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Abstract In this paper, an improved adaptive weights alternating direction method of
multipliers algorithm is developed to implement the optimization scheme for recov-
ering the quantum state in nearly pure states. The proposed approach is superior to
many existing methods because it exploits the low-rank property of density matrices,
and it can deal with unexpected sparse outliers as well. The numerical experiments
are provided to verify our statements by comparing the results to three different opti-
mization algorithms, using both adaptive and fixed weights in the algorithm, in the
cases of with and without external noise, respectively. The results indicate that the
improved algorithm has better performances in both estimation accuracy and robust-
ness to external noise. The further simulation results show that the successful recovery
rate increases when more qubits are estimated, which in fact satisfies the compressive
sensing theory and makes the proposed approach more promising.

Keywords Quantum state estimation · Compressive sensing · ADMM algorithm ·
Adaptive weights

1 Introduction

Quantum state estimation is an important problem in quantum information processing
and hasmany applications [1,2]. Usually an unknown quantum state is estimated based
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on the data obtained from the measuring process of a quantum system. This process
can be carried out by quantum state tomography [3,4], in which a large number of
measurements of the quantum state must be collected in physical experiments. For
an n-qubit quantum system, the quantum state can be described by a density matrix
of size d × d = 2n × 2n = 4n , and the dimension of the density matrix d increases
exponentially with the number of qubits n in consideration. This makes the quantum
state estimation expensive and impractical for identifying the state of merely several
qubits by conventional experiments. In recent years, compressive sensing (CS) has
attracted lots of attention [5,6] for the reason that it may require less sampling rate than
what Shannon–Nyquist samplingTheoremneeds to recover the original signal.Aiming
for achieving a good estimation performance with fewer measurements, researchers
have applied compressive sensing into the quantum state estimation and achieved a
significant improvement [7,8].

In practical quantum state tomography, people are often interested in states con-
sisting of n qubits which can be represented as the probabilistic combination of r pure
states. Under such circumstances, the density matrix can be a low-rank Hermitian
matrix, which satisfies the prior conditions of using the compressive sensing theory for
low-rank matrices reconstruction [9,10]. The quantum state estimation based on com-
pressive sensing can exploit these low-dimensional measurements from projections of
high-dimensional density matrix and reconstruct the density matrix accurately. In this
case, much fewer measurements [(e.g., O(rd log d) instead of O(d2)] are needed to
reconstruct all elements of the density matrix comparing with the conventional estima-
tion method. Normally half of the elements at most are needed to estimate the density
matrix of pure states based on matrix transformation [11]. While using CS, one is able
to recover the values of pure states by using even fewer measurements [12], because
the quantum state estimation can be converted to a convex optimization problem with
quantum characteristic constraints and be solved by leveraging the rank constraints
[13]. There are some common optimization algorithms that have been proposed to
estimate the quantum states. Smith summarized the least square problem and solved
it in quantum state estimation through MATLAB toolbox [1]. Liu adopted Dantzig
algorithm to estimate the density matrix [14]. In recent years, the alternating direction
method of multipliers (ADMM) algorithm [15–17] has been widely adopted due to
its fast computation and good robustness. This method reconstructs the quantum state
by minimizing the nuclear norm of the density matrices with the prior information by
leveraging the nearly pure property [8,18–20]. Li applied ADMM algorithm to quan-
tum tomography using CS, established the framework of the optimization problem,
and tested the proposed approach in the case of 5 qubits [21]. However, one major
problem of the existed ADMM algorithm is that it has the difficulties in choosing the
proper weight parameters. It is not trivial applying this approach in practice with fixed
weights, and currently these weights are determinedmostly relaying on the experience
[22].

In this paper, we firstly formulate the quantum state tomography problem with
outlier measurements in density matrices to mathematical forms and propose an opti-
mization equation to solve it. Then, a novel algorithmic solver is developed to solve
this optimization problem by using an improved adaptive ADMM technique, and its
theoretical analysis is provided. This analysis is established in the quantum estima-
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tion combined with CS for the first time. This method can adjust the weight values
according to the error in each iteration automatically and overcome the difficulties
of choosing proper parameters. Finally, we compare the results of the reconstruct-
ing density matrix based on CS to the results of three other algorithms, including
the least square method, Dantzig and conventional/adaptive ADMM algorithms. Sim-
ulation results reveal that the improved adaptive ADMM algorithm has superiority
in quantum state estimation both with less convergence time and with higher accu-
racy.

The paper is organized as follows: Sect. 2 describes the idea of quantum state
estimation based on compressive sensing, optimization algorithms, and an improved
adaptive weighted ADMM algorithm proposed. Experiments in four cases are imple-
mented, and the results are analyzed in Sect. 3. Finally, the conclusion is summarized
in Sect. 4.

2 Quantum state estimation based on compressive sensing and
optimization algorithms

2.1 Problem description

In a quantum system, the density matrix can be denoted as ρ of size d × d,
ρ = ∑r

i=1 pi |ψi 〉〈ψi |, where |ψi 〉 are different quantum pure states, which con-
sists of the quantum state vector ψ . Denote pi as the probability of each pure
state |ψi 〉 in ψ , then the state vector �r can be rewritten as �r = |ψi 〉 =[√

p1|ψ1〉,√p2|ψ2〉, . . . ,√pr |ψr 〉
]
, �r has size d × r , so the rank of the density

matrix of a nearly pure quantum system is at most r due to the rank property of multi-
plication of two matrices, where r is much smaller than d. The dimension of n qubits
density matrix is d = 2n when the Pauli matrices are selected as orthogonal bases.

The observation matrix O∗
i in quantum state estimation for the i th measurement

can be calculated as σ l1 ⊗ σ l2 ⊗ · · · ⊗ σ ln [14]. Here σ l1 , σ l2 , · · · , σ ln represent a
random selection from a unit matrix I2 and Pauli matrices σ 1, σ 2, σ 3, specifically

I2 =
[
1 0
0 1

]

, σ 1 =
[
0 1
1 0

]

, σ 2 =
[
0 −i
i 0

]

, σ 3 =
[
1 0
0 −1

]

. (1)

Define the system measurement operator A : Cd×d→M ; the observation matrix for
one random selection of Pauli matrices set is O∗

i ∈ Cd×d . Then the corresponding

sampling matrix A ∈ CM×d2 is the normalized operator whose i th row is the concate-
nation of O∗

i ’s rows. It has been proven that Pauli matrices satisfy the rank-restricted
isometry property (RIP); hence, by using Pauli matrices as sampling matrices, we are
able to recover the unique density matrix with sufficient measurements via compres-
sive sensing approach [7,23]. The size of the sampling matrix A directly decides the
compressive rate η = M/d2, where M is the number of measurements.

Since in CS the number of samples we need for accurate recovery is much less than
the number of elements in the density matrix with M << d2, the original number of
measurements can be significantly reduced. The process of measurement is randomly
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projecting ρ to the samplingmatrixA and finally obtains measurements yi . The values
yi can be represented as:

yi = (A(ρ))i + ei = c · tr(O∗
i ρ) + ei , i = 1, . . . ,m, or

y = Avec(ρ) + e,
(2)

where tr(·) is the trace operator and vec(·) represents the transformation from matrix
to vector, y ∈ CM×1, ρ ∈ Cd×d , vec(ρ) ∈ Cd2×1; c is a normalized parameter that
could be d√

M
, and e is the measurement error.

Generally, the normalized error is used to examine the reconstruction performance
as:

error = ||ρ∗ − ρ̂||22
||ρ∗||22

, (3)

where ρ̂ is the estimated quantum density matrix and ρ∗ represents the real quantum
density matrix which can be generated by the following formula [24]

ρ∗ = �r�
∗
r

tr(�r�
∗
r)

. (4)

The estimation error is the normalization error of the difference between ρ∗ and ρ̂.
In the actual experiments, the noise introduced will affect the estimation accuracy

of system. Normally the noise is supposed to satisfy a distribution, such as Gaussian
noise. However, sometimes due to the unexpected external noise or bad samples, the
noises may be large but only very few, which can be shown as outliers in the system.
These outliers of course do not satisfy the Gaussian distribution yet can be reflected as
sparse entries in ρ̂. In this case, the average system measured values can be expressed
as:

yi = (A(ρ + S))i + ei = c · tr(O∗
i (ρ + S)) + ei , i = 1, . . . ,m. (5)

where S ∈ Cd×d is a sparse external noise matrix, which has the same dimension as
density matrix, but the value of S is much smaller than ρ.

Given the vector y, one can estimate the density matrix ρ by using (2) or (5). This
process is equivalent to solving a problem of d2 unknown variables from M equations.
Because M << d2, (2) and (5) may have non-unique solutions. Fortunately, the
densitymatrixρ canbe estimatedby solving anoptimizationproblemwhichminimizes
the measurement error within the prior low-rank constraints, so a unique solution of ρ

might be achieved. Next, we will give the formulation of the quantum state estimation
optimization problem based on compressive sensing.

2.2 Quantum state estimation based on compressive sensing

Quantum state estimation is a method based on statistical information to reconstruct
the density matrix of quantum systems through measuring the same unknown quan-
tum states many times. The computation time of quantum state estimation is very
heavy due to the large number of unknown elements. Since compressive sensing can
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recover sparse or low-rank matrix with less measurements, it is natural to combine
compressive sensing and quantum state estimation and expect a shorter computation
time. The core idea of compressive sensing is to randomly project the density matrix
to obtain a small number of measured values. Since the degree of ρ ∈ Cd×d isO(d2),
it requires O(d2) measurements to determine the only system state. When ρ can be
factorized as the matrices of size of m by n, the nuclear norm ||ρ||∗ is defined by
||ρ||∗ = tr

(√
ρ∗ρ

) = ∑min{m, n}
i=1 σi , which is a convex function that can be opti-

mized effectively. Considering the optimization process given the measurements, the
priori information of the low-rank property and other quantum constraints on density
matrices:

ρ̂ = argmin
ρ

||ρ||∗, s.t. ||y − Avec(ρ)||22 ≤ ε, ρ∗ = ρ, ρ 
 0, (6)

where argminρ is denoted as the value of variable ρ when ||ρ||∗ has the minimum
value, ρ 
 0 means ρ is a positive semidefinite (p.s.d) matrix. When there exists an
external large noise added to a few entries in the density matrix of the quantum system,
we formulate these outlier noises as a sparse matrix S, and then, one can compute the
estimation of true density matrix ρ∗ by minimizing

ρ̂ = argmin
ρ

(||ρ||∗ + ||S||1) , s.t. ||y − Avec(ρ + S)||22 ≤ ε, ρ∗ = ρ, ρ 
 0, (7)

where sparse noise S ∈ Cd×d is added directly on density matrix ρ.
There are two advantages for combining compressive sensing and quantum state

estimation: First, it only needs a smaller number of random measurements of the
original signal. Second, in terms of the lost entries of the original density matrix or
large external noise, the method has good robustness.

2.3 Optimization algorithms in quantum state estimation

Fromprevious subsections,weknow that the quantumstate estimation canbe solved by
minimizing (6) or (7). In order to solve the problem, here we introduce three different
algorithms, including the least square, Dantzig algorithm and alternating direction
method of multipliers algorithm (ADMM). The Least Square algorithm (LS) is a
method of finding a vector that is a local minimizer to a sum of square functions
subject to certain constraints. One can use the convex optimization toolbox [25] to
solve the problem, which is a popular convex optimization solving algorithm toolbox
concerned with the optimization of objective functions. The matrix to be minimized
is the density matrix ρ which is positive semidefinite. Thus, the LS algorithm can
turn the density matrix optimization into solving M objective functions, which is
∑

i

[
yi − c · tr(O∗

i ρ)
]2 ≤ ε. Another effective optimization algorithm was proposed

by Dantzig. Usually in the LSmethod when the number of qubit increases, the number
of function increases a lot,which leads thedifficulty to solve a largenumber of objective
functions. The Dantzig algorithm applies the LS method into the situation of solving
the sparse or low-rank matrix. By using this prior information to transform the matrix,
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Dantzig algorithm can reduce the number of objective functions and effectively deal
with the large computation. One can also implement the Dantzig algorithm to optimize
the low-rank density matrix by using the convex optimization toolbox [25].

The ADMM algorithm is known as an efficient approach in distributed convex
optimization, particularly in the large-scale problems with a very large number of ele-
ments. In order to solve the optimization problems (6) or (7) using ADMM algorithm,
we need to change the problem into the Lagrange form:

Lλ1(ρ,S,u) = ||ρ||∗ + ||S||1 + u′T (Avec(ρ) + Avec(S) − y)

+ λ1

2
||Avec(ρ) + Avec(S) − y||22, (8)

where λ1 > 0 is a constant weight value, which affects the convergence rate and the
number of iterations. We then combine the linear with the quadratic terms in (8) and
get:

Lλ1(ρ,S,u) = ||ρ||∗ + ||S||1 + λ1

2
||Avec(ρ) + Avec(S) − y + u||22, (9)

with u = (1/λ1)u′.
The iteration of ADMM algorithm consists of the following three steps:

1. ρ minimization: ρk+1 = argminρ Lλ1(ρ,Sk),uk ;
2. S minimization: Sk+1 = argminS Lλ1(ρ

k+1,Sk,uk);
3. u update: uk+1 = uk + λ1

(
Avec(ρk+1) + Avec(Sk+1) − y

)
.

When the error is less than the prefixed value ε, the iterations stop.

2.4 An improved adaptive weighted ADMM algorithm

The value λ1 in (9) plays a learning rate role. In the above conventional method, λ1 is
fixed in the experiments. Both too large or too small value of fixed λ1 are not good in
the optimization procedure. Usually in order to get a good result, one can only select
a smaller value of λ1 which leads to more iterations. Here we propose an improved
method of adaptive weight value λ1, which can effectively self-tune the value λ1
according to the requirements. The improved adaptive weighted ADMM algorithm
proposed can be formulated as:

λk+1
1 =

⎧
⎪⎨

⎪⎩

1.05λk1 errork < errork−1

0.7λk1 errork > errork−1

λk1 others

, (10)

where errork means the current estimation error, errork−1 means the last iteration
estimation error, λk+1

1 and λk1 represent the next and current iteration weight value λ1.
The advantages of the adaptive ADMM algorithm proposed are as follows: If the

estimation error is errork < errork−1, which means the estimation error is decreasing,
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so the weight value changes as 1.05λk1 to enlarge the amplitude of error decreased.
If errork > errork−1, it means the weight value is too large to cause the overshoot
control, and then, the weight value reduces to 0.7λk . By adjusting the value itself, the
estimation error can maintain larger speed to decrease, which uses less time and the
number of iteration to satisfy the accuracy.

The iteration of the adaptive ADMM algorithm consists of the following steps:

1. ρ minimization: ρk+1 = argminρ Lλk1
(ρk,Sk),uk ;

2. S minimization: Sk+1 = argminS Lλk1
(ρk+1,Sk,uk);

3. λ1 update: if errork < errork−1, λk+1
1 = 1.05λk1, else if error

k > errork−1, λk+1
1 =

0.7λk1, else λk+1
1 = λk1;

4. u update: uk+1 = uk + λ1
(
Avec(ρk+1 + Avec(Sk+1)) − y

)
.

Step 1 minimizes the low-rank matrix ρk+1 matrix with fixed Sk and uk :

ρk+1 = argminρ

{

||ρ||∗ + λ1

2
||Avec(ρ) + Avec(Sk) − y + uk ||22

}

, (11)

where k is the number of iterations.
First, we minimize the unconstrained quadratic function in terms of ρ. The analytic

solution to the least square estimation can be written as

ρk+1
1 = mat

((
A∗A

)−1A∗ (
y − uk − Avec(S)

))
. (12)

Second, projecting ρk+1
1 on to the constraints set C at the same time with low rank,

and denoting the result as ρk+1
2 , i.e.,

ρk+1
2 = �C(ρk+1

1 ), (13)

where�C denotes the Euclidean projection onto C and at the same time with low rank.
For the particular constraint set of quantum state, C is a proper cone of the Hermitian
p.s.d.matrices.Wewill show the projection process in Sect. 2.5with efficient approach.

Step 2 updates the sparse matrix S with fixed ρk+1 = ρk+1
2 and uk).

Sk+1 := argminS

{

||S||1 + λ1

2
||Avec(ρk+1) + Avec(S) − y + uk ||22

}

. (14)

It is a conventional LASSO problem and can be solved by iterations. Here we follow
the approaches in [21] and adopt a shrink operator to calculate a solution efficiently.
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In detail, the least square estimate S can be approximated by

Sk+1
1 = mat

((
A∗A

)−1A∗ (
y − uk − Avec(ρk+1)

))
(15)

Then we apply a shrink operator to S in order to achieve a sparse solution

Sk+1
2 = Sτ ′(s) = sgn[s]max(|s| − τ ′1, 0) (16)

where S is the shrink operator which is also adopted in the projection sub-step in step
1, s = vec(Sk+1

1 ), τ ′ is a shrink parameter that depends on the sparsity level of S.
Step 3 is to calculate the estimation error and update the weight value λk+1

1

error = ||y − Avec(ρk + Sk)||22. (17)

In this step, the value of λ depends on the current and last time estimation error as
shown in (10).

Step 4 is the dual-update step:

uk+1 = uk + λk+1(y − Avec(ρk+1) − Avec(Sk+1)). (18)

The algorithm follows the steps 1–4 to update each component. Relatively small
numbers of iterations, like 30–40, are sufficient to achieve a good accuracy in practice.
There are several stopping criterions, e.g., adopting bounds, we have

||y − Avec(ρk + Sk)||22 ≤ ε1||y||2,
||ρk − ρk−1||2 ≤ ε2, ||Sk − Sk−1||2 ≤ ε3.

(19)

where ε1, ε2, ε3 are parameters need to be tuned. Some methods of tuning parameters
of alternating direction methods are indicated in [20,26].

2.5 Projection onto the constraint set with low rank

We leverage the positive eigenvalue thresholding operator Dτ to calculate ρk+1
2 . Let

Sτ : Rd → Rd denote the shrink operator such that

Sτ (x) = sgn[x]max(|x| − τ1, 0) (20)

where 1 represents a vector with all elements 1. This definition can also be extended
to the matrix form. Then the positive eigenvalue thresholding operator Dτ is defined
as

ρk+1
2 = Dτ (ρ

k+1
1 ) = VSτ (�

+)V∗ (21)

�+ only keeps the positive part of the eigenvalues where �+ = max(�, 0), Sτ (�
+)

is a shrink operator on the diagonal matrix �+ which has eigenvalues as entries, τ =
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1/λ1, where �,V are obtained from the eigenvalue decomposition of a symmetrized
matrix 1/2(ρk+1

1 + ρk+1
1

∗
),

V�V∗ = 1/2(ρk+1
1 + ρk+1

1
∗
), (22)

This approach can be derived from its Karush–Kuhn–Tucker (KKT) conditions of
the optimal projection from ρk+1

2 to set C with least square errors. Taking the indicator
function IC(ρ) for instance, under mild assumptions on a proper cone C, the KKT
conditions of

minimize ||ρ̄ − ρ||22
s.t. ρ̄ ∈ IC

(23)

are given by
ρ̄ ∈ IC, ρ̄ − ρ = θ ,

θ ∈ IC, θ∗ρ̄ = 0.
(24)

The third term in (24) is because the positive semidefinite cone is self-dual. Then
the Euclidean projection can be derived by decomposing ρ to the substraction of two
orthogonal elements: one with nonnegative eigenvalues and the other with negative
part. Thus a solution satisfying low-rank constraints will be obtained after the shrink
operator. In addition, if given the prior information, then the objective quantum state is
the probabilistic linear combination of less than or equal to r pure states, and we may
project ρ to the set of r -rankmatrices by selecting themaximum r positive eigenvalues
in �+ in (21). For the details of the derivation, the readers may refer to [25].

2.6 Remark

1. The proposed robust algorithm is suitable for reconstructing near-pure quantum
state. Here, “near pure” we mean that the density matrix ρ falls in one of the following
3 situations:

Situation 1 the quantum state consisting of n qubits is the probabilistic combination
of r pure states, which means:

ρ̂ =
r∑

i=1

pi |ψi 〉〈ψi |. (25)

In this case, one can prove that its density matrix ρ with size d × d has rank not larger
than r , d = 2n [21].

Situation 2 the quantum state consisting of n qubits is the probabilistic combination
of r pure states plus random noises, which means

∥
∥
∥
∥
∥
ρ̂ −

r∑

i=1

pi |ψi 〉〈ψi |
∥
∥
∥
∥
∥
F

≤ εe. (26)
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In this case, the density matrix ρ can even be not low rank, but we can still recover
the near-pure state roughly within an error bound as long as there exists very few
large eigenvalues and the non-low-rank noises are very small [7,18]. This error bound
depends on the magnitudes of εe. Similar circumstance happens in compressive sens-
ing that the number of nonzero values of the original signal can be not sparse (e.g.,
exponential decaying); however, CS can still recover the original signal within an error
bound [27,28].

Situation 3 the density matrix ρ̂ is the probabilistic combination of r pure states
plus impulse outliers.

ρ̂ =
r∑

i=1

pi |ψi 〉〈ψi | + S. (27)

The proposed robust algorithm explained is for Situation 3 plus measurement errors
in y. The algorithm for Situation 1 and 2 can be simplified accordingly.

2. Regarding the convergence of ADMM and error bounds of recovering low-rank
matrix from its measurements, the readers may refer to [15,17,19,25]. If there is
no analytical solution to ADMM steps, we may also use the semidefinite programs.
Details and the software can be found in [29].

3. In practice, the observable Oi is not necessarily the tensor product of Pauli
matrices. For instance, in [1] the author developed a device to proceed the quantum
state tomography by continuous measurements where Oi is affected by outer radio
frequency magnetic fields. In this case, we can still use the proposed algorithm to
recover the quantum state, as long as that Oi satisfies the rank RIP and number of
measurements are sufficient large. Regarding the details of rank RIP and the measure-
ment number of the compressive quantum tomography approach, please refer to the
“Appendix.”

4. If the dataset is large, our algorithm equipped with ADMM technique can be
extended to a distributed manner as a consensus optimization problem. Assume N
agents can communicate with each other, and denote each cost function fi (·), i =
1, 2, . . . as in (2), in this case the steps in iterations turns to

xk+1
i = argminxi

(

fi (xi ) + yki
T
(xi − x̄ki ) + λ

2
||xi − x̄ki ||22

)

,

yk+1
i = yki + λ(xk+1

i − x̄k+1
i ),

(28)

where x̄ki = 1/ni
∑ni

i=1 x
k
i represents the average of n neighbors of agent i . Generally

speaking, we gather xki from outside and scatter x̄k to processors and then update xi , yi
in each processor locally in parallel. Finally, each agent can achieve a consensus about
the quantum state. See details of consensus optimization via ADMM in [15].

3 Experiment results and analyses

In this section, we verify the superiority and robustness of the proposed adaptive
ADMM algorithm in all three algorithms based on compressive sensing in quantum
state estimation, which is analyzed from four aspects: 1. Better performance: the
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(a) (b)

Fig. 1 Effects of measurement rate to the error of quantum state estimation among three algorithmswithout
and with noises in the cases of qubit n = 5 and n = 6

estimation error comparisons among three different algorithms which are the least
square, Dantzig and ADMM algorithms, respectively; 2. Robustness: performance
comparisons ofADMMalgorithmwithout andwith external noise in the differentmea-
surement rate; 3. Superiority: performance comparisons of ADMM algorithm under
different quantum qubits; and 4. Improvement: performance comparisons between the
fixed and adaptive weight values of ADMM algorithm.

3.1 Performance comparisons among three different algorithms

First, we investigate the effects of measurement rate η to the error of quantum state
estimation among three different algorithms without and with noise in the cases of
qubits n = 5 and n = 6. In the experiments, algorithms used are the least square
method, Dantzig algorithm and ADMM algorithm; the measurement rate ranges from
η = 0.1 to η = 0.5 with 0.05 difference between each data point. The effects to
estimation errors of three algorithms in the cases of qubit n = 5 and n = 6 without
external noise are shown in Fig. 1a, from which one can see that the estimation errors
of three different algorithms all gradually decrease in different measurement rates,
where the errors of LS algorithm decrease most slowly; when the measurement rate is
η = 0.45, the error is still error > 0.5. Meanwhile, the errors of Danzig and ADMM
algorithms are error < 0.01 and error < 0.001, respectively. The ADMM algorithm
error is the least in all three algorithms in any measurement rate η.

In the experiments with noise, the measured vector y is (5), the number of external
noises No.S = 0.01 × 46 ≈ 41. If the error is larger than 1, we record it as 1. The
experiment results are shown in Fig. 1b, from which one can see that the LS algorithm
is robust toward external noises, but the estimation error is larger and decreases slowly.
Dantzig algorithm has poor robust performance; it cannot handle the case of external
noises, because the estimation error is always unable to converge. ADMM algorithm
works best among three algorithms in error convergence. As the measurement rate
continues to increase, the estimation accuracy with noises can reach above 90%.
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(a) (b)

Fig. 2 Effects of measurement rate to the error of quantum state estimation of ADMM algorithm without
and with noise in the case n = 6

3.2 Performance comparisons of ADMM algorithm without and with noise

In this subsection, we verify the robustness of ADMM algorithm by comparing and
analyzing the performance without and with noise in the case of qubits n = 6. In the
experiments, the measurement rate ranges from η = 0.1 to η = 0.5, and step size of
η is 0.05. The iteration number of ADMM algorithm is 30.

1.Without noiseWe first study the effects of the iteration number to the estimation
error at different measurement rates without noise. With the different numbers of
iteration, the experiment results of the estimation errors in different measurement rate
η are shown in Fig. 2a, from which one can see that: When the iteration numbers
increase, the errors of different measurement rates decrease quickly, all of which
decrease below 0.01 in 20 iterations. When the measurement rates η are above 0.2,
the errors only need several (< 5) iterations to decrease below 0.01, whose estimation
accuracies are above 99%. Especially when η = 0.45, 99% accuracy can be reached
in only 3 iterations; while η = 0.10 it needs at least 25 iterations. So one can conclude
that: The larger the measurement rate η, the less the iteration number which needs to
achieve the estimation accuracy.

2. With external noises In order to testify the robustness ofADMMalgorithm,we do
the experiments on the effects of measurement rate to the estimation error with noises.
The number of external noise is selected 10% ofO∗, which is No.S = 0.01×46 ≈ 41,
and the magnitudes of S are ±0.01. The effects of measurement rate η to the error
of quantum state estimation of ADMM algorithms without noise are shown in Fig.
2b, from which one can see that: As the iteration numbers increase, all the errors in
differentmeasurement rates gradually decrease,which can achieve the 90%estimation
accuracy in the case of η > 0.40. When the measurement rate η > 0.45, it needs 15
iterations to achieve 90% accuracy.

We can conclude from the analysis of the experimental results that the ADMM
algorithm has good robustness against the external noises. It can reach beyond 90%
estimation accuracy at higher measurement rates, even when there is a larger external
noise. The estimation errors can decrease quicklywithout noise and decrease gradually
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Fig. 3 Effects of different
qubits to the estimation errors of
ADMM algorithm

in the presence of external noises. When the estimation accuracy is fixed, the higher
the measurement rate, the less the iteration number which needs to meet the accuracy;
when the measurement rate η is fixed, the more the iteration number, the higher the
estimation accuracy.

3.3 Performance comparisons of ADMM under different quantum qubits

Theoretically, when the number of qubits n increases, the element number of density
matrix dramatically increases, which will cost expensive computation and make it
much more difficult to estimate the quantum state. For example, when n = 5, the
number of elements is d × d = 25 · 25 = 1024, and the dimension of observation
matrices is d2 × d2 = 45 · 45 ≈ 1.05 × 106. As the number of qubits increases to
n = 7, the number of elements and observation matrices increases significantly to
27 · 27 = 16384 and 47 · 47 ≈ 2.68 × 108, which dramatically increase the amount
of computation. In this subsection, we study the effects of the number of qubits to
the estimation errors with different measurement rates in the cases of n = 5, 6 and
7 with noise. The experimental results are shown in Fig. 3, from which one can see
that in general, the error in the case n = 5 is the largest at any measurement rate,
while the error with n = 7 is the smallest. When the number of qubit increases from
n = 5 to n = 7 at the measurement rate η = 0.45, the errors decrease from 0.2153 to
0.0781, and the estimation accuracies increase from 78.47 to 93.19%. If the estimation
accuracy is prefixed as 90%, then n = 7 needs smaller measurement rate than n = 5
to meet the accuracy.

In conclusion, the ADMM algorithm has significant advantage in the estimation of
large amount of elements, and the superiority of ADMM demonstrates more signifi-
cance as the number of qubits becomes larger.
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Fig. 4 Effects of different fixed
weight values to the estimation
errors

3.4 Performance comparisons between the fixed and adaptive weight values of
ADMM

In this subsection, we verify the improvement of the proposed adaptive ADMM algo-
rithmbycomparing and analyzing the performances betweenfixed and adaptiveweight
values.

1. Determination of the best performance with fixed weight values: In the exper-
iments, the effects of different fixed weight values λ1 in (9) to the estimation error
are studied at measurement rate η = 0.4 in the cases of qubits n = 6. We select 10
different fixed weight values λ1 from λ1 = 0, 1 to 1.0, �λ1 = 0.1. Each value λ1 is
for one individual experiment. We compare the effects of the different weight values
λ1 to corresponding estimation errors. The experimental results are shown in Fig. 4,
in which each of the histogram represents an estimation error decreasing with a fixed
λ1 in 30 iterations. The color of the histograms changing from blue (left) to red (right)
means the numbers of iterations increase from 1 to 30. Neither too large nor too small
λ1 is suitable for obtaining the least estimation error. We can draw a conclusion that
the selection of weight value λ1 determines the final estimation error. The best suitable
value in this experiment is λ f i xed = 0.3, in this case the minimum error = 0.1240.

2.Comparisons between adaptive and fixed weight values: To validate the improve-
ment of the proposed adaptive weight value ADMMalgorithm, we do the comparisons
of the estimation errors between different initial adaptive weight values and fixed opti-
malweight valueλ f i xed = 0.3 atmeasurement rateη = 0.4 in the case of qubitsn = 6.
The initial values of adaptive weights are set as λ1 = 1.0, 2.5 and 4.0, respectively.
The experimental results are shown in Fig. 5, from which one can see that: (a) The
estimation error of adaptive initial weight value λ1 = 2.5 rapidly decreases to 0.2009
only in 2 iterations, while the estimation error of fixed λ f i xed = 0.3 uses at least 10
iterations to slowly decrease to 0.2050. (b) The estimation error of adaptive λ1 = 2.5
is the least in all three cases, whose estimation accuracy is � = 3.6% higher than
the fixed λ f i xed = 0.3. (c) Regardless of the initial values of the adaptive weight, all
the estimation errors of the adaptive weight values are less than the fixed ones. The
estimation accuracy of adaptive ADMM algorithm is higher.
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Fig. 5 Effects of different
initial adaptive and fixed values
to the estimation errors

We can draw a conclusion All the estimation accuracies using adaptive weight
values are higher than the fixed ones. The initial values of the adaptive λ1 affect little
in adaptive method. By using adaptive weight value, one can get the expect estimation
accuracy at less iterations.

4 Conclusion

In this paper, we estimated quantum system states based on the theory of compressive
sensing by using the Least Square method, Dantzig algorithm and ADMM algorithm.
Experimental results indicated that by using compressive sensing, one is able to esti-
mate higher dimensional density matrix in the same number of iteration, especially
when the number of system qubits becomes larger, the adaptive weight ADMM algo-
rithm can not only obtain smaller estimation error but also have higher robustness.

Acknowledgments This work was supported by the National Natural Science Foundation of China
(61573330).

Appendix

Definition 1 (Rank RIP) [14,23] TheA satisfies the rank-restricted isometry property
(RIP) if for all d × d X, we have

(1 − δ)||X||F ≤ ||A(X)||2 ≤ (1 + δ)||X||F (29)

where some constant 0 < δ < 1.
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