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Abstract The construction of quantumMDS codes has been studied bymany authors.
We refer to the table in page 1482 of (IEEE Trans Inf Theory 61(3):1474–1484, 2015)
for known constructions. However, there have been constructed only a few q-ary
quantum MDS [[n, n − 2d + 2, d]]q codes with minimum distances d >

q
2 for sparse

lengths n > q +1. In the case n = q2−1
m wherem|q +1 orm|q −1 there are complete

results. In the case n = q2−1
m while m|q2 − 1 is neither a factor of q − 1 nor q + 1, no

q-ary quantumMDS code with d >
q
2 has been constructed. In this paper we propose

a direct approach to construct Hermitian self-orthogonal codes over Fq2 . Then we give
some new q-ary quantum codes in this case.Moreover many new q-ary quantumMDS

codes with lengths of the form w(q2−1)
u and minimum distances d >

q
2 are presented.
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1 Introduction

Quantum error-correcting codes are important for quantum information processing
and quantum computation. The construction of quantum error-correcting codes has
been an active field of quantum information theory since the publication of [15,19,20].
It is known for any pure quantum [[n, k, d]]q code the parameters satisfy the quantum
singleton bound k ≤ n − 2d + 2. The q-ary quantum codes reaching this bound are
called quantum MDS codes [2,14,15]. Many constructions of q-ary quantum MDS
codes have been proposed based on the Hermitian self-orthogonal codes over Fq2 .

The Hermitian inner product over Fn
q2

is defined as follows. < u, v >h= u1v
q
1 +

· · · + unv
q
n , where u = (u1, . . . , un) and v = (v1, . . . , vn) are vectors in Fn

q2
. The

following result gives a construction of q-ary quantum MDS codes from Hermitian
self-orthogonal MDS codes over Fq2 .

Theorem 1.1 ([2]) IfC is a [n, k, n−k+1]q2 MDS code overFq2 which is orthogonal
under the Hermitian inner product. Then we have a q-ary quantum MDS [[n, n −
2k, k + 1]]q code.

There have been published many papers on the construction of quantum MDS
codes [1,2,4–17]. They were constructed from generalized Reed–Solomon codes [8–
10], cyclic or constacyclic codes [3,7,11,12]. However, it seems that for many lengths
q + 1 < n < q2 − 1 whether there is a q-ary quantum MDS code with length n
and minimum distance d >

q
2 is still an un-solved problem. For only very few sparse

lengths such q-ary quantum MDS codes with d >
q
2 have been constructed [3,7–

12,21]. In the case of length n = q2−1
m where m is an integer satisfying m|q + 1 or

m|q − 1 the following results have been proved ([3,13,21], or see lines 13, 14 and 20
in the table of page 1482 of [3]).

1. For odd prime powers q = 2es + 1 where s is odd, an odd factor λ|s of s and
f ≤ e − 1, a quantum MDS [[2 f λ(q + 1), 2 f λ(q + 1) − 2d + 2, d]]q code with
minimum distance d for each integer d in the range 2 ≤ d ≤ q+1

2 + 2 f λ was
constructed ([3] Theorem 4.11).

2. In the casem|q+1 andm odd there is a q-ary quantumMDS codewith length q2−1
m

andminimum distance d for each integer d in the range 2 ≤ d ≤ q+1
2 + q+1

2m −1. In

the casem|q+1 andm even there is a q-ary quantumMDS code with length q2−1
m

and minimum distance d for each integer d in the range 2 ≤ d ≤ q+1
2 + q+1

m − 1
( see [3,21]).

However, in the case n = q2−1
m where m|q2 − 1 is neither a factor of q − 1 nor

q + 1, no q-ary quantum MDS code with length q2−1
m and minimum distance d >

q
2

has been constructed. Though in this case each cyclotomic set has only one element,
the technique in [3,8,12,13] is not sufficient to get the desirable q-ary quantum MDS
codes. In this paper some new q-ary quantum MDS codes in this case with minimum
distance d >

q
2 are constructed. We use a direct approach of constructing Hermitian

self-orthogonal MDS codes over Fq2 . Many new q-ary quantum MDS codes for the

length n = w(q2−1)
u and d >

q
2 for some integers w and u are also presented.
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We need the following lemmas in this paper.

Lemma 1.1 If θ is a primitive element of the multiplicative group F∗
q2

and suppose m

is a factor of q2 − 1, then �
q2−1
m

j=1 θ j tm = 0 except the case that t is divisible by q2−1
m .

Proof For any 1 ≤ t ≤ q2−1
m −1, θmt generates a subgroupG of the groupZ/(

q2−1
m )Z

generated by θm . The order of the group G is
q2−1
m

gcd(t, q
2−1
m )

> 1. Since G �= {1}, for

any non-unit element θmt , θmtG = G. Thus θmt�
q2−1
m

j=1 θmt j = �
q2−1
m

j=1 θmt j . It is clear

θmt �= 1 when t is not divisible by q2−1
m . The conclusion follows directly. ��

Lemma 1.2 Suppose v1, . . . , vn are n nonzero elements in the multiplicative group
F∗
q . If gl = (g1l , . . . , gnl) where l = 1, . . . , k, are k linear independent rows in Fn

q2

satisfying that �n
j=1v j g jl1g

q
jl2

= 0 for any two indices l1 and l2 in the set {1, . . . , k}
(here l1 = l2 is possible). Then we have a Hermitian self-orthogonal [n, k]q2 code
generated by these k rows.

Proof We can set v j = (v′
j )
q+1 for j = 1, . . . , n. Thus the equivalent code

(v′
1, . . . , v

′
n)C is a Hermitian self-orthogonal code, where C is a q2-ary code gen-

erated by these k rows g1, . . . , gk .
The main idea to construct Hermitian self-orthogonal codes in this paper is as

follows. It is well known that from Lemma 1.1 we can prove that the dual of a Reed–
Solomon code (evaluation vectors of all polynomials with degrees less than k at a
subset S of Fq2 ) is another Reed–Solomon code (evaluation vectors of all polyno-
mials with degrees less than |S| − k at this subset S of Fq2 ) (see [18]). Hence we
only need to guarantee the condition of Lemma 1.1 is satisfied so that Hermitian self-
orthogonal MDS codes can be constructed. There are q-th powers in the Hermitian
inner product �n

i=1uiv
q
i . For the purpose to enlarge dimensions of constructed Her-

mitian self-orthogonal MDS codes, we need some number theoretical conditions on
the lengths to guarantee that the exponential sums in the Hermitian inner products are
zero. Then q-ary quantum MDS codes with minimum distances bigger than q

2 can be
constructed. ��

2 New quantum MDS codes I

2.1 Construction 1

Let m be a factor of q2 − 1. For any fixed positive integer w we define a length q2−1
m

linear error code over Fq2 as follows.

Cw = {(θm f (θm), θ2m f (θ2m), . . . , θ jm f (θ jm), . . . ,

θ (
q2−1
m −1)m f (θ(

q2

m −1)m), f (1)) : f ∈ Fq2 [x], deg( f ) ≤ w − 1}
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It is clear that Cw is a MDS [ q2−1
m , w,

q2−1
m − w + 1] code over Fq2 . Actually this

code is equivalent to a evaluation code at the elements θm, θ2m, . . ., θ(
q2−1
m −1)m, 1.

Hence it is equivalent to a Reed–Solomon code.
The Hermitian inner product of any two codewords (corresponding to two polyno-

mials f and g) is �
q2−1
m

j=1 θ jm+ jqm f gq(θ jm). Thus we only need to check

�
q2−1
m

j=1 θ(q+1)mjθ jm(t1+t2q) = �
q2−1
m

j=1 θ jm(q+1+t1+t2q) = 0,

where 0 ≤ t1, t2 ≤ w − 1.

Theorem 2.1 If m = 2k + 1 is an odd positive factor of q + 1 and w < k+1
2k+1 (q − 1),

then for all non-negative integers t1 and t2 satisfying 0 ≤ t1, t2 ≤ w−1, q+1+t1+t2q

is not divisible by q2−1
m . Hence the code Cw is Hermitian self-orthogonal.

Proof It is clear that if �
q2−1
m

j=1 θ jm(q+1+t1+t2q) = 0 for all t1 and t2 satisfying 0 ≤
t1, t2 ≤ w − 1, the code is Hermitian self-orthogonal. Hence from Lemma 1.1 it is
sufficient to prove that if w < k+1

2k+1 (q − 1), q + 1 + t1 + t2q, where t1 < w, t2 < w,

is not divisible by q2−1
m . Since q + 1+ t1 + t2q ≤ (q + 1)(1+w − 1) < (k + 1) q

2−1
m ,

if q + 1 + t1 + t2q is divisible by q2−1
m , the quotient q+1+t1+t2q

q2−1
m

≤ k. On the other

hand q2−1
m = q+1

m q− q+1
m . That is, q

2−1
m ≡ q − q+1

m mod q because q+1
m is an integer.

Therefore, if q + 1 + t1 + t2q is divisible by q2−1
m , then residue of q + 1 + t1 + t2q

module q is in the range [ k+1
m (q + 1) − 1, q − 1]. It is obvious that the residue of

q+ t2q+1+ t1 module q is 1+ t1 ≤ w < k+1
2k+1 (q−1). Since k+1

m (q+1) is a positive

integer and k+1
m (q − 1) = k+1

m (q + 1)− 1− 1
m < k+1

m (q + 1), the conclusion follows
directly. ��

Corollary 2.1 If m = 2k + 1 is an odd factor of q + 1, for each positive integer d in
the range 2 ≤ d ≤ 
 k+1

2k+1 (q − 1) + 1�, there exists a q-ary quantum MDS code with

length q2−1
m and minimum distance d.

Suppose q is a prime power and q+1 = λr where r is an odd integer, then for each
integer d in the range 2 ≤ d ≤ q−1

2 + λ
2 , a length λ(q − 1) q-ary quantum MDS code

with the minimum distance d was constructed in [3,12,13,21]. Its construction was
based on constacyclic codes overFq2 .However, this kind of quantumq-aryMDScodes
is a direct consequence from the constructed quantum MDS codes in Corollary 2.1.

We can extend the construction 1 to [ q2−1
m + 1, w + 1, q2−1

m − w + 1] Hermitian
self-orthogonal code over Fq2 with the following generator matrix.

123



New q-ary quantum MDS codes with distances bigger than q
2 2749

Table 1 [[ q2+m−1
m ,

q2+m−1
m −

2d, d + 1]]q quantum MDS
codes

Quantum MDS code q,m, d

[[33, 15, 10]]17 17, 9, 9

[[73, 51, 12]]19 19, 5, 11

[[57, 27, 16]]29 29, 15, 15

[[73, 35, 20]]37 37, 19, 19

[[81, 41, 21]]41 41, 21, 20

[[169, 125, 23]]43 43,11, 22

[[105, 53, 27]]53 53, 27, 26

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q+1
m 1 · · · 1 1

0 θm · · · θ

(
q2−1
m −2

)
m

θ
q2−1
m m = 1

· · · · · · · · · · · · · · ·
0 θ im · · · θ

(
q2−1
m −2

)
im

1
· · · · · · · · · · · · · · ·
0 θwm · · · θ

(
q2−1
m −2

)
wm

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Therefore, the following result which can be thought as a generalization of Theorem
4.4 of [11] is proved.

Theorem 2.2 For each odd number m = 2k + 1 satisfying m|q + 1, we have a

[[ q2+m−1
m ,

q2+m−1
m − 2d, d + 1]]q quantum MDS code for each integer d in the range

2 ≤ d ≤ 
 k+1
2k+1 (q − 1) + 1�.

In the case q+1 is divisible by 3 we have a length q2−1
3 +1 = q2+2

3 q-ary quantum

MDS code with minimum distance d for each integer d in the range 2 ≤ d ≤ 2(q+1)
3 .

This recovers the 2nd conclusion of Theorem 4.4 of [10]. Moreover if 5|q+1, then we

have a length q2−1
5 +1 = q2+4

5 q-ary quantumMDS code with the minimum distance

d for each integer d in the range 2 ≤ d ≤ 3(q+1)
5 . We list some new quantum MDS

codes from Theorem 2.2 in Table 1.

2.2 Construction 2

Weneed the following two lemmas in construction 2. Themain idea of the construction
2 is the consideration of the sum of two identities as in Lemma 1.1 with respect to two
subsets. Then we have new identities that some exponential sums at a new subset are
zero. This leads to some new Hermitian self-orthogonal codes with different lengths.

Lemma 2.1 Suppose q is an even prime power 2h. Let θ ∈ Fq2 be a primitive element
which generate the multiplicative group F∗

q2
. If m1 and m2 are factors of q2 − 1
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satisfying gcd(m1,m2) = 1. We set m3 = q2−1
m1

and m4 = q2−1
m2

. Let M1 be the set
of all indices j satisfying 1 ≤ j ≤ m3 − 1 and j is not divisible by m2, and M2 be
the set of all indices j satisfying 1 ≤ j ≤ m4 − 1 and j is not divisible by m1. Then
� j∈M1θ

m1t j + � j∈M2θ
m2t j = 0 for t = 1, . . . ,min{m3,m4} − 1.

Proof From Lemma 1.1 and the fact −1 = 1 in the finite field F22h we get the
conclusion. Here we should note that in the two equalities �

m3
j=1θ

m1t j = 0 and

�
m4
j=1θ

m2t j = 0. The common part is �
m5
j=1θ

m1m2t j , where m5 = q2−1
m1m2

. ��

Here |M1| = m3 − q2−1
m1m2

and |M2| = m4 − q2−1
m1m2

.
Similarly we have the following Lemma 2.2. Suppose q is an even prime power

2h . Let θ ∈ Fq2 be a primitive element which generate the multiplicative group F∗
q2
.

Consider m1, . . . ,ms factors of q2 − 1 satisfying gcd(ms1,ms2) = 1 for any s1 �= s2.

We set m′
1 = q2−1

m1
, . . . ,m′

s = q2−1
ms

. SetMu the subgroup of the multiplicative group
F∗
q2

generated by θmu . Let Ms1,...,sl be the intersection of Ms1 , . . . ,Msl for distinct
indices s1, . . . , sl in the set {1, . . . , s}. The set M is defined as the set of elements in
M1 ∪ · · · ∪ Ms by deleting these elements in the set Ms1,...,sl where l is even. The
elements inMs1,...,sl′ where l

′ is odd are remained.

Lemma 2.2 � j∈M∩M1θ
m1t j + � j∈M2∩Mθ jm2t + · · · + � j∈M∩Ms θ

jm2t = 0 for t =
1, . . . ,min{m′

1, . . . ,m
′
s} − 1.

If q be an even prime power 2h , m1 = 2k1 + 1 < m2 = 2k2 + 1 are odd factors

of q + 1 satisfying gcd(m1,m2) = 1. Set m3 = q2−1
m1

, m4 = q2−1
m2

, M = m3 +
m4 − 2(q2−1)

m1m2
. We construct a length M linear code CM over Fq2 as follows. CM =

{(x f (x))x∈M : 0 ≤ deg( f ) ≤ w − 1}, where w < k2+1
2k2+1 (q − 1). This is equivalent to

a evaluation code (a Reed–Solomon code) at all elements of the set M. Thus this is a
[M, w, M − w + 1] MDS code over Fq2 .

We need to check the exponential sum � j∈M1θ
jm1(q+1+t1+t2q) + � j∈M2

θ jm2(q+1+t1+t2q) for the purpose to get the Hermitian self-orthogonal codes.

Theorem 2.3 Let m1,m2,m3,m4, M and w be positive integers as above. If for all
non-negative integers t1 and t2 satisfying 0 ≤ t1, t2 ≤ w − 1, q + 1+ t1 + t2q cannot
be divisible by m3 and m4, then the code CM is Hermitian self-orthogonal. When
w < k2+1

2k2+1 (q − 1), the above condition is satisfied.

Proof The conclusion follows from the proof of Theorem 2.1 and the fact w <

min{ k1+1
2k1+1 (q − 1), k2+1

2k2+1 (q − 1)}. ��

Corollary 2.2 Suppose that q is an even prime power 2h, m1 = 2k1 + 1 and m2 =
2k2 + 1 are odd positive integers satisfying gcd(m1,m2) = 1,m1 < m2 and m1|q +
1,m2|q + 1. We set m3 = q2−1

m1
, m4 = q2−1

m2
, M = m3 + m4 − 2(q2−1)

m1m2
. For each

positive integer d in the range 2 ≤ d ≤ 
 k2+1
2k2+1 (q −1)+1�, there is a length M q-ary

quantum MDS code with minimum distance d.
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Table 2 [[(m1 + m2 − 2)(2h −
1), (m1 + m2 − 2)(2h − 1) −
2k, k + 1]]2h quantum MDS
codes

Quantum MDS code h,m1,m2, k

[[372, 340, 17]]32 5, 3,11, 16

[[1008, 942, 34]]64 6, 5, 13, 32

[[5588, 5460, 65]]128 7, 3, 43, 64

[n[22484, 21956, 265]]512 9, 19, 27, 264

Table 3 [[ q2−1
m1

+ q2−1
m2

−
q2−1
m1m2

,
q2−1
m1

+ q2−1
m2

−
q2−1
m1m2

− 2k, k + 1]]q quantum
MDS codes

Quantum MDS code q,m1,m2, k

[[412, 412 − 2k, k + 1]]29 29, 3,5, 1 ≤ k ≤ 16

[[720, 720 − 2k, k + 1]]41 41, 3, 7, 1 ≤ k ≤ 22

[[1624, 1624 − 2k, k + 1]]59 59, 3, 5, 1 ≤ k ≤ 34

[[2952, 2952 − 2k, k + 1]]83 83, 3,7, 1 ≤ k ≤ 46

From Lemma 2.2 we can generalize our recent results to the case that q + 1 has
several factorsm1, . . .ms , where gcd(ms1 ,ms2) = 1 for s1 �= s2. Some quantumMDS
codes coming from Corollary 2.2 are listed in Table 2.

Actually in the case q is an odd prime power we can use equivalent codes to get
new quantum MDS codes as follows. If q is an odd prime power, then 2 is a nonzero
element in Fq ⊂ Fq2 . If m1 = 2k1 + 1 < m2 = 2k2 + 1 are two odd factors of q + 1,

then we have the following identity. When t is not divisible by q2−1
m1

or q2−1
m2

,

�

q2−1
m1
j=1 θm1t j + �

q2−1
m2
j=1 θm2 j t = 0

For those indices j’s which are in both summands, that is, j = m1m2 j ′, we have
2θm1m2t j ′ in the above identity. Since 2 = uq+1 for some u ∈ Fq2 , the equivalent code
can be used to get a Hermitian orthogonal code from Lemma 1.2. Hence we have the
following result.

Theorem 2.4 Suppose that q is an odd prime power, m1 = 2k1+1 and m2 = 2k2+1
are odd positive integers satisfying gcd(m1,m2) = 1,m1 < m2 andm1|q+1,m2|q+
1. We set m3 = q2−1

m1
, m4 = q2−1

m2
, M = m3 + m4 − q2−1

m1m2
. For each positive integer

d in the range 2 ≤ d ≤ 
 k2+1
2k2+1 (q − 1) + 1�, there is a length M q-ary quantum MDS

code with minimum distance d.

In Table 3 we give some new quantum MDS q-ary codes from Theorem 2.4.

3 New quantum codes II

3.1 Odd q and even m|q − 1 (Recovery of Theorem 4.11 in [3])

Suppose q is an odd prime power and q − 1 = 2ha1a2 where a1 and a2 are odd
numbers. We assume m = 2h1a1 ≥ 6 is an even factor of q − 1 where h1 ≤ h. We
first prove the following lemma.
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Table 4 [[(m1 + m2 −
1)(2m1m2 + 2), (m1 + m2 −
1)(2m1m2 + 2) − 2d + 2, d]]q
quantum MDS codes

Quantum MDS code q,m1,m2, d

[[224, 224 − 2d + 2, d]]29 31, 3, 5, 2 ≤ d ≤ 17

[[396, 396 − 2d + 2, d]]41 43, 3, 7, 2 ≤ d ≤ 25

[[884, 884 − 2d + 2, d]]67 67, 3, 11, 2 ≤ d ≤ 37

[[792, 792 − 2d + 2, d]]71 71, 5, 7, 2 ≤ d ≤ 41

[[1196, 1196 − 2d + 2, d]]91 91, 5, 9, 2 ≤ d ≤ 51

Lemma 3.1 When 0 ≤ t1, t2 ≤ q+1
2 + 2h−h1a2 − 2, the following equality holds:

�
q2−1
m

j=1 θ jm(t1+t2q+ q+1
2 ) = 0

Proof From the condition m ≥ 6, t1 + t2q + q+1
2 < q2 − 1. Thus if (t1 + q+1

2 ) + t2q

is divisible by q2−1
m , the quotient u < m. In the case t1 + q+1

2 ≤ q − 1 we have

u q2−1
m = t2q + t1 + q+1

2 . The quotient is t2 and the remainder is t1 + q+1
2 . The

quotient and the remainder have to be the same since u(
q−1
m ) is an integer.

Since t1+ q+1
2 = t2 is divisible by

q−1
m , t1+1+ q−1

2 is divisible by q−1
m = 2h−h1a2.

From t1 ≥ 0we have t1+1 ≥ 1, and t1 ≥ 2h−h1a2−1.On the other hand t2 = t1+ q+1
2 ,

t2 ≥ q+1
2 +2h−h1a2−1. This is a contradiction. Thus t1+t2q+ q2−1

2h−h1+1m
is not divisible

by q2−1
m .

In the case t1 + q+1
2 ≥ q we have u q2−1

m = (t2 + 1)q + (t1 − q−1
2 ). The quotient

is t2 + 1 and the remainder is t1 − q−1
2 . These two numbers have to be the same since

u < m. Thus t2 + 1 = t1 − q−1
2 is divisible by q−1

m = 2h−h1a2. From t2 + 1 ≥ 1,

we have t2 ≥ 2h−h1a2 − 1. Thus t1 ≥ t2 + 1 + q−1
2 ≥ q+1

2 + 2h−h1a2 − 1. This is a
contradiction.

The code is the set {( f (θml), f (θ2ml), . . . , f (θ jml), . . . , f (θ
q2−1
m ml) : deg( f ) <

k}. In Lemma 1.2 we can set v′
j = θ j m(q+1)

2 ∈ F∗
q . gl = (θml , θ2ml , . . . , θ jml , . . . ,

θ
q2−1
m ml), where 0 ≤ l ≤ k − 1. Thus a [ q2−1

m , k]q2 Hermitian self-orthogonal MDS
code can be constructed from Lemmas 1.2 and 3.1, where k is in the range 1 ≤ k ≤
q+1
2 + 2h−h1a2 − 1. From Theorem 1.1 we have a length q2−1

m quantum MDS q-ary

code with the minimum distance d = k + 1 in the range 2 ≤ d ≤ q+1
2 + 2h−h1a2. ��

Theorem 3.1 If q = 2ha1a2 + 1 is an odd prime power where a1 and a2 are odd
numbers and m = 2h1a1 ≥ 6 is an even factor of q − 1 where h1 ≤ h, then for each
integer d in the range 2 ≤ d ≤ q+1

2 + 2h−h1a2, we have a q-ary quantum MDS code

with length q2−1
m and minimum distance d.

This recovers Theorem 4.11 in [3].
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3.2 Length w(q2−1)
u quantum q-ary MDS codes

The main idea of the construction in this subsection is similar to the Sect. 2.2. We add
some identities in Lemma 3.1 to get some new identities that some exponential sums
are zero. Thus we can construct some new Hermitian self-orthogonal codes.

Suppose m1 = 2h1a1 ≥ 6 and m2 = 2h2b1 ≥ 6 are two even factors of q − 1 =
2ha1a2 = 2hb1b2 where a1, a2, b1, b2 are odd numbers. Then we have two identities
from Lemma 3.1. The addition of these two identities gives another identity. For
those indices j which are divisible by both m1 and m2, we have to use the element

θ j
m1(q+1)

2 + θ j
m2(q+1)

2 ∈ Fq . It is obvious that this is a nonzero element in F∗
q when

lcm(m1,m2) = q − 1 (here lcm is the least common multiple). Set M1 the set

of indices m1 · {1, . . . , q2−1
m1

} and M2 = m2 · {1, . . . , q2−1
m2

}, M = M1 ∪ M2. Here

|M| = |M1|+|M2|− q−1
lcm(m1,m2)

(q+1) = q2−1
m1

+ q2−1
m2

−(q+1)when lcm(m1,m2) =
q − 1. The code is the set {( f (x))x∈M : 0 ≤ deg( f ) ≤ k − 1}, where 1 ≤ k ≤
q−1
2 + min{2h−h1a2, 2h−h2b2}.

Theorem 3.2 Assuming that q = 2h1a1a2 + 1 = 2h2b1b2 + 1 is an odd prime power
as above and a1, a2, b1, b2 are odd numbers. Suppose also that m1 = 2h1a1 and
m2 = 2h2b1 are two even factors of q − 1 satisfying lcm(m1,m2) = q − 1 as above.
Then for each integer d in the range 2 ≤ d ≤ q+1

2 +min{2h−h1a2, 2h−h2b2} we have
a q-ary quantum MDS code with length |M| = q2−1

m1
+ q2−1

m2
− (q + 1) and minimum

distance d.

Corollary 3.1 If 2m1m2 + 1 is a prime power where m1 < m2 are two co-prime odd
numbers, then for each integer d in the range 2 ≤ d ≤ m1m2 + m1 + 1 we have a

length (m1+m2−1)(q2−1)
2m1m2

= (m1 +m2 −1)(2m1m2 +2) q-ary quantumMDS code and
the minimum distance d.

We list some new quantum MDS codes from Corollary 3.1 in Table 4.

4 New quantum codes III

Just as in Sect. 2.2 the idea of the construction in this section is that the addition of
two identities in Lemmas 1.1 and 3.1 gives us some new identities showing that some
exponential sums are zero. This leads to some new Hermitian self-orthogonal codes
with different lengths.

Let q be an odd prime power and m1 = 2k1 + 1 is an odd factor of q + 1.
From Theorem 2.1 we have that the following identity holds when 0 ≤ t1, t2 ≤
q−1
2 + q+1

2m1
− 2.

�

q2−1
m1
j=1 θ jm1(t1+t2q) · θ jm1(q+1) = 0
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From Lemma 3.1 if m2|q − 1 is an even factor of q − 1 we have the following
identity when 0 ≤ t1, t2 ≤ q−1

2 + q−1
m2

− 1.

�

q2−1
m2
j=1 θ jm2(t1+t2q) · θ j

m2(q+1)
2 = 0

We can get the following identity by adding these two identities.

�

q2−1
m1
j=1 θ jm1(t1+t2q) · θ jm1(q+1) + H(�

q2−1
m2
j=1 θ jm2(t1+t2q) · θ j

m2(q+1)
2 ) = 0

Here H can be any nonzero H ∈ F∗
q and the common t1 and t2 are in the range

0 ≤ t1, t2 ≤ q−1
2 + min{ q+1

2m1
− 2, q−1

m2
− 1}. At the position θm1m2t it is clear that

θm
2
1m2t (q+1) + Hθ

m1m
2
2 t (q+1)
2 is an element in Fq . Since θ(m1−m2

2 )m1m2t (q+1) can only
be the q−1

m2
nonzero elements in the subgroup of F∗

q generated by θm2(q+1), there exists

a H ∈ F∗
q such that θm

2
1m2t (q+1) + Hθ

m1m
2
2 t (q+1)
2 is a nonzero element in F∗

q for any
possible t .

LetM be the set {θ jm1 : j = 1, . . . , q2−1
m1

}∪{θ jm2 : j = 1, . . . , q2−1
m2

}. The code is
the set {( f (x))x∈M : 0 ≤ deg( f ) ≤ q−1

2 +min{ q+1
2m1

−2, q−1
m2

−1}}. This is equivalent
to a Reed–Solomon code.

Theorem 4.1 If q is an odd prime power, m1 is an odd factor of q+1 and m2 an even
factor of q−1, then for each integer d in the range 2 ≤ d ≤ q−1

2 +min{ q+1
2m1

,
q−1
m2

+1},
we have a q-ary quantum MDS code with length q2−1

m1
+ q2−1

m2
− q2−1

m1m2
and minimum

distance d.

Actually Theorem 4.1 is quite general as illustrated in the following results.

Corollary 4.1 Let q be an odd prime power. If there exists an odd integer m|q + 1
such that m − 1 is an even factor of q − 1. Then for each integer d in the range

2 ≤ d ≤ q−1
2 + q+1

2m we have a length 2(q2−1)
m q-ary quantum MDS code with

minimum distance d.

There are many such odd prime powers q as illustrated in Table 5.
The lengths of some quantum MDS q-ary codes in Table 5 have the form 4(q − 1)

where q is an odd prime power such that (q + 1) is not divisible by 4. This case is not
covered in the previous results (see the table in page 1482 of [3]).

Corollary 4.2 If q is an odd prime power of the form q ≡ 1 mod 4, then for each
integer d in the range 2 ≤ d ≤ q+1

2 we have a length 4(q − 1) q-ary quantum MDS
code with minimum distance d.

From the main result in [9] (or see 3 in the table in page 1482 of [3]), only the range
3 ≤ d ≤ q−1

2 is allowed. Our result gives a quantum q-ary MDS [[4(q − 1), 3q −
3, q+1

2 ]]q code when q = 4k + 1 is an odd prime power.
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Table 5 Quantum MDS codes

with lengths 2(q2−1)
m

Quantum MDS code q,m, d

[[48, 48 − 2d + 2, d]]13 13, 7, 2 ≤ d ≤ 7

[[48, 48 − 2d + 2, d]]25 17, 9, 2 ≤ d ≤ 9

[[56, 56 − 2d + 2, d]]29 29, 15, 2 ≤ d ≤ 15

[[144, 144 − 2d + 2, d]]41 37, 19, 2 ≤ d ≤ 19

[[192, 192 − 2d + 2, d]]49 49, 25, 2 ≤ d ≤ 25

[[960, 960 − 2d + 2, d]]49 49, 5, 2 ≤ d ≤ 29

[[288, 288 − 2d + 2, d]]73 73, 37, 2 ≤ d ≤ 37

[[1760, 1760 − 2d + 2, d]]89 89, 9, 2 ≤ d ≤ 49

Table 6 Quantum MDS codes with lengths (q−1)
2k+1 · (q + 1)

Quantum MDS code q, k, d

[[56 · 170, 9520 − 2d + 2, d]]169 169, 1, 2 ≤ d ≤ 101

[[96 · 290, 27840 − 2d + 2, d]]289 289, 1, 2 ≤ d ≤ 173

[[456 · 1370, 624720 − 2d + 2, d]]1369 1369, 1, 2 ≤ d ≤ 821

[[616 · 1850, 1139600 − 2d + 2, d]]1849 1849, 1, 2 ≤ d ≤ 1109

[[984 · 6870, 6760080 − 2d + 2, d]]6889 6889, 3, 2 ≤ d ≤ 3709

[[672 · 57122, 38385984 − 2d + 2, d]]57121 57121, 42, 2 ≤ d ≤ 28729

[[1896 · 24650, 46736400 − 2d + 2, d]]24649 24649, 6, 2 ≤ d ≤ 12817

Corollary 4.3 Let q be an odd prime power. If there exists an even factor 2(2k + 1)
of q − 1 such that 4k + 1 is a odd factor of q + 1, then for each integer d in the range
2 ≤ d ≤ q−1

2 + q+1
2(4k+1) we have a length q−1

2k+1 · (q + 1) q-ary quantum MDS code
with minimum distance d.

In Theorem 4.11 of [3] and Theorem 3.1 here m cannot be an odd factor. This
Corollary 4.3 partially solves this case under an assumption on q. However, there are
a lot of such odd prime powers q and odd factors (2k + 1)|q − 1 as illustrated in
Table 6.

5 New quantum codes IV

In this section we treat the case that q is an odd prime power and n = q2−1
m , where

m|q2 − 1, and m is neither a factor of q − 1 nor q + 1.
We need the following two lemmas.

Lemma 5.1 Ifm1 is an even integer andm2 is anodd integer satisfyinggcd(m1,m2) =
1, there are infinitely many primes q satisfying m1|q − 1 and m2|q + 1.

Proof Since gcd(m1,m2) = 1 we have two integers l0 and k0 satisfying l0m1 + 2 =
k0m2. Thus l = l0 +m2t and k = k0 +m1t also satisfy lm1+2 = km2 for all integers
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Table 7 Quantum MDS codes from Theorem 5.1

Quantum MDS code q,m1,m2, d

[[1088 · 1995, 2170560 − 2d + 2, d]]11969 11969, 176, 105, 2 ≤ d ≤ 6041

[[2768 · 5075, 14047600 − 2d + 2, d]]30449 30449, 176, 105, 2 ≤ d ≤ 15369

[[7758 · 9310, 72226980 − 2d + 2, d]]46549 46549, 36, 175, 2 ≤ d ≤ 23407

[[9858 · 11830, 116620140 − 2d + 2, d]]59149 59149, 36, 175, 2 ≤ d ≤ 29743

t = 0± 1,±2, . . .. It is clear gcd(l0m1 + 1,m1) = 1. We have l0m1 + 1+ 1 = k0m2,
then gcd(l0m1 + 1,m2) = 1.

FromDirichlet Theorem there are infinitelymany primes in the arithmetic sequence
m2m1t+ l0m1+1 because of gcd(l0m1+1,m1m2) = 1. It is direct to verifym1|q−1
and m2|q + 1. ��
Lemma 5.2 There are infinitely many pairs of positive integers (m1,m2) satisfying
the following conditions.

1) m1 is even, m2 is odd and gcd(m1,m2) = 1;
2) m1+m2−1

m1m2
= 1

m where m is a positive integer satisfying gcd(m1,m) > 1 and
gcd(m2,m) > 1.

Proof We consider m2 = k1k2 where k1 and k2 are odd numbers. Set k3 and k4 two
un-determined positive integers satisfying k1k2 −1+2k3k4 = k1k3. Then k1k2 −1 =
k3(k1 − 2k4). From the factorization of k1k2 − 1 we get suitable k3 and k4. Hence
m1 = k1k2 and m2 = 2k3k4 are the integers satisfying the conditions.

For example when k1 = 35 and k2 = 3, 105 − 1 = 8 · 13 = k3(35 − 2k4), we
can set k3 = 8 and k4 = 11. Then m1 = 176 and m2 = 105. 105+176−1

176·105 = 1
66 . When

k1 = 35 and k2 = 5. 174 = 6 · 29 = k3(35 − 2k4), we can set k3 = 6 and k4 = 3.
Then m1 = 36 and m2 = 175. 175+36−1

36·175 = 1
30 . ��

Theorem 5.1 There are infinitely many pairs of integers (m1,m2) as in Lemma 5.2
and infinitely many primes q as in Lemma 5.1 for each such pair (m1,m2). For each
such pair (m1,m2) and the infinitely many primes q as in Lemma 5.1, we have a q-ary

quantum MDS code with length n = q2−1
m and minimum distance d for each integer

d in the range 2 ≤ d ≤ q−1
2 + min{ q+1

2m2
,
q−1
m1

+ 1}.
Proof The conclusion follows from Lemmas 5.1 and 5.2 and Theorem 4.1 directly.

We list some new q-ary quantum MDS codes from Theorem 5.1 in Table 7.
��

Corollary 5.1 Let k be any positive integer satisfying k ≡ 5 mod 9. If q = 16k2 −
12k + 1 is an odd prime power, then we have a q-ary quantum MDS code with length
q2−1
3k and minimum distance d for each integer d in the range 2 ≤ d ≤ q+1

2 + 2k−1
3 .

Proof Set m1 = 4k and m2 = 3(4k − 1) in Theorem 5.1 we get the conclusion.
For example when k = 14 and q = 2969 is a prime we have a 2969-ary quantum

MDS [[209880, 209880 − 2d + 2, d]]2969 code for each integer d in the range 2 ≤
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Table 8 Quantum MDS codes

Length Distance Reference

q2−1
m , m|q + 1, m odd 2 ≤ d ≤ q−1

2 + q−1
2m [3,21] [22]

q2−1
m , m|q + 1, m even 2 ≤ d ≤ q−1

2 + q−1
m [21]

q2−1
m , m|q − 1, m even 2 ≤ d ≤ q+1

2 + q−1
m [3], Theorem 2.1

q2+m−1
m , m|q + 1, m odd 2 ≤ d ≤ q+1

2 + q−1
2m Theorem 2.2

4(q − 1), q ≡ 1 mod 4 d = q+1
2 Corollary 4.2

2(q2−1)
m , odd q, odd m|q + 1

s.t.m − 1|q − 1
2 ≤ d ≤ q−1

2 + q+1
2m Corollary 4.1

q−1
2k+1 · (q + 1),
2k + 1|q − 1
s.t.4k + 1|q + 1

2 ≤ d ≤ q−1
2 + q+1

2(4k+1) Corollary 4.3

(m1+m2−1)(q2−1)
2m1m2

, odd m1 < m2,

gcd(m1,m2) = 1, q = 2m1m2 + 1
2 ≤ d ≤ q+1

2 + m1 Corollary 3.1

(m1+m2−1)(q2−1)
2m1m2

, odd

m1 = 2k1 + 1 < m2 = 2k2 + 1,
gcd(m1,m2) = 1

2 ≤ d ≤ q+1
2 + q−1

2(2k2+1) Corollary 2.2

q2−1
m , suitable q and m not dividing q − 1

orq + 1, A ≥ 1as in Theorem 3.1
2 ≤ d ≤ q−1

2 + A Theorem 3.2

q2−1
3k , k ≡ 5mod9, for odd prime power

q = 16k2 − 12k + 1
2 ≤ d ≤ q+1

2 + 2k−1
3 Corollary 5.1

d ≤ 1494. In the above Corollary 5.1 we should note that 3k is not a factor of q − 1
or q + 1. This case has not been treated in the previous works [3,8–13]. ��

6 Summary

In this paper we give a direct method constructing q2-ary Hermitian self-orthogonal
MDS codes with dimensions k >

q
2 . This leads to many new q-ary quantum MDS

codes with minimum distances d >
q
2 . Some new q-ary quantum MDS codes with

q >
q
2 constructed in this paper are listed in Table 8.
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