδ as |Tδ|, see the following Theorem 3.3.

Theorem 3.3 Let n = qm − 1, q ≥ 5, and m = 2l + 1.
(I) For δ1 = � q

2 �+i , δ1 < δ2 ≤ � q
2 �·q2l−(i−1)·q2l−1, then there exist asymmetric

quantum codes [[n, n − |Tδ1 | − |Tδ2 |, dz ≥ δ2/dx ≥ δ1]]q , where 1 ≤ i ≤ � q−1
2 � − 1.

(II) For δ1 = i ·q j +1, δ1 < δ2 ≤ q2l− j+1−i , then there exist asymmetric quantum
codes [[n, n − |Tδ1 | − |Tδ2 |, dz ≥ δ2/dx ≥ δ1]]q , where 1 ≤ i ≤ q − 1, 1 ≤ j ≤ l.

(III) For δ1 = q j+1 − i , δ1 < δ2 ≤ (i + 1) · q2l− j − 1, then there exist asymmetric
quantum codes [[n, n − |Tδ1 | − |Tδ2 |, dz ≥ δ2/dx ≥ δ1]]q , where 1 ≤ i ≤ q − 2,
1 ≤ j ≤ l − 1.

Proof We only prove item (II) since the other constructions are similar.
Let B1 be the narrow-sense BCH code over Fq of length n = qm − 1. Use Tδ1 to

denote Tδ1 = ⋃δ1−1
i=1 Ci , and the cardinality of Tδ1 as |Tδ1 |. For δ1 = i · q j + 1 where

1 ≤ i ≤ q − 1, 1 ≤ j ≤ l, then there exists narrow-sense BCH code with parameters
[n, n−|Tδ1 |, i ·q j +1]. Next, consider another BCH code B2 with parameters [n, n−
|Tδ2 |, δ2].

According to Theorem 3.2, we know that if δ1 < δ2 ≤ q2l− j+1 − i , then there exist
narrow-sense BCH codes satisfying B⊥

1 (n, δ1) ⊆ B2(n, δ2). Hence, applying the CSS
construction in Theorem 2.3, and using the parameters of B1(n, δ1) and B2(n, δ2),
q-ary asymmetric quantum codes [[n, n − |Tδ1 | − |Tδ2 |, dz ≥ δ2/dx ≥ δ1]]q≥5 can be
constructed.

Summarizing the above discussions, we can conclude (II) holds.
Case 2. n = qm − 1 where m = 2l
Similar to the discussions of Theorem 3.2, we can also provide the dual containing

conditions in the other case m = 2l. Then one can easily determine the maximal
designed distance of dual-containing narrow-sense BCH code in the following Theo-
rem 3.4.
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Theorem 3.4 Let n = qm − 1, q ≥ 5 and m = 2l.
(I) If 1 ≤ i ≤ � q−1

2 �−1. For δ1 = � q
2 �+i , δ1 < δ2 ≤ � q

2 �·q2l−1−(i−1)·q2l−1−1,
then there exist narrow-sense BCH codes satisfying B⊥

1 (n, δ1) ⊆ B2(n, δ2).
(II) If 1 ≤ i ≤ q − 1, 1 ≤ j ≤ l − 1. For δ1 = i · q j + 1, δ1 < δ2 ≤ q2l− j − i ,

then there exist narrow-sense BCH codes satisfying B⊥
1 (n, δ1) ⊆ B2(n, δ2).

(III) If 1 ≤ i ≤ q−2, 1 ≤ j ≤ l−1. For δ1 = q j+1−i , δ1 < δ2 ≤ (i+1)·q2l− j−1−
1, then there exist narrow-sense BCH codes satisfying B⊥

1 (n, δ1) ⊆ B2(n, δ2).

By means of CSS construction and the results of Theorem 3.4, one can determine
the parameters of asymmetric quantum codes in the other case m = 2l we have

Theorem 3.5 Let n = qm − 1, q ≥ 5 and m = 2l.
(I) For δ1 = � q

2 � + i , δ1 < δ2 ≤ � q
2 � · q2l−1 − (i − 1) · q2l−1 − 1, then there

exist asymmetric quantum codes [[n, n − |Tδ1 | − |Tδ2 |, dz ≥ δ2/dx ≥ δ1]]q , where
1 ≤ i ≤ � q−1

2 � − 1.
(II) For δ1 = i · q j + 1, δ1 < δ2 ≤ q2l− j − i , then there exist asymmetric quantum

codes [[n, n−|Tδ1 |− |Tδ2 |, dz ≥ δ2/dx ≥ δ1]]q , where 1 ≤ i ≤ q −1, 1 ≤ j ≤ l −1.
(III) For δ1 = q j+1− i , δ1 < δ2 ≤ (i+1) ·q2l− j−1−1, then there exist asymmetric

quantum codes [[n, n − |Tδ1 | − |Tδ2 |, dz ≥ δ2/dx ≥ δ1]]q , where 1 ≤ i ≤ q − 2,
1 ≤ j ≤ l − 1.

Remark 1 We presented the parameters of asymmetric quantum codes of length n =
qm − 1 where q ≥ 5. Theorems 3.3 and 3.5 give the evidences that the Z -distance of
our asymmetric quantum codes ismuch larger than δmax+1 in [16]. However, there are
little complex to calculate the exact dimensions for all δ of these asymmetric quantum
codes, so we denote the cardinality of Tδ as |Tδ|, and the dimension as n − |Tδ|. But,
for fixed the values of length n, and for fixed the special values of dz and dx , we will
calculate the exact dimensions of the new asymmetric quantum codes in the following
Sect. 4.

3.2 Construction of asymmetric quantum codes [[n, k, dz/dx]]3
In this subsection,we apply the same technique to construct two families of asymmetric
quantum codes [[n, k, dz/dx ]]3. Similar to the Sect. 3.1, we first present the dual-
containing conditions of nested BCH codes in two cases m = 2l + 1 and m = 2l,
respectively. Then, applying the same technique utilized in the previous subsection,
one obtains Theorems 3.6 and 3.7:

Theorem 3.6 Let n = 3m − 1, m = 2l + 1.
(I) If 1 ≤ j ≤ l, 1 ≤ i ≤ 2. For δ1 = i · q j + 1, δ1 < δ2 ≤ q2l− j+1 − i , then there

exist narrow-sense BCH codes satisfying B⊥
1 (n, δ1) ⊆ B2(n, δ2).

(II) If 1 ≤ j ≤ l − 1. For δ1 = q j+1 − 1, δ1 < δ2 ≤ 2q2l− j − 1, then there exist
narrow-sense BCH codes satisfying B⊥

1 (n, δ1) ⊆ B2(n, δ2).

Theorem 3.7 Let n = 3m − 1, m = 2l.
(I) If 1 ≤ j ≤ l − 1, 1 ≤ i ≤ 2. For δ1 = i · q j + 1, δ1 < δ2 ≤ q2l− j − i , then

there exist narrow-sense BCH codes satisfying B⊥
1 (n, δ1) ⊆ B2(n, δ2).
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(II) If 1 ≤ j ≤ l − 1. For δ1 = q j+1 − 1, δ1 < δ2 ≤ 2q2l− j−1 − 1, then there exist
narrow-sense BCH codes satisfying B⊥

1 (n, δ1) ⊆ B2(n, δ2).

Ref. [16, Theorem 4.10] gave the parameters of several families of nonbinary asym-
metric quantum codes of length n = qm − 1. However, the theorem only provided
the code length n of q ≥ 4 and m = ordn(q) ≥ 3. Obviously, it did not include
the case of q = 3. On the other hand, if q = 3, then the parameters of asymmetric
quantum code achieve smaller values of Z -distance and X -distance in [14]. Therefore,
we will construct 3-ary asymmetric quantum codes [[n, k, dz/dx ]]3 with much larger
Z -distance. From Theorems 3.6 and 3.7, we can easily obtain the parameters of nested
dual-containing BCH codes in m = 2l + 1 and m = 2l two cases. Then, combining
the results of these BCH codes and CSS construction, we can derive Theorems 3.8
and 3.9.

Theorem 3.8 Let n = 3m − 1, m = 2l + 1.
(I) For δ1 = i ·q j +1, δ1 < δ2 ≤ q2l− j+1− i , then there exist asymmetric quantum

codes [[n, n − |Tδ1 | − |Tδ2 |, dz ≥ δ2/dx ≥ δ1]]3, where 1 ≤ i ≤ 2, 1 ≤ j ≤ l.
(II) For δ1 = q j+1−1, δ1 < δ2 ≤ 2q2l− j −1, then there exist asymmetric quantum

codes [[n, n − |Tδ1 | − |Tδ2 |, dz ≥ δ2/dx ≥ δ1]]3, where 1 ≤ j ≤ l − 1.

Theorem 3.9 Let n = 3m − 1, m = 2l.
(I) For δ1 = i · q j + 1, δ1 < δ2 ≤ q2l− j − i , then there exist asymmetric quantum

codes [[n, n − |Tδ1 | − |Tδ2 |, dz ≥ δ2/dx ≥ δ1]]3, where 1 ≤ i ≤ 2, 1 ≤ j ≤ l − 1.
(II) For δ1 = q j+1 − 1, δ1 < δ2 ≤ 2q2l− j−1 − 1, then there exist asymmetric

quantum codes [[n, n − |Tδ1 | − |Tδ2 |, dz ≥ δ2/dx ≥ δ1]]3, where 1 ≤ j ≤ l − 1.

4 Code table

In this section, we compare the parameters of the new asymmetric quantum codes
and the ones available in the literature. For fixed values of the length n, dz and dx ,
we have computed the dimensions for asymmetric quantum codes derived from BCH
codes over Fq . In the following Table, the parameters of the asymmetric quantum
codes shown in [16] are denoted by [[n, k′, dz′/dx ′ ]]q , and the new code parameters
are denoted by [[n, k, dz/dx ]]q .
Remark 2 Table 1 lists some new asymmetric quantum codes given in Theorems 3.3
and 3.5. For m = 3, 4 and q = 5, 7, 8, 9, 11, some of the parameters of our asym-
metric quantum codes are better than those available in [16]. What is more, some
of the asymmetric quantum codes are new ones and are not included in the lit-
erature. However, for fixed values of the length n, we only give part results of
Theorems 3.4 and 3.5, the discussions of asymmetric quantum codes constructed
from pairs of nested BCH codes for all δ may be a little complex. For example, for
q = 9,m = 3, n = 728, if dx ≥ 6, 7, 8, 10, 19, 28, 37, 46, 55, 64, our Z -distance can
reach dz ≥ 323/dx ≥ 6, dz ≥ 242/dx ≥ 7, dz ≥ 161/dx ≥ 8, dz ≥ 80/dx ≥
10, dz ≥ 79/dx ≥ 19, dz ≥ 78/dx ≥ 28, dz ≥ 77/dx ≥ 37, dz ≥ 76/dx ≥
46, dz ≥ 75/dx ≥ 55, dz ≥ 74/dx ≥ 64, but here we only give dx ≥ 6, 7, 8, 10 four
cases in Table 1. On the other hand, in order to calculate the dimensions, we restrict

123



2766 Y. Ma et al.

Table 1 Sample parameters of asymmetric quantum codes [[n, k, dz/dx ]]q≥5

q m n [[n, k, dz/dx ]]q [[n, k′, dz′/dx ′ ]]q in [16]

5 3 124 [[124, 97, dz ≥ 7/dx ≥ 6]]5 [[124, 95, dz′ ≥ 7/dx ′ ≥ 6]]5
[[124, 55, dz ≥ 24/dx ≥ 6]]5 –

[[124, 21, dz ≥ 49/dx ≥ 4]]5 –

· · · · · ·
4 624 [[624, 588, dz ≥ 7/dx ≥ 6]]5 [[624, 586, dz′ ≥ 7/dx ′ ≥ 6]]5

[[624, 244, dz ≥ 124/dx ≥ 6]]5 –

[[624, 232, dz ≥ 123/dx ≥ 11]]5 –

[[624, 208, dz ≥ 121/dx ≥ 21]]5 –

· · · · · ·
7 3 342 [[342, 297, dz ≥ 11/dx ≥ 8]]7 [[342, 295, dz′ ≥ 11/dx ′ ≥ 8]]7

[[342, 201, dz ≥ 48/dx ≥ 8]]7 –

[[342, 186, dz ≥ 47/dx ≥ 15]]7 –

[[342, 141, dz ≥ 44/dx ≥ 36]]7 –

· · · · · ·
4 2400 [[2400, 2348, dz ≥ 9/dx ≥ 8]]7 [[2400, 2346, dz′ ≥ 9/dx ′ ≥ 8]]7

[[2400, 2344, dz ≥ 10/dx ≥ 8]]7 [[2400, 2342, dz′ ≥ 10/dx ′ ≥ 8]]7
[[2400, 2340, dz ≥ 11/dx ≥ 8]]7 [[2400, 2338, dz′ ≥ 11/dx ′ ≥ 8]]7
[[2400, 2336, dz ≥ 12/dx ≥ 8]]7 [[2400, 2334, dz′ ≥ 12/dx ′ ≥ 8]]7
[[2400, 1276, dz ≥ 342/dx ≥ 8]]7 –

[[2400, 1256, dz ≥ 341/dx ≥ 15]]7 –

[[2400, 1236, dz ≥ 340/dx ≥ 22]]7 –

· · · · · ·
8 3 511 [[511, 466, dz ≥ 10/dx ≥ 9]]8 [[511, 464, dz′ ≥ 10/dx ′ ≥ 9]]8

[[511, 463, dz ≥ 11/dx ≥ 9]]8 [[511, 461, dz′ ≥ 11/dx ′ ≥ 9]]8
[[511, 460, dz ≥ 12/dx ≥ 9]]8 [[511, 458, dz′ ≥ 12/dx ′ ≥ 9]]8
[[511, 457, dz ≥ 13/dx ≥ 9]]8 [[511, 455, dz′ ≥ 13/dx ′ ≥ 9]]8
[[511, 454, dz ≥ 14/dx ≥ 9]]8 [[511, 452, dz′ ≥ 14/dx ′ ≥ 9]]8
[[511, 325, dz ≥ 63/dx ≥ 9]]8 –

[[511, 307, dz ≥ 62/dx ≥ 17]]8 –

[[511, 289, dz ≥ 61/dx ≥ 25]]8 –

· · · · · ·
4 4095 [[4095, 4031, dz ≥ 11/dx ≥ 9]]8 [[4095, 4029, dz′ ≥ 11/dx ′ ≥ 9]]8

[[4095, 4027, dz ≥ 12/dx ≥ 9]]8 [[4095, 4025, dz′ ≥ 12/dx ′ ≥ 9]]8
[[4095, 4023, dz ≥ 13/dx ≥ 9]]8 [[4095, 4021, dz′ ≥ 13/dx ′ ≥ 9]]8
[[4095, 4019, dz ≥ 14/dx ≥ 9]]8 [[4095, 4017, dz′ ≥ 14/dx ′ ≥ 9]]8
[[4095, 2377, dz ≥ 511/dx ≥ 9]]8 –

[[4095, 2353, dz ≥ 510/dx ≥ 17]]8 –

[[4095, 2329, dz ≥ 509/dx ≥ 25]]8 –

[[4095, 2305, dz ≥ 508/dx ≥ 33]]8 –

· · · · · ·
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Table 1 continued

q m n [[n, k, dz/dx ]]q [[n, k′, dz′/dx ′ ]]q in [16]

9 3 728 [[728, 677, dz ≥ 11/dx ≥ 10]]9 [[728, 675, dz′ ≥ 11/dx ′ ≥ 10]]9
[[728, 674, dz ≥ 12/dx ≥ 10]]9 [[728, 672, dz′ ≥ 12/dx ′ ≥ 10]]9
[[728, 671, dz ≥ 13/dx ≥ 10]]9 [[728, 669, dz′ ≥ 13/dx ′ ≥ 10]]9
[[728, 668, dz ≥ 14/dx ≥ 10]]9 [[728, 666, dz′ ≥ 14/dx ′ ≥ 10]]9
[[728, 665, dz ≥ 15/dx ≥ 10]]9 [[728, 663, dz′ ≥ 15/dx ′ ≥ 10]]9
[[728, 662, dz ≥ 16/dx ≥ 10]]9 [[728, 660, dz′ ≥ 16/dx ′ ≥ 10]]9
[[728, 331, dz ≥ 161/dx ≥ 6]]9 –

[[728, 328, dz ≥ 161/dx ≥ 7]]9 –

[[728, 325, dz ≥ 161/dx ≥ 8]]9 –

· · · · · ·
4 6560 [[6560, 6492, dz ≥ 11/dx ≥ 10]]9 [[6560, 6490, dz′ ≥ 11/dx ′ ≥ 10]]9

[[6560, 6488, dz ≥ 12/dx ≥ 10]]9 [[6560, 6486, dz′ ≥ 12/dx ′ ≥ 10]]9
[[6560, 6484, dz ≥ 13/dx ≥ 10]]9 [[6560, 6482, dz′ ≥ 13/dx ′ ≥ 10]]9
[[6560, 6480, dz ≥ 14/dx ≥ 10]]9 [[6560, 6478, dz′ ≥ 14/dx ′ ≥ 10]]9
[[6560, 6476, dz ≥ 15/dx ≥ 10]]9 [[6560, 6474, dz′ ≥ 15/dx ′ ≥ 10]]9
[[6560, 6472, dz ≥ 16/dx ≥ 10]]9 [[6560, 6470, dz′ ≥ 16/dx ′ ≥ 10]]9
[[6560, 5952, dz ≥ 165/dx ≥ 10]]9 –

[[6560, 5888, dz ≥ 165/dx ≥ 28]]9 –

[[6560, 5704, dz ≥ 165/dx ≥ 79]]9 –

· · · · · ·
11 3 1330 [[1330, 1267, dz ≥ 13/dx ≥ 12]]11 [[1330, 1265, dz′ ≥ 13/dx ′ ≥ 12]]11

[[1330, 1264, dz ≥ 14/dx ≥ 12]]11 [[1330, 1262, dz′ ≥ 14/dx ′ ≥ 12]]11
[[1330, 1261, dz ≥ 15/dx ≥ 12]]11 [[1330, 1259, dz′ ≥ 15/dx ′ ≥ 12]]11
[[1330, 1258, dz ≥ 16/dx ≥ 12]]11 [[1330, 1256, dz′ ≥ 16/dx ′ ≥ 12]]11
[[1330, 1255, dz ≥ 17/dx ≥ 12]]11 [[1330, 1253, dz′ ≥ 17/dx ′ ≥ 12]]11
[[1330, 1252, dz ≥ 18/dx ≥ 12]]11 [[1330, 1250, dz′ ≥ 18/dx ′ ≥ 12]]11
[[1330, 1249, dz ≥ 19/dx ≥ 12]]11 [[1330, 1247, dz′ ≥ 19/dx ′ ≥ 12]]11
[[1330, 1246, dz ≥ 20/dx ≥ 12]]11 [[1330, 1244, dz′ ≥ 20/dx ′ ≥ 12]]11
[[1330, 973, dz ≥ 120/dx ≥ 12]]11 –

[[1330, 946, dz ≥ 119/dx ≥ 23]]11 –

[[1330, 919, dz ≥ 118/dx ≥ 34]]11 –

dz ≥ 161/dx ≥ 6 and dz ≥ 161/dx ≥ 7, then one can easily construct two asymmetric
quantum codes [[728, 331, dz ≥ 161/dx ≥ 6]]9 and [[728, 328, dz ≥ 161/dx ≥ 7]]9.
In fact, if dx ≥ 6, 7, our Z -distance can reach 323,242, respectively, it is obviously
larger than 161. In a word, we use Table 1 to present evidences of the real Z -distance
of our asymmetric quantum codes, which are much larger than δmax + 1, and some of
our asymmetric quantum codes are new ones.

Remark 3 Table 2 shows some new asymmetric quantum codes given in Theorems 3.8
and 3.9. For q = 3, m = 4, 5, 6, 7, our asymmetric quantum codes constructed from
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Table 2 Sample parameters of asymmetric quantum codes [[n, k, dz/dx ]]3
m n [[n, k, dz/dx ]]3 m n [[n, k, dz/dx ]]3
5 242 [[242, 22, dz ≥ 80/dx ≥ 4]]3 4 80 [[80, 12, dz ≥ 26/dx ≥ 4]]3

[[242, 17, dz ≥ 79/dx ≥ 7]]3 [[80, 8, dz ≥ 25/dx ≥ 7]]3
[[242, 57, dz ≥ 53/dx ≥ 8]]3 [[80, 18, dz ≥ 17/dx ≥ 8]]3
[[242, 127, dz ≥ 26/dx ≥ 10]]3 · · ·
[[242, 102, dz ≥ 25/dx ≥ 19]]3 6 728 [[728, 43, dz ≥ 241/dx ≥ 7]]3
· · · [[728, 171, dz ≥ 161/dx ≥ 8]]3

7 2186 [[2186, 1038, dz ≥ 241/dx ≥ 19]]3 [[728, 386, dz ≥ 80/dx ≥ 10]]3
[[2186, 1339, dz ≥ 161/dx ≥ 26]]3 [[728, 356, dz ≥ 79/dx ≥ 19]]3
[[2186, 1570, dz ≥ 79/dx ≥ 55]]3 [[728, 419, dz ≥ 53/dx ≥ 26]]3
· · · · · ·

pairs of nested BCH codes are all new and are not included in [14,16]. However,
similar to Table 1, we still give part results of Theorems 3.8 and 3.9. For example,
for q = 3,m = 7, n = 2186, if dx ≥ 4, 7, 8, 10, 19, 26, 28, 55, our Z -distance can
reach dz ≥ 728/dx ≥ 4, dz ≥ 727/dx ≥ 7, dz ≥ 485/dx ≥ 8, dz ≥ 242/dx ≥
10, dz ≥ 241/dx ≥ 19, dz ≥ 161/dx ≥ 26, dz ≥ 80/dx ≥ 28, dz ≥ 79/dx ≥ 55,
respectively, but here we only give dx ≥ 19, 26, 55 three cases, and hence three
asymmetric quantum codes [[2186, 1038, dz ≥ 241/dx ≥ 19]]3, [[2186, 1339, dz ≥
161/dx ≥ 26]]3 and [[2186, 1570, dz ≥ 79/dx ≥ 55]]3 can be obtained. Additionally,
in the particular cases of dz ≥ 7/dx ≥ 6−l and dz ≥ 8/dx ≥ 6−l where 0 ≤ l ≤ q−2,
our symmetric quantumcodes and the ones presented in [14] have the sameparameters.

5 Summary

In this paper, we have constructed two families of nonbinary asymmetric quantum
codes derived from pairs of nested classical BCH codes by the CSS construction.
We generalize our previous work [23] as specified in the following: The asymmetric
quantum codes shown in [23] are constructed over the field Fq where q = 4, whereas
in this paper we have constructed asymmetric quantum codes over Fq , where q ≥ 5
(q is an arbitrary prime power) or q = 3. Furthermore, most of the code parameters
shown above are better than the ones available in the literature. Additionally, the
quantum codes constructed in this paper can be utilized in quantum channels having
great asymmetry, i.e., quantum channels in which the probability of occurrence of
phase-shift errors is large when compared to the probability of occurrence of qubit-
flip errors.
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