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Abstract Determining relationships between different types of quantum correlations
in open composite quantum systems is important since it enables the exploitation
of a type by knowing the amount of another type. We here review, by giving a for-
mal demonstration, a closed formula of the Bell function, witnessing nonlocality, as
a function of the concurrence, quantifying entanglement, valid for a system of two
noninteracting qubits initially prepared in extendedWerner-like states undergoing any
local pure-dephasing evolution. This formula allows for finding nonlocality thresholds
for the concurrence depending only on the purity of the initial state. We then utilize
these thresholds in a paradigmatic system where the two qubits are locally affected by
a quantum environment with an Ohmic class spectrum. We show that steady entan-
glement can be achieved and provide the lower bound of initial state purity such that
this stationary entanglement is above the nonlocality threshold thus guaranteeing the
maintenance of nonlocal correlations.

Keywords Open quantum systems · Quantum entanglement · Bell nonlocality ·
Pure-dephasing

1 Introduction

Quantum nonlocality and entanglement identify two kinds of quantum correlations
that are at the foundations of quantum mechanics and play an essential role in quan-
tum information theory [1–3]. Although for pure states of a bipartite system the two
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concepts coincide, formixed states the presence of entanglement does not imply in gen-
eral nonlocality, the latter being a stronger quantumness property than entanglement
[3,4]. In many scenarios, a quantum system exists in mixed states, particularly during
its dynamics due to the interaction with the surrounding environment which induces
decoherence and therefore mixedness [5,6]. Moreover, the environmental effects are
usually detrimental for entanglement and nonlocality in a configuration of separated
noninteracting qubits embedded in independent local environments [7,8]. Such a sit-
uation is typical for quantum communication and information protocols where the
supports of the single-particle wave functions are centered around sufficiently far
locations or the particles are separated by an energy barrier large enough, as in exper-
iments with photons in different optical modes or with strongly repelling trapped ions
[9–13]. It is thus useful to find dynamical equations that relate these two kinds of
quantum correlations, for instance in order to acquire information on the presence of
nonlocality just by looking at the quantum entanglement of the overall system.

The possible existence of closed relations between quantifiers of entanglement and
nonlocality is a subject of special interest in dynamical contexts [14–16]. Entangle-
ment can be quantified for an arbitrary two-qubit state by the concurrence C(t) [17].
Nonlocality is instead unambiguously identified if a Bell inequality is violated. The
Bell function B, as defined by the Clauser–Horne–Shimony–Holt (CHSH) form of the
Bell inequality [3], can be then used to seek whether the system exhibits nonlocal cor-
relations which occur with certainty if B > 2. An important goal within this context is
to prove the existence of threshold values of concurrence which ensure nonlocal quan-
tum correlations during a given evolutions whenever C(t) stays above that threshold.
In fact, apart its basic interest, this behavior would permit to utilize the system state
for quantum information processes relying on nonlocality, as device-independent and
security-proof quantum key distribution protocols [3,18]. It has been recently reported
that Bell function and concurrence satisfy a closed dynamical relation in the case of
general pure-dephasing evolution for each qubit, provided that the qubits are initially
prepared in the class of extended Werner-like (EWL) states [19]. This result has been
then utilized to verify the preservation of nonlocality by dynamical decoupling pulse
sequences in the presence of low-frequency noise typical of the solid state [19].

The aim of this work is to review the pure-dephasing relation between concurrence
andBell function, giving a formal demonstration of it. Successively,we apply the result
to a paradigmatic systemmade of two independent qubits locally interactingwith pure-
dephasing noise sources having Ohmic class spectrum. By exploiting the trapping of
the single-qubit coherence which occurs in such a system [20], we investigate the
possibility to achieve a stationary entanglementwhich ensures the presence of nonlocal
correlations. In particular, we find the lower bound of the purity of the initial two-qubit
state such as to guarantee that the stationary concurrence is above the nonlocality
threshold.

2 Preliminaries: Bell function and concurrence

In order to witness nonlocality, we use here the CHSH form of Bell inequal-
ity, which is the most suitable for an experimental test of nonlocality in bipartite
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quantum systems composed by two-level (spin-like) systems, or qubits [3]. Let
the operator OS = OS(θS, φS) be a spin observable with eigenvalues ±1 associ-
ated with the spin particle S = A, B defined by OS = OS · σ S , where OS ≡
(sin θS cosφS, sin θS sin φS, cos θS) is the unit vector indicating an arbitrary direction
in the spin space and σ S = (σ S

x , σ S
y , σ S

z ) is the Pauli matrices vector. The CHSH-Bell
inequality associated with a two-qubit state ρ is B(ρ) ≤ 2, where B(ρ) is the Bell
function defined as [3,21]

B(ρ) = |〈OAOB〉 + 〈OAO′
B〉 + 〈O′

AOB〉 − 〈O′
AO′

B〉|, (1)

where 〈OAOB〉 = Tr{ρ̂OAOB} is the correlation function of observables OA, OB

and O′
S ≡ OS(θ

′
S, φ

′
S). If, given the state ρ, it is possible to find a set of angles

{θA, θ ′
A, θB , θ ′

B} and {φA, φ′
A, φB, φ′

B} such that the CHSH-Bell inequality is violated
(B(ρ) > 2), then the correlations are nonlocal or, in other words, the system state
exhibits nonlocality. A procedure to obtain the maximum of B(ρ) and the correspond-
ing angles for an arbitrary two-spin-1/2 mixed state is well known [22]. Using it,
one finds Bmax(ρ) = 2

√
max j>k{u j + uk}, where j, k = 1, 2, 3 and u j ’s are three

quantities depending on the state.
Entanglement for an arbitrary state ρ of two qubits is quantified by concurrence

[1,17]

CAB = C(ρ) = max
{
0,

√
λ1 − √

λ2 − √
λ3 − √

λ4

}
, (2)

where λi (i = 1, . . . , 4) are the eigenvalues in decreasing order of the matrix ρ(σy ⊗
σy)ρ

∗(σy ⊗σy), with σy denoting the second Pauli matrix and ρ∗ corresponding to the
complex conjugate of the two-qubit density matrix ρ in the standard computational
basis {|1〉 ≡ |11〉, |2〉 ≡ |10〉, |3〉 ≡ |01〉, |4〉 ≡ |00〉}.

Let us take now the two-qubit states whose density matrix, in the basis B, has a X
structure as

ρ̂X =

⎛

⎜
⎜
⎝

ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ∗

23 ρ33 0
ρ∗
14 0 0 ρ44

⎞

⎟
⎟
⎠ . (3)

This class of states is sufficiently general to include Bell states (pure two-qubit max-
imally entangled states) and Werner states (mixture of Bell states with white noise)
[23]. A remarkable aspect of the X states is that, under various kinds of dynamics,
the initial X structure is maintained during the evolution [23,24]. Using the above
criterion to obtain Bmax [22], the three quantities u’s, in terms of the density matrix
elements, are found to be

u1 = 4(|ρ14| + |ρ23|)2, u2 = (ρ11 + ρ44 − ρ22 − ρ33)
2,

u3 = 4(|ρ14| − |ρ23|)2, (4)
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as already reported [25]. Being u1 always larger than u3, themaximumofBell function
for X states results to be Bmax(ρ̂) = 2

√
u1 + max j=2,3{u j }, that is

Bmax = max {B1,B2} , B1 = 2
√
u1 + u2, B2 = 2

√
u1 + u3. (5)

The expression of concurrence for X states is given by [7]

CX
ρ (t) = 2max

{
0, |ρ23(t)| − √

ρ11(t)ρ44(t), |ρ14(t)| − √
ρ22(t)ρ33(t)

}
. (6)

3 Relation between Bell function and concurrence under pure-dephasing

In this section, we review the relation between quantifiers of entanglement and non-
locality for two noninteracting qubits, A and B, locally subject to any pure-dephasing
interaction with the environment. We start by defining the general form of the Hamil-
tonian and the relevant initial states of the two-qubit system.

The dynamics of each qubit S = A, B is governed by the pure-dephasing Hamil-
tonian (h̄ = 1)

HS = �

2
σz + χ̂

2
σz + ĤR, (7)

where� is the Bohr frequency of the qubit and χ̂ represents an arbitrary environmental
operator coupled to the same qubit (for simplicity, we omit to explicitly attach the
label S to each parameter and operator appearing in HS). The free evolution of the
environment is included in ĤR . The overall Hamiltonian of the two-qubit system is
thus Htot = HA + HB , with each HS (S = A, B) given by Eq. (7).

The two qubits are supposed to be prepared in an EWL state [23]

ρ1 = r |1a〉〈1a | + 1 − r

4
114, ρ2 = r |2a〉〈2a | + 1 − r

4
114, (8)

where the pure parts |1a〉 = a|01〉+ b|10〉 and |2a〉 = a|00〉+ b|11〉 are, respectively,
the one-excitation and two-excitation Bell-like states with a2 + |b|2 = 1 (a is real)
and 114 is the 4 × 4 identity matrix of the two-qubit Hilbert space. The EWL states
are a subclass of the X states of Eq. (3) and when a = b = 1/

√
2 they reduce

to the Werner states, a subclass of Bell-diagonal states [2]. The purity parameter
r ∈ [0, 1] is a measure of the purity of EWL states which is given by P = Tr(ρ2) =
(1 + 3r2)/4. The two EWL states of Eq. (8) have the same value of concurrence
Cρ1(0) = Cρ2(0) = 2max{0, (|ab|+1/4)r −1/4}. Initial states are thus entangled for
r > r̄ = (1 + 4|ab|)−1.

We can now claim the following theorem.

Theorem 1 For noninteracting qubits starting from an entangled EWL state (r > r̄ )
and locally subject to any pure-dephasing noise, the Bell function and the concurrence
satisfy the dynamical relation [19]
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B(t) = 2
√
r2 + [C(t) + (1 − r)/2]2. (9)

Proof Since the two qubits are noninteracting, the evolution of entanglement and
nonlocality can be simply obtained from the knowledge of single-qubit dynamics
[24]. Under a pure-dephasing evolution, for each qubit the diagonal elements of the
density matrix in the eigenstate basis remain unchanged. The single-qubit coher-
ences evolve in time as qS(t) ≡ ρS

01(t)/ρ
S
01(0), the explicit time dependence being

specified by the environmental properties and the interaction term. If the system is
subject to pure-dephasing only, the X form of the density matrix is maintained dur-
ing the evolution. In particular, diagonal elements remain constant while off-diagonal
elements evolve in time. They are related to the single-qubit coherences by [7,24]
ρ23(t) = ρ23(0)qA(t)q∗

B(t) for the initial state ρ1 and ρ14(t) = ρ14(0)qA(t)qB(t)
for ρ2. From Eq. (6), we immediately obtain the concurrences at time t for the two
initial states given in Eq. (8) as Cρ1(t) = 2max{0, |ρ23(t)| − √

ρ11(0)ρ44(0)} and
Cρ2(t) = 2max{0, |ρ14(t)| − √

ρ22(0)ρ33(0)}. For the pure-dephasing evolution, we
then have Cρ1(t) = Cρ2(t) ≡ C(t) with

C(t) = 2max
{
0, ra

√
1 − a2|qA(t)qB(t)| − (1 − r)/4

}
. (10)

We now turn to nonlocality. For independent qubits subject to local pure-dephasing
noise, the two functions B1, B2 defined in Eq. (5) have the same form for the initial
EWL states of Eq. (8) and are given by

B1(t) = 2
√
r2 + 4r2a2(1 − a2)|qA(t)qB(t)|2,

B2(t) = 4
√
2r |a|

√
1 − a2|qA(t)qB(t)|. (11)

Since a, r, |qA(t)|, |qB(t)| ∈ [0, 1], it is easily seen that B1(t) ≥ B2(t) for any t :
the maximum Bell function is thus B(t) = B1(t). We now observe that nonzero
entanglement (C(t) > 0) is necessary in order that the state exhibits nonlocality and
we can simply write C(t) = 2[r |a|√1 − a2|qA(t)qB(t)| − (1 − r)/4]. From the first
line of Eq. (11) with B(t) = B1(t), it is promptly found that the second term under
square root is equal to [C(t) + (1 − r)/2]2 so that the result of Eq. (9) is proven.

We stress that this theorem is valid for any local pure-dephasing qubit-environment
interaction, starting from an initial EWL state with a generic value of a �= 0, 1. For
instance, when r = 1 Eq. (9) reduces to B(t) = 2

√
1 + C(t)2: the latter relation,

which is known to occur when the system is in a pure state [26] or in a Bell-diagonal
state [27], is here found to hold during the system evolution for more general states.

As a consequence of the previous theorem, we get the following

Lemma 1 The threshold value Cth of the concurrence such that, when C(t) > Cth, the
evolved two-qubit state ρ(t) exhibits nonlocality at time t under any pure-dephasing
evolution and for EWL initial states is

Cth =
√
1 − r2 − (1 − r)/2. (12)
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Proof The demonstration immediately follows from Eq. (9) by solving the tight
inequality B(t) > 2 with respect to concurrence C(t).

We name Cth nonlocality threshold. Therefore, for initial EWL states evolving under
any pure-dephasing interaction, the system exhibits nonlocality at time t provided that
the concurrence C(t) is larger than a threshold value Cth depending only on the system
initial purity. The threshold is a decreasing function of the purity, and for r = 1 it is
Cth = 0: This implies that if the two qubits are initially in a pure entangled Bell-like
state, their correlations remain nonlocal until any amount of nonzero entanglement is
present. In the following, we exploit these results in a specific system where they are
particularly relevant.

4 Evolution under an environment with Ohmic class spectrum

We now apply the previous results in the dynamics of entanglement between two
initially correlated but noninteracting qubits A and B, each undergoing local pure-
dephasing due to the coupling with a zero-temperature bosonic environment having a
Ohmic-like spectrum, whose characteristics do not depend on the qubit [28]. In this
case, the explicit form of the Hamiltonian of Eq. (7) ruling the dynamics of each qubit
S = A, B is (h̄ = 1)

HS = ω0σz +
∑

k

ωka
†
k ak + σz

∑

k

(
gkak + g∗

k a
†
k

)
, (13)

where ω0 is the qubit frequency, ωk the frequencies of the reservoir modes, σz the
Pauli operator along the z-direction, ak the bosonic annihilation operators, a†k the
bosonic creation operators and gk the coupling constants between the qubit and each
reservoir mode. It is readily seen that the above Hamiltonian of Eq. (13) is obtained
by the general pure-dephasing Hamiltonian of Eq. (7) by substituting � = 2ω0,

HR = ∑
k ωka

†
k ak and χ̂ = 2

∑
k

(
gkak + g∗

k a
†
k

)
. In the continuum limit, one has [5]

∑
k |gk |2 → ∫

dωJ (ω)δ(ωk −ω), where J (ω) is the reservoir spectral density which
in this case is given by

J (ω) = ωs

ωs−1
c

e−ω/ωc , (14)

with ωc denoting the cutoff reservoir frequency (ωc is assumed equal for the two
independent environments). This qubit-environment system is exactly solvable in the
case of zero temperature [20,28]. In particular, the single-qubit decay characteristic
function q(t) = ρ01(t)/ρ01(0) at zero temperature is given by q(t) = e−Λ(t), with
dephasing factor

Λ(t) = 2
∫ t

0
γ (t ′)dt ′, (15)

where γ (t) is the dephasing rate of the single-qubit evolution [28]

γ (t) = ωc

[
1 + (ωct)

2
]−s/2

Γ [s] sin [s arctan(ωct)] , (16)
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Fig. 1 Dynamics of the two-qubit concurrence starting from Werner states (a = b = 1/
√
2), for different

parameter conditions. Left panel: The purity parameter is r = 0.9 for both the three curves and sA = sB =
1.5 (solid blue line), sA = sB = 3 (dashed orange line), sA = 1.5, sB = 3 (green dot-dashed line). The
gray dotted line represents the nonlocality threshold for the concurrence (Cth = 0.386). Right panel: The
purity parameter is r = 1 and sA = sB = 2.5 (solid blue line), sA = 2.5, while qubit B is isolated (dashed
orange line). In this case, the nonlocality threshold is zero and entanglement trapping is found (Color figure
online)

with Γ [x] being the Euler Gamma function. The parameter s of the spectrum of Eq.
(14) governs the character of the dynamics: In particular, for 0 ≤ s ≤ 1 the dynamics
is Markovian (memoryless) while for s > 1 it is non-Markovian (with memory), as
indicated by the time behavior of the single-qubit coherence q(t) = e−Λ(t) [20,28]. In
fact, for 0 ≤ s ≤ 1 the coherence vanishes asymptotically while for s > 1 it reaches
a stationary value which is not consistent with a simple Markovian approximation.
Moreover, for s > 2 an information backflow from the environment to the qubit occurs
[20].

If the two qubits are initially prepared in an EWL state of Eq. (8), then the con-
currence evolves as in Eq. (10) by substituting the single-qubit decay characteristic
functions qS(t) = e−ΛS(t) (S = A, B), where each ΛS(t) is defined in Eq. (15). In
general, the single-qubit decay function q(t) can be different for the two qubits, qA(t),
qB(t) depending on the values of the parameter sA, sB , respectively. In the follow-
ing, we shall study the case of both qubits locally subject to identical noise (that is,
qA(t) = qB(t) = q(t)) and the situation where a qubit, for instance B, is isolated so
that qB(t) = 1 at any time.

A first analysis of the entanglement dynamics for some values of the parameters
is displayed in Fig. 1. In particular, for both qubits under dephasing we observe that
for purity parameter r = 0.9 and weights a = 1/

√
2 (left panel), the entanglement

disappears at a finite time, with the faster decay occurring for the larger values of the
Ohmicity parameter s which indicate stronger single-qubit non-Markovianity. There-
fore, under these initial conditions non-Markovian features do not help maintaining
entanglement but are detrimental. On the other hand, for larger values of the purity
of the initial state, stationary nonzero entanglement is found, as displayed in the right
panel of Fig. 1 for r = 1. We point out how the case where a qubit is isolated is advan-
tageous for the entanglement preservation, as expected. Notice also that, for r = 1,
the nonlocality threshold for the concurrence obtained from Eq. (12) is zero, so that
this stationary entanglement ensures the presence of nonlocal correlations.

The emergence of this stationary entanglement, which did not surface in a previous
analysis of the same model due to the initial conditions there considered [29], strictly
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Fig. 2 Asymptotic value, Λ∞,
of the decay function Λ(t) as a
function of the spectrum
parameter s. The minimum value
of Λ∞ is attained for s̄ � 2.46
which gives Λ∞(s̄) � 1.77

stems from the trapping of the single-qubit coherence [20]. In fact, an analytic expres-
sion of the dephasing factor of Eq. (15) can be obtained by solving the integral which
gives

Λ(τ) =
2Γ (s)

{
1 − (

τ 2 + 1
)− s

2 [τ sin (s arctan τ) + cos (s arctan τ ])
}

s − 1
, (17)

where τ = ωct is the dimensionless time in units of ω−1
c . It is then straightforward to

see that, in the limit of τ to infinity, one has

Λ∞(s) = lim
τ→∞ Λ(τ) =

⎧
⎨

⎩

+∞, 0 ≤ s ≤ 1

2Γ (s)/(s − 1), s > 1
(18)

Therefore, the single-qubit coherence q(t) = e−Λ(t) decays to zero for values of s ≤ 1,
while for any value of s > 1 it achieves a stationary value q∞(s) = exp{−Λ∞(s)}
depending on s. A plot of the asymptotic dephasing factor Λ∞(s) as a function of s is
displayed in Fig. 2. It is seen that Λ∞(s) is a convex function exhibiting its minimum
value at s̄ � 2.46 where Λ∞(s̄) � 1.77. The value s̄ is thus the value of the Ohmicity
parameter s which maximizes the single-qubit coherence [20].

However, the fact that for any s > 1 a stationary coherence occurs does not entail
that there is correspondingly a nonzero stationary entanglement. In fact, as we have
already seen in Fig. 1, the occurrence of entanglement trapping strongly depends on the
value of the purity r of the initial EWL state. The analytic expression of the asymptotic
concurrence is immediately obtained by Eq. (10) as

C∞(s) = 2max
{
0, ra

√
1 − a2 e−nΛ∞(s) − (1 − r)/4

}
, (19)

where Λ∞(s) is given in Eq. (18) and n = 1, 2 for the case when one qubit is isolated
or both qubits are subject to noise, respectively. As seen from the above expression,
the value of s̄ which maximizes the stationary single-qubit coherence also maximizes
the stationary concurrence. For s ≤ 1, one always get C∞(s) = 0. The values of s > 1
such that C∞(s) > 0 for given a, r can be easily obtained using Eq. (19) and are
determined by the inequality
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Fig. 3 Asymptotic values of two-qubit concurrence starting from Werner states (a = b = 1/
√
2) as a

function of the Ohmicity parameter s. In both panels, the lower curve represents the concurrence for the
case of both qubits subject to noise, while the upper curve is the concurrence for the case where a qubit
is isolated. Left panel: The purity parameter is r = 1 and the nonlocality threshold is zero. Right panel:
The purity parameter is r = 0.99, and the gray dotted line represents the nonlocality threshold for the
concurrence (Cth = 0.136). The upper curve, that is the stationary concurrence when a qubit is isolated, is
larger than the nonlocality threshold within the range 2.06 < s < 2.94

Λ∞(s) = 2Γ (s)

s − 1
<

1

n
ln

[
4ra

√
1 − a2/(1 − r)

]
. (20)

It is immediately seen that for r = 1 and a �= 0, 1 the right-hand side of the above
inequality diverges to infinity and therefore the latter is satisfied for any value of
s > 1. Two plots of C∞(s) as a function of s for a = 1/

√
2 and two values of the

purity parameter r = 1, 0.99 are shown in Fig. 3. For pure initial states such that r = 1
(left panel), the nonlocality threshold is zero and C∞(s) > 0 for any value of s > 1;
for r = 0.99 (right panel), the stationary value of concurrence is larger than zero for a
finite range of s, but only for the case when a qubit is isolated, this concurrence is able
to overcome the nonlocality threshold Cth = 0.136 for a smaller range of s around s̄.

So far, the results obtained tell us that, for s > 1, larger values of the initial purity r
are more effective in order to get stationary entanglement which enables the presence
of nonlocal correlations. We can make this qualitative behavior quantitative by finding
the purity lower bound r∗ of the initial EWL states of Eq. (8) such that, once assigned
the value of the weight a and of the Ohmicity parameter s, the stationary concurrence
is above the nonlocality threshold for any r > r∗. This finding will permit us to know
to which degree of purity the initial EWL entangled state must be prepared in order to
guarantee that the two qubits will preserve nonlocality during the evolution. Exploiting
the nonlocality threshold of Eq. (12) together with the stationary concurrence of Eq.
(19), we can solve the inequality C∞ > Cth for s > 1 with respect to r in order to
obtain the nonlocality lower bound of purity

r∗ =
√

1

1 + 4
(
1 − a2

)
a2 exp{−2nΛ∞(s)} , (21)

where againΛ∞(s) is given in Eq. (18) and n = 1, 2 corresponds to the case when one
qubit is isolated or both qubits are subject to noise, respectively. From this equation,
it is easily found that when Λ∞(s) → +∞ one has r∗ = 1, which means that for
s ≤ 1 the initial entangled state must be pure in order to have nonlocal correlations
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Fig. 4 Lower bound r∗ of the purity parameter r , such that for any r > r∗ the asymptotic concurrence is
larger than the nonlocality threshold (C∞ > Cth). Left panel: r∗ as a function of the Ohmicity parameter
s for |a| = 1/

√
2. Right panel: r∗ as a function of the weight a2 for Ohmicity parameter s = s̄ � 2.46.

The upper dashed curve is for both qubits subject to noise, while the lower solid one is for the case where
a qubit is isolated

preserved during the dynamics. In Fig. 4, the plots of r∗ for n = 1, 2 are displayed
as a function of s for a = 1/

√
2 (left panel) and as a function of the weight a2 for

s = s̄ (right panel). The plots show the sensitivity of the nonlocality purity lower
bound r∗ to the system configuration, with very high values of initial purity of the
EWL state required if both qubits are subject to noise. As expected, from Eq. (21) it
is promptly found that the minimum value of r∗ is obtained for s = s̄ and a = 1/

√
2

which are, respectively, the value of s minimizing the stationary dephasing factor and
the value of weight a maximizing the entanglement of the pure part of the initial
EWL state of Eq. (8). This result is confirmed by comparing the left and right panels
of Fig. 4. In particular, the minimum values of the nonlocality lower bound r∗ for
n = 1, 2 are, respectively, r∗

min(n = 1) � 0.9858 and r∗
min(n = 2) � 0.9996. We

point out that, despite these lower bounds of initial purities are very high, they are
achievable for instance in all-optical setups with entangled polarized photons where
the open quantum dynamics can be simulated by suitable quartz plates [11,13,30], in
solid-state qubits (nuclear spins) in diamond [31] and in principle even in composite
atom-cavity systems by purity swapping [32]. Values of initial state purity smaller
than the above lower bounds r∗

min will, however, lead to an entanglement evolution
above the nonlocality threshold for long enough dimensionless times ωct , as can be
deducted from Fig. 1.

5 Conclusion

In this paper, we have investigated the possibility to maintain, during a pure-dephasing
evolution, an amount entanglement capable to ensure the presence of nonlocal corre-
lations within a two-qubit system. To this purpose, local pure-dephasing environments
characterized by a Ohmic-like spectral density have been taken into account. We have
reviewed a known closed formula which dynamically relates the Bell function B, wit-
nessing nonlocality, and the concurrence C, quantifying entanglement, for arbitrary
local pure-dephasing evolutions [19], giving a formal demonstration of it. This rela-
tion, which permits to find a threshold Cth for the concurrence such that for any value
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of C > Cth the system state exhibits nonlocality, has been then exploited within the
model with Ohmic-like spectrum.

We have shown that stationary entanglement is achievable for a given degree of
Ohmicity s and for a suitable purity r of the initial state. In particular, we have found
the analytical expression of the lower bound of initial purity r∗ such that, for a given s,
the stationary entanglement guarantees nonlocality for any value of purity of the initial
state r > r∗.We remark that, although themost performing condition for entanglement
trapping happens for a value of s, namely s̄ � 2.46, which enables a non-Markovian
regime with the occurrence of local information backflows from the environment to
the system [20], the achievement of stationary entanglement is simply related to the
existence of super-Ohmic environments (s > 1) for which the Markovian approxima-
tion fails and non-Markovian effects arise even without information backflows [20].
We also point out that stationary entanglement was obtained for two noninteracting
qubits locally subject to amplitude damping channels each with a super-Ohmic spec-
tral density [33], where the mechanism leading to this phenomenon is linked to the
presence of a bound state between each qubit with its local dissipative bosonic envi-
ronment. Another recent cavity-based architecture has been reported which is able
in principle to give stationary entanglement in a dissipative compound environment
configuration [34]. In the system considered in this paper, instead, the pure-dephasing
interaction is non-dissipative and no qubit-environment bound state can be created.
The origin of the stationary entanglement, activating nonlocality, is here basically due
to the manifestation of coherence trapping for the localized qubits.

The results presented in this work highlight the importance of knowing closed
relations between different kinds of quantum correlations, as entanglement and non-
locality. Indeed this knowledge allows for finding preparation conditions of the initial
states, under opportune environmental characteristics, which ensure that a given kind
of quantum correlations is preserved in the long-time limit, for instance nonlocal corre-
lations, just by maintaining another type of correlations, e.g., quantum entanglement,
above a certain amount. Such findings can count not only for fundamental studies but
also for practical purposes in quantum communication and information processing.
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