
Quantum Inf Process (2016) 15:2405–2424
DOI 10.1007/s11128-016-1285-0

Study of a monogamous entanglement measure
for three-qubit quantum systems

Qiting Li1 · Jianlian Cui1 · Shuhao Wang2 ·
Gui-Lu Long2,3,4

Received: 25 December 2015 / Accepted: 22 February 2016 / Published online: 15 March 2016
© Springer Science+Business Media New York 2016

Abstract The entanglement quantification and classification of multipartite quantum
states is an important research area in quantum information. In this paper, in terms
of the reduced density matrices corresponding to all possible partitions of the entire
system, a bounded entanglement measure is constructed for arbitrary-dimensional
multipartite quantum states. In particular, for three-qubit quantum systems, we prove
that our entanglement measure satisfies the relation of monogamy. Furthermore, we
present a necessary condition for characterizing maximally entangled states using our
entanglement measure.
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1 Introduction

Entanglement, as a significant feature of quantum mechanics, plays a vital role in
quantum information, such as quantum key distribution, quantum teleportation, quan-
tum dense coding, quantum secret sharing, quantum secure direct communication,
quantum simulation and quantum computation [1–14]. Mathematically, a pure state in
a quantum system is called entangled if it cannot be factorized into the direct product
of states on the subsystems; a mixed state is entangled if it cannot be written as a
convex mixture of direct products of local states.

Quantifying entanglement has attractedmuch attention in recent years. For bipartite
system, quantum entanglement measures have been given, such as the von Neumann
entropy of entanglement [15], the entanglement of formation [16], concurrence [17]
and the negativity [18]. In the case of multipartite states, given that there does not
exist a single measure that can successfully account for all possible entanglement
characteristics and applications, each measure usually performs better for a specific
purpose and is always needed to choose the one that better fits our needs [19–26].

One of themost important properties of entanglement is monogamy [27–37], which
quantifies the relation of entanglement between different parties inmultipartite setting.
Monogamy is also a fascinating characterization related tomany areas of physics, such
as quantum key distribution [38,39], the foundations of quantum mechanics [40,41],
statistical mechanics [40], condensed matter physics [42–44] and even black-hole
physics [45]. Let E be an entanglementmeasure for a tripartite systemHA⊗HB⊗HC.
If the entanglement of the particles A and BC satisfies the inequality

EA|BC � EAB + EAC,

we call the entanglement measure E satisfies the monogamous relation. In this paper,
we will propose an entanglement measure which itself has the monogamous relation.
Moreover, as an application, we use ourmeasure to establish the relation betweenmax-
imally entangled states and single-qubit reduced states. We give a necessary condition
for characterizing maximally entangled states.

We consider throughout this paper an n-partite systemH = Hd1 ⊗Hd2 ⊗· · ·⊗Hdn ,
where the dimension of a local space Hdi is di with i = 1, 2, · · · , n. A par-
tition A of the system H = Hd1 ⊗ Hd2 ⊗ · · · ⊗ Hdn is called a k-partition
(2 � k � n) if it contains k disjoint nonempty subsets A1,A2, . . . ,Ak such that{Hd1,Hd2 , . . . ,Hdn

} = A1
⋃

A2
⋃ · · ·⋃Ak . Denote by Ak = A1|A2| · · · |Ak the

k-partition of H. Every partition Ak = A1|A2| · · · |Ak corresponds to a family of
subsystems A1,A2, . . . ,Ak .

Let |ψ〉 ∈ H be a pure state. It is called k-separable if there is a k-partition Ak =
A1|A2| · · · |Ak of H such that

|ψ〉 = |ψ1〉A1
⊗ |ψ2〉A2

⊗ · · · ⊗ |ψk〉Ak
,

where |ψl〉Al
is a pure state in the subsystem Al (l = 1, 2, . . . , k). An n-partite mixed

state ρ is called k-separable if there exist k-separable pure states
∣
∣ψ j

〉
with respect to

different subsets of parties and p j > 0 with
∑

j p j = 1, such that
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ρ =
∑

j

p j
∣
∣ψ j

〉 〈
ψ j
∣
∣ .

An n-partite state is called genuinely entangled if it is not 2-separable. It is called fully
separable if and only if it is n-separable.

The coefficient matrices, which are constructed through arrangement of the coef-
ficients of pure states in lexicographical order, have been used as important tools in
the research into entanglement. The mathematical connection between entanglement
classification and the coefficient matrices was established in [46,47]. In this work,
the coefficient matrices of the pure state |ψ〉 are written as Ms1...sl (|ψ〉) (see Sect. 6),
where 1 � l � n and {s1, s2, . . . , sl} ∈ {1, 2, . . . , n}.

The following theorem was proved in [48].

Theorem Let |ψ〉, |φ〉 be any two pure states in the n-partite system H = Hd1 ⊗
Hd2 ⊗ · · · ⊗ Hdn . If there exist complex square matrices Ai (1 � i � n) such that

|ψ〉 = A1 ⊗ A2 ⊗ · · · ⊗ An|φ〉,

then, for any 1 � l < n,

M1···l(|ψ〉) = A1 ⊗ · · · ⊗ AlM1···l(|φ〉)(Al+1 ⊗ · · · ⊗ An)
T ,

where (Al+1 ⊗ · · · ⊗ An)
T is the transpose matrix of the matrix Al+1 ⊗ · · · ⊗ An.

A simple and effective application of the coefficient matrices is to concretely rep-
resent the reduced density matrix that provides a way to associate a density matrix
with each component system. For i ∈ {1, . . . , k}. Denote by ρAi

the reduced density
matrix of |ψ〉〈ψ | on subsystem Ai . Then ρAi

(1 � i � k) has a factorization in terms
of the corresponding coefficient matrix and its conjugate transpose [49],

ρAi
= MAi

M†
Ai

.

Naturally, for the reduced density matrices of two pure states, the following corollary
can be reached.

Corollary Let |ψ〉, |φ〉 be any two pure states in the n-partite system H = Hd1 ⊗
Hd2 ⊗ · · · ⊗ Hdn . If there exist unitary matrices Ui (1 � i � n) such that

|ψ〉 = U1 ⊗U2 ⊗ · · · ⊗Un|φ〉,

then their corresponding reduced density matrices ρ1···l(|ψ〉) and ρ1···l(|φ〉) (1 � l <

n) satisfy the relation that

ρ1···l(|ψ〉) = U1 ⊗ · · · ⊗Ulρ1···l(|φ〉) (U1 ⊗ · · · ⊗Ul)
† .

This paper is organized as follows. In Sect. 2, an entanglement monotone (denoted
by Ek) for n-qudit states is constructed. Furthermore, we transform our entanglement
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monotone to a three-qubit monogamous entanglement measure in Sect. 3. By our
entanglement measure, we give in Sect. 4 a necessary condition for characterizing
maximally entangled states. Section 5 contains a brief summary.

2 An entanglement monotone

Let |ψ〉 be an n-qudit pure state in the n-partite quantum system H = Hd1 ⊗ Hd2 ⊗
· · · ⊗ Hdn . For arbitrary but fixed k(2 � k � n), we define a map Ek as

Ek (|ψ〉) = min
Ak

⎡

⎢
⎣

∑k
i=1

(
tr√ρAi

)2

k

⎤

⎥
⎦ , (1)

where the minimum min
Ak

is taken over all possible k-partitions Ak = A1| · · · |Ak of

the system H.

Theorem 1 The Ek (|ψ〉) defined in Eq. (1) is an entanglement monotone for any pure
state |ψ〉.

Proof We will prove that Ek does not increase, on average, under local operations and
classical communication (LOCC).

Because any protocol consists of a series of local positive operator valued measures
(POVMs) such that only one subsystem be operated and Ek keeps invariant under
permutations of the particles, it suffices to consider a general local POVM in only one
part of a partition. Without loss of generality, we may assume that the local POVM is
performed on the part A1.

We note that any local POVMcan be written as a sequence of two-outcome POVMs
in analogy to the method in Ref. [50]. Let F1 and F2 be two POVM elements oper-
ated in the part A1 such that F1 + F2 = 1A1

. Then there exist matrices Pj such

that Fj = P†
j Pj ( j = 1, 2). Choose a proper unitary matrix V and decompose

Pj = Uj D jV ( j = 1, 2). Here Uj ( j = 1, 2) are unitary matrices; D1 and D2
are both diagonal matrices with nonnegative real numbers μ1, μ2, . . . , μnA1

and
√
1 − μ2

1,

√
1 − μ2

2, . . . ,
√
1 − μ2

nA1
on their respective diagonals, where nA1

stands

for the dimension of the part A1.
Let MA1

(|ψ〉) be the coefficient matrix of |ψ〉 corresponding to the part A1, then
by the singular value decomposition MA1

(|ψ〉) = SΩT †, where S, T are unitary

matrices and Ω is a matrix with the diagonal entries
{
ω1, ω2, . . . , ωnA1

}
.

Because any local unitary operations do not cause a change of the entanglement,
some local unitary operation H preceding the POVM can be implemented in the initial
state |ψ〉. We select H = V †S† only for simplicity of proof.

123



Study of a monogamous entanglement measure for three-qubit... 2409

Hence, after local actions H and POVM, the initial state |ψ〉 is transformed into
new states

∣
∣η j
〉 =

(
Pj H ⊗ 1A1

)
|ψ〉

√
p j

=
(
Uj D j V V †S† ⊗ 1A1

)
|ψ〉

√
p j

, (2)

where j = 1, 2; A1 = A2 ⊗ · · · ⊗ Ak is the complement of A1; p j = 〈
θ j |θ j

〉
with

|θ j 〉 =
(
Uj D j S† ⊗ 1A1

)
|ψ〉; p1 + p2 = 1.

By the theorem in the introduction, the coefficient matrices of new states |η j 〉 ( j =
1, 2) are

MA1

(|η j 〉
) = 1√

p j
U j D j S

†MA1
(|ψ〉) = 1√

p j
U j D jΩT †. (3)

It follows that

tr
√

ρA1
(|η1〉) = tr

√
MA1

(|η1〉) MA1
(|η1〉)†

= tr

√
1

p1

(
U1D1ΩT †

) (
U1D1ΩT †

)†

= tr

√
1

p1
(D1Ω) (D1Ω)†

=
nA1∑

m=1

ωmμm√
p1

, (4)

and similarly that

tr
√

ρA1
(|η2〉) =

nA1∑

m=1

ωm
√
1 − μ2

m√
p2

. (5)

We denote by 〈Ek(|ψ〉)〉 the average entanglement after LOCC , then 〈Ek(|ψ〉)〉 =
p1Ek (|η1〉) + p2Ek (|η2〉).

Note that p1 + p2 = 1 and ρAi
(|ψ〉) = ρAi

(|η1〉) = ρAi
(|η2〉) , i = 2, 3, . . . , k,

it follows that

p1Ek (|η1〉) + p2Ek (|η2〉)

= p1

⎧
⎪⎨

⎪⎩
min
Ak

⎡

⎢
⎣

∑k
i=1

(
tr
√

ρAi
(|η1〉)

)2

k

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
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+p2

⎧
⎪⎨

⎪⎩
min
Ak

⎡

⎢
⎣

∑k
i=1

(
tr
√

ρAi
(|η2〉)

)2

k

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

� min
Ak

⎡

⎢
⎣
p1
∑k

i=1

(
tr
√

ρAi
(|η1〉)

)2

k
+

p2
∑k

i=1

(
tr
√

ρAi
(|η2〉)

)2

k

⎤

⎥
⎦

= min
Ak

⎡

⎢
⎢
⎢
⎣

(
∑nA1

m=1 ωmμm

)2

+
(
∑nA1

m=1 ωm
√
1 − μ2

m

)2

k

+
∑k

i=2

(
tr
√

ρAi
(|ψ〉)

)2

k

⎤

⎥
⎦ . (6)

Because

⎛

⎝

nA1∑

m=1

ωmμm

⎞

⎠

2

+
⎛

⎝

nA1∑

m=1

ωm

√
1 − μ2

m

⎞

⎠

2

=
nA1∑

m=1

ω2
mμ2

m +
∑

1�k,l�nA1
k �=l

ωkμkωlμl +
nA1∑

m=1

ω2
m

(
1 − μ2

m

)

+
∑

1�k,l�nA1
k �=l

ωk

√
1 − μ2

kωl

√
1 − μ2

l

=
nA1∑

m=1

ωm
2 +

∑

1�k,l�nA1
k �=l

ωkωl

(
μkμl +

√
1 − μ2

k ·
√
1 − μ2

l

)

�
nA1∑

m=1

ωm
2 +

∑

1�k,l�nA1
k �=l

ωkωl

√

μk
2 +

(√
1 − μ2

k

)2

·
√

μl
2 +

(√
1 − μ2

l

)2

=
nA1∑

m=1

ωm
2 +

∑

1�k,l�nA1
k �=l

ωkωl =
⎛

⎝

nA1∑

m=1

ωm

⎞

⎠

2

=
(
tr
√

ρA1
(|ψ〉)

)2
, (7)
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it is obtained that

〈Ek(|ψ〉)〉 � min
Ak

⎡

⎢
⎣

∑k
i=1

(
tr
√

ρAi
(|ψ〉)

)2

k

⎤

⎥
⎦ = Ek(|ψ〉). (8)

So the average entanglement 〈Ek(|ψ〉)〉 does not increase after LOCC, and then
Ek(|ψ〉) is an entanglement monotone.

This completes the proof of Theorem 1. �	

We now turn to consider the mixed states. For an n-qudit mixed state ρ in the
n-partite quantum system H, we define

Ek (ρ) = inf{pi ,|ψi 〉}
∑

i

piEk (|ψi 〉) , (9)

where the infimum is taken over all possible pure state decomposition ρ =∑
i pi |ψi 〉 〈ψi | . On the basis of Theorem 1, it can be straightforwardly verified that

E(ρ) defined in Eq. (9) is an entanglement monotone for any n-qudit mixed state ρ.
The entanglementmonotoneEk has anphysical interpretation in termsof thefidelity,

which is defined by F(ρ, σ ) ≡ tr
√

ρ1/2σρ1/2. When ρ and σ are both pure states,
the square of fidelity is the transition probability from σ to ρ [51]. In the general case
of mixed states, a simple operational interpretation of the fidelity is also provided in
Ref. [52]. If we re-write Ek as

Ek (|ψ〉) = min
Ak

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑k
i=1 nAi

⎛

⎝tr

√(
1

nAi

InAi

)1/2

ρAi

(
1

nAi

InAi

)1/2
⎞

⎠

2

k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= min
Ak

⎡

⎢
⎢
⎢
⎣

∑k
i=1 nAi

F

(
1

nAi

InAi
, ρAi

)2

k

⎤

⎥
⎥
⎥
⎦

,

where F

(
1

nAi

InAi
×nAi

, ρAi

)2

is the square of fidelity for the reduced state ρAi

and its system’s totally mixed state 1
nAi

InAi
, and InAi

denotes an identity matrix on

subsystemHAi
. Then the Ek can be explained as theminimum of all weighed averages

of the square of fidelity, corresponding to all possible k-partitions (2 � k � n) of the
system H.
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3 A monogamous entanglement measure

Monogamous relation is an important criteria for the judgment of good measures of
multipartite entanglement, because the entanglementmeasures that satisfy this relation
can show us that quantum entanglement, differing from classical correlation, is not
shareable at liberty when distributed among three or more parties. For an n-qudit pure
state |ψ〉 in the n-partite quantum systemH = Hd1 ⊗ Hd2 ⊗ · · · ⊗ Hdn , let

EM (|ψ〉) = min
2�k�n

min
Ak

√
d̃n

⎡

⎢
⎣

∑k
i=1

(
tr√ρAi

)2

k
− 1

⎤

⎥
⎦ , (10)

where the minimum min
Ak

is taken over all possible k-partitions Ak = A1| · · · |Ak of

the system H and d̃ =
∑n

i=1 di
n . It is clear to see that EM (|ψ〉) � 0 for any pure state

|ψ〉 and EM (|ψ〉) = 0 if and only if |ψ〉 is separable. By corollary in the introduction,
EM (|ψ〉) keeps invariant under local unitary transformations. Then, by the proof of
Theorem 1, we know that EM is an entanglement monotone. Therefore EM becomes
an entanglement measure.

For an n-qudit mixed state ρ in the n-partite quantum system H, we define

EM (ρ) = inf{pi ,|ψi 〉}
∑

i

piEM (|ψi 〉) , (11)

where the infimum is taken over all possible pure state decomposition ρ =∑
i pi |ψi 〉 〈ψi | . According to the analysis of the preceding context, we can draw

a conclusion that EM (ρ) defined in Eq. (11) is an entanglement measure for any n-
qudit mixed state ρ. Obviously, EM satisfies the subadditivity [53]. In addition, we
can verify that EM satisfies the convexity by its definition :

EM

(
∑

i

piρi

)

�
∑

i

piEM (ρi ) .

Next we prove that EM is monogamous for three-qubit systems.

Theorem 2 For a three-qubit system HA ⊗ HB ⊗ HC , EM satisfies a monogamy
inequality

EM
AB + EM

AC � EM
A|BC,

where EM
AB, EM

AC, and EM
A|BC mean the entanglement of the respective parts of the

system.
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Proof First, analogously to Eq. (7) in [54], we use the Schmidt decomposition for a
general pure state |ψ〉ABC in the systemHA ⊗ HB ⊗ HC ,

|ψ〉ABC = √
p |φ0〉AB |0〉C +√

1 − p |φ1〉AB |1〉C,

with 0 � p � 1, |φ0〉AB and |φ1〉AB being the orthonormal states of biqubit system
HA ⊗HB and |0〉C and |1〉C being the orthonormal basis of qubit systemHC . When
p = 0 or p = 1, |ψ〉ABC is separable, the inequality holds clearly. Now we assume
that 0 < p < 1. According to the Schmidt number of |φ0〉AB and |φ1〉AB, they can be
categorized into three classes:

1. there is no Schmidt rank-2 state,
2. there is only one Schmidt rank-2 state,
3. there are two Schmidt rank-2 states.

Case 1 There is no Schmidt rank-2 state in |φ0〉AB and |φ1〉AB.
With a proper basis

{|̃0〉A, |̃1〉A
}
,
{|̃0〉B, |̃1〉B

}
and {|0〉C , |1〉C } of HA, HB and

HC , respectively; |ψ〉ABC can be expressed as

|ψ〉ABC = √
p|̃0〉A |̃0〉B |0〉C

+√1 − p|̃1〉A(
√
a |̃0〉B + √

1 − a |̃1〉B)|1〉C ,

where 0 < p < 1 and 0 � a � 1. A direct calculation implies that

EM
A|BC = EM [ρA (|ψ〉ABC)] = 4

√
2p(1 − p),

EM
AB = EM [ρAB (|ψ〉ABC)] = 0.

It remains to calculate EM
AC.

For the sake of simplicity, we write

|̃0〉A|0〉C = |e00〉,
|̃0〉A|1〉C = |e01〉,
|̃1〉A|0〉C = |e10〉,
|̃1〉A|1〉C = |e11〉.

Then the reduced density matrix of the subsystem HA ⊗ HC can be represented as

ρAC (|ψ〉ABC) = p|e00〉〈e00| +√
ap(1 − p)|e00〉〈e11|

+√ap(1 − p)|e11〉〈e00| + (1 − p)|e11〉〈e11|.

Consider a pure state decomposition of ρAC

ρAC (|ψ〉ABC) = r1|ϕ1〉〈ϕ1| + r2|ϕ2〉〈ϕ2|,
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where

r1 = p + a(1 − p),

r2 = (1 − a)(1 − p),

|ϕ1〉 = 1√
p + a(1 − p)

(√
p|e00〉 +√

a(1 − p)|e11〉
)

,

|ϕ2〉 = |e11〉.

Then we have

EM
AC = EM [ρAC (|ψ〉ABC)]

� r1EM (|ϕ1〉) + r2EM (|ϕ2〉)
= r1

{
2

[(
tr
√

ρA (|ϕ1〉)
)2 − 1

]}

= [p + a(1 − p)]

{

2

[(√
p + √

a(1 − p)√
p + a(1 − p)

)2

− 1

]}

= 4
√
ap(1 − p)

< 4
√
2p(1 − p) = EM

A|BC.

This leads us to the conclusion that EM
AB + EM

AC < EM
A|BC.

Case 2 There is only one Schmidt rank-2 state in |φ0〉AB and |φ1〉AB. Without lose of
generality, we might as well assume that |φ0〉AB is a Schmidt rank-2 state.

With the proper choice of basis sets, |ψ〉ABC can be expressed as

|ψ〉ABC = √
p(

√
b|̃0〉A |̃0〉B + √

1 − b|̃1〉A |̃1〉B)|0〉C
+√1 − p(α1 |̃0〉A + α2 |̃1〉A)(β1 |̃0〉B + β2 |̃1〉B)|1〉C ,

where 0 < b < 1 and the complex numbers αi (i = 1, 2) and βi (i = 1, 2) satisfy∑2
i=1 |αi |2 = 1 and

∑2
i=1 |βi |2 = 1, respectively. Similarly to the discussion in

Case 1, we get

EM
A|BC = EM [ρA (|ψ〉ABC)]

= 4
√
2
[
b(1 − b)p2 + p(1 − b)(1 − p) |α1|2 + bp(1 − p) |α2|2

]
,

EM
AB = EM [ρAB (|ψ〉ABC)] � 4p

√
b(1 − b),

EM
AC = EM [ρAC (|ψ〉ABC)]

� 4 |α2β1|
√
pb(1 − p) + 4 |α1β2|

√
p(1 − p)(1 − b).

It can be directly checked that EM
AB + EM

AC � EM
A|BC.

Case 3 Both |φ0〉AB and |φ1〉AB are Schmidt rank-2 states.
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By choosing a proper basis, we can get the expression of |ψ〉ABC
|ψ〉ABC = √

p(
√
c|̃0〉A |̃0〉B + √

1 − c|̃1〉A |̃1〉B)|0〉C
+√

1 − p(a1 |̃0〉A |̃0〉B + a2 |̃0〉A |̃1〉B
+ a3 |̃1〉A |̃0〉B + a4 |̃1〉A |̃1〉B)|1〉C ,

where 0 < c < 1 and
∑4

i=1 |ai |2 = 1. A similar discussion just as in Case 1 implies
that

EM
A|BC = EM [ρA (|ψ〉ABC)]

= 4
√
2
{
c(1 − c)p2 + p(1 − p)

[
(1 − c)(|a1|2 + |a2|2) + c(|a3|2 + |a4|2)

]

+ (1 − p)2(|a1|2|a3|2 + |a1|2|a4|2 + |a2|2|a3|2 + |a2|2|a4|2)
}1/2

,

EM
AB = EM [ρAB (|ψ〉ABC)]

� 4
[
(1 − p) |a1a4 − a2a3| + p

√
c(1 − c)

]
,

EM
AC = EM [ρAC (|ψ〉ABC)]

� 4|a2|
√
p(1 − p)(1 − c) + 4|a3|

√
p(1 − p)c;

which entails that EM
AB + EM

AC � EM
A|BC. The proof of Theorem 2 is complete. �	

4 Application

In Ref. [55], the authors conjecture that for an n-qubit state maximally entangled
with respect to their entanglement measure, all single-qubit reduced states are totally
mixed. In this section, by our entanglement measure, we prove that all single-qubit
reduced states of a maximally entangled state are totally mixed. In order to do this,
we first gives the boundedness of the entanglement measure EM .

Theorem 3 Let |ψ〉 be an n-partite pure state in the systemHd1 ⊗Hd2 ⊗ · · · ⊗Hdn ,
then

0 � EM (|ψ〉) � (d̃ − 1)
√
d̃n,

with d̃ =
∑n

i=1 di
n .

For a rigorous proof of this theorem the reader can refer to Sect. 7.
It can be seen from the theorem above that EM is a bounded entanglement measure

for any given system. For a pure state |ψ〉, it is separable if and only if EM (|ψ〉) = 0;
if it is a genuine entangled state, then EM (|ψ〉) > 0; if its entanglement degree
reaches the upper bound of EM , i.e., EM (|ψ〉) = (d̃ − 1)

√
d̃n , then we say that it is

maximally entangled. Recall that a state is totally mixed if its density matrix is the
scalar multiplication of an identity matrix.
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Theorem 4 If an n-qubit pure state |ψ〉 is maximally entangled with respect to EM,
then all single-qubit reduced states of |ψ〉 are totally mixed.
Proof We assert that

min
2�k�n

min
Ak

⎡

⎢
⎣

∑k
i=1

(
tr√ρAi

)2

k
− 1

⎤

⎥
⎦ = min

A2

[(
tr
√

ρA1

)2 − 1

]
, (12)

Otherwise, it can be assumed that theminimum on the right side of Eq. (12) is obtained
at a certain k′-partition with 2 < k′ � n, i.e.,

min
2�k�n

min
Ak

⎡

⎢
⎣

∑k
i=1

(
tr√ρAi

)2

k
− 1

⎤

⎥
⎦ =

∑k′
i=1

(
tr√ρAi

)2

k′ − 1.

Without loss of generality, we may as well assume that

tr
√

ρA1
= min

{
tr
√

ρAi
|i = 1, 2, . . . , k′} .

Then we have

min
2�k�n

min
Ak

⎡

⎢
⎣

∑k
i=1

(
tr√ρAi

)2

k
− 1

⎤

⎥
⎦ �

[(
tr
√

ρA1

)2 − 1

]

� min
A2

[(
tr
√

ρA1

)2 − 1

]

>

⎡

⎢
⎣

∑k′
i=1

(
tr√ρAi

)2

k′ − 1

⎤

⎥
⎦

= min
2�k�n

min
Ak

⎡

⎢
⎣

∑k
i=1

(
tr√ρAi

)2

k
− 1

⎤

⎥
⎦ .

This leads to a contradiction.

So EM (|ψ〉) = minA2

√
d̃n
[(

tr√ρA1

)2 − 1

]
. For an n-qubit pure state |ψ〉,

assume that it is maximally entangled. Then

EM (|ψ〉) = √
2n

and

min
A2

[(
tr
√

ρA1

)2 − 1

]
= 1.

123



Study of a monogamous entanglement measure for three-qubit... 2417

Assume that there is a single-qubit reduced state ρA, satisfying that (tr
√

ρA)2−1 > 1.
We might as well assume that ρA has eigenvalues λ1 and λ2; then,

(
√

λ1 +√
λ2)

2 − 1 > 1

and

λ1 + λ2 = 1.

This implies that

(
λ1 − 1

2

)2

< 0.

But it is impossible. So for all single-qubit reduced stateρA, we have (tr
√

ρA)2−1 = 1
and hence ρA = 1

2 I , namely, ρA is totally mixed. The proof is finished. �	
It should be pointed out that Theorem 4 is not sufficient for maximal entanglement.

In fact, there exists a separable state whose single-qubit reduced states are all totally
mixed. For example, the state

|α〉 =
(

1√
2
|00〉 + 1√

2
|11〉

)
⊗
(

1√
2
|00〉 + 1√

2
|11〉

)

is separable. However, all single-qubit reduced states of |α〉 are
1

2
|00〉〈00| + 1

2
|11〉〈11|,

which is a totally mixed state.
In Ref. [56], the authors conjecture that the following state in four-qubit system

HA ⊗ HB ⊗ HC ⊗ HD

|β〉 = 1√
6

[
|0011〉 + |1100〉 + ω(|1010〉 + |0101〉) + ω2(|1001〉 + |0110〉)

]

is maximally entangled, where ω = e
2π i
3 . Under our entanglement measure EM , this

conjecture is true. A straightforward calculation shows that

ρA(|β〉) = ρB(|β〉) = ρC (|β〉) = ρD(|β〉) = 1

2
|00〉〈00| + 1

2
|11〉〈11|,

ρAB(|β〉) = 1

6
|00〉〈00| + 1

3
|01〉〈01| + 1

6
|01〉〈10| + 1

6
|10〉〈01|

+ 1

3
|10〉〈10| + 1

6
|11〉〈11|

123



2418 Q. Li et al.

and

ρAC(|β〉) = ρAD(|β〉) = 1

6
|00〉〈00| + 1

3
|01〉〈01| − 1

6
|01〉〈10| − 1

6
|10〉〈01|

+ 1

3
|10〉〈10| + 1

6
|11〉〈11|.

Then,
(
tr
√

ρA(|β〉)
)2 =

(
tr
√

ρB(|β〉)
)2 =

(
tr
√

ρC (|β〉)
)2 = 2

and
(
tr
√

ρAB(|β〉)
)2 =

(
tr
√

ρAC(|β〉)
)2 =

(
tr
√

ρAD(|β〉)
)2 = 2 + √

3.

Hence,

EM (|β〉) = min
A2

4

[(
tr
√

ρA1
(|β〉)

)2 − 1

]
= 4.

This means that the entanglement degree of |β〉 reaches the upper bound of EM in
four-qubit system; namely, |β〉 is maximally entangled with respect to EM .

5 Conclusion

In this paper, we propose an entanglement measure EM for arbitrary-dimensional
multipartite quantum states, starting with the entanglement monotone Ek . Our
entanglement measure is equipped with useful properties for any states, including
boundedness, convexity and subadditivity. It vanishes for and only for the separa-
ble states. Furthermore, it satisfies the monogamous relation for three-qubit quantum
systems. We hope that this result can be generalized to entanglement monogamy of
n-qubit quantum states. We also establish a connection between a maximally entan-
gled state and its single-qubit reduced states. A necessary condition to characterize
maximally entangled states is obtained as an application of measure EM .

6 Appendix 1

Here we introduce the concept of the coefficient matrix. Every pure state |ψ〉 in system
Hd1 ⊗ Hd2 ⊗ · · · ⊗ Hdn can be represented as

|ψ〉 =
∏n

k=1 dk−1∑

j=0

λ j
∣
∣t j
〉
,

where, for j = 0, 1, . . . ,
∏n

k=1 dk − 1, coefficientsλ j are complex numbers satisfying

∏n
k=1 dk−1∑

j=0

∣
∣λ j
∣
∣2 = 1
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and
∣
∣t j
〉
are the basis states in H.

We denote the n systems by numbers 1, 2, . . . , n, respectively. Let qi (i =
1, 2, . . . n) be positive integers such that 0 � qi � di − 1, then the state |ψ〉 can
be rewritten as

|ψ〉 =
d1−1∑

q1=0

d2−1∑

q2=0

· · ·
dn−1∑

qn=0

aq1,q2,...,qn |q1q2 . . . qn〉 ,

which induces the following
(∏l

i=1 di
)

× (∏n
i=l+1 di

)
coefficient matrices whose

entries aq1q2...qn are arranged according to the subscript q1q2 . . . qn in lexicographical
ascending order

M1···l,l+1...n(|ψ〉)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0 · · · 0︸ ︷︷ ︸
l

0 · · · 0︸ ︷︷ ︸
n−l

· · · a0 · · · 0︸ ︷︷ ︸
l

dl+1 − 1 · · · dn − 1
︸ ︷︷ ︸

n−l

a0 · · · 1︸ ︷︷ ︸
l

0 · · · 0︸ ︷︷ ︸
n−l

· · · a0 · · · 1︸ ︷︷ ︸
l

dl+1 − 1 · · · dn − 1
︸ ︷︷ ︸

n−l

...
. . .

...

ad1 − 1 · · · dl − 1︸ ︷︷ ︸
l

0 · · · 0︸ ︷︷ ︸
n−l

· · · ad1 − 1 · · · dl − 1︸ ︷︷ ︸
l

dl+1 − 1 · · · dn − 1
︸ ︷︷ ︸

n−l

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Weabbreviate the coefficientmatrixM1···l,l+1···n(|ψ〉) asM1···l(|ψ〉)byomitting the
column subscripts l+1 · · · n. Each realignment of the n particles, described simply as
s1s2 · · · sl sl+1 · · · sn , a permutation of the set {1, 2, . . . , n}, generates correspondently
a
(∏l

i=1 dsi

)
×(∏n

i=l+1 dsi
)
coefficientmatrixwhere l is an arbitrary but fixed positive

integer satisfying 1 � l � n,

Ms1···sl (|ψ〉)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0 · · · 0︸ ︷︷ ︸
l

0 · · · 0︸ ︷︷ ︸
n−l

· · · a0 · · · 0︸ ︷︷ ︸
l

dsl+1 − 1 · · · dsn − 1
︸ ︷︷ ︸

n−l

a0 · · · 1︸ ︷︷ ︸
l

0 · · · 0︸ ︷︷ ︸
n−l

· · · a0 · · · 1︸ ︷︷ ︸
l

dsl+1 − 1 · · · dsn − 1
︸ ︷︷ ︸

n−l

...
. . .

...

ads1 − 1 · · · dsl − 1
︸ ︷︷ ︸

l

0 · · · 0︸ ︷︷ ︸
n−l

· · · ads1 − 1 · · · dsl − 1
︸ ︷︷ ︸

l

dsl+1 − 1 · · · dsn − 1
︸ ︷︷ ︸

n−l

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

7 Appendix 2

This appendix is devoted to prove Theorem 3. In order to prove this theorem, we need
the following lemma.
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Lemma 1 Let S = {d1, d2, . . . , dn} be a set of n positive numbers with di � 1 (i =
1, 2, . . . n). Divide S into any k (1 � k � n) subsets S j =

{
d j
1 , d j

2 , . . . , d j
n j

}
, where

1 � j � k and
∑k

j=1 n j = n. Then,

∑n

i=1
di

n
�

∑k

j=1

(∏n j

m=1
d j
m

)

k
.

Proof It is sufficient to verify that for any k (1 � k � n − 1) subsets S j ={
d j
1 , d j

2 , . . . , d j
n j

}
of the set S with 1 � j � k and

∑k
j=1 n j = n, there exists k + 1

subsets Tl =
{
cl1, c

l
2, . . . , c

l
hl

}
of the set S with 1 � l � k + 1 and

∑k+1
l=1 hl = n,

such that

∑k+1

l=1

(∏hl

m=1
clm

)

k + 1
�

∑k

j=1

(∏n j

m=1
d j
m

)

k
.

For k subsets S j =
{
d j
1 , d j

2 , . . . , d j
n j

}
with 1 � j � k and

∑k
j=1 n j = n, without

loss of generality we assume n1 � 2. Suppose that

T1 =
{
c11

}
=
{
d11

}
,

T2 =
{
c21, c

2
2 . . . , c2h2

}
=
{
d12 , d

1
3 , . . . , d

1
n1

}
,

Tl =
{
cl1, c

l
2, . . . , c

l
hl

}
= Sl−1 =

{
dl−1
1 , dl−1

2 , . . . , dl−1
nl−1

}
,

with 3 � l � k + 1.
It is apparent from the condition that

d11 � 1,
n1∏

m=2

d1m � 1,

k∑

j=2

( n j∏

m=1

d j
m

)

� k − 1.

A routine computation gives rise to

(k + 1)
k∑

j=1

( n j∏

m=1

d j
m

)

− k

⎡

⎣d11 +
n1∏

m=2

d1m +
k∑

j=2

( n j∏

m=1

d j
m

)⎤

⎦

=
(
kd11 + d11

)
(

n1∏

m=2

d1m − 1

)

− k
n1∏

m=2

d1m +
k∑

j=2

( n j∏

m=1

d j
m

)

+ d11
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�
(
kd11 + d11

)
(

n1∏

m=2

d1m − 1

)

− k
n1∏

m=2

d1m + k − 1 + d11

=
(
d11 − 1

)
+
[
k
(
d11 − 1

)
+ d11

]
(

n1∏

m=2

d1m − 1

)

� 0.

Rearranging the preceding inequality leads to

d11 +
∏n1

m=2
d1m +

∑k

j=2

(∏n j

m=1
d j
m

)

k + 1
�

∑k

j=1

(∏n j

m=1
d j
m

)

k
.

Thus we arrive at the conclusion that

∑k+1

l=1

(∏hl

m=1
clm

)

k + 1
�

∑k

j=1

(∏n j

m=1
d j
m

)

k
.

This completes the proof of Lemma 1. �	

Now we turn to prove Theorem 3.

Proof of Theorem 3 It can be immediately seen that EM (|ψ〉) � 0 for any pure state
|ψ〉. It remains to show that the upper bound of EM (|ψ〉) is (d̃ − 1)

√
d̃n . For any

ni -partite component system A = Hdi1 ⊗ Hdi2 ⊗ · · · ⊗ Hdini (di1, d
i
2, . . . , d

i
ni ∈

{d1, d2, . . . , dn}), let ρA has the eigenvalues λ1, λ2, . . . , λΠ
ni
m=1d

i
m
. Therefore,

λ1 + λ2 + · · · + λ
Π

ni
m=1d

i
m

= 1

and

tr
√

ρA =
Π

ni
m=1d

i
m∑

j=1

√
λ j �

√√
√
√
√

( ni∏

m=1

dim

)Π
ni
m=1d

i
m∑

j=1

λ j =
√√
√
√

ni∏

m=1

dim .

Consequently, we infer that

min
Ak

⎡

⎢
⎣

∑k

i=1

(
tr
√

ρAi

)2

k
− 1

⎤

⎥
⎦ � min

Ak

⎡

⎢
⎣

∑k

i=1

(∏ni

m=1
dim
)

k
− 1

⎤

⎥
⎦ .
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Meanwhile, Lemma 1 tells us that

min
2�k�n

min
Ak

⎡

⎢
⎣

∑k

i=1

(∏ni

m=1
dim
)

k
− 1

⎤

⎥
⎦ =

∑n
i=1 di
n

− 1 = d̃ − 1.

Hence,

min
2�k�n

min
Ak

√
d̃n

⎡

⎢
⎣

∑k
i=1

(
tr√ρAi

)2

k
− 1

⎤

⎥
⎦ � (d̃ − 1)

√
d̃n,

which means that EM (|ψ〉) � (d̃ − 1)
√
d̃n . Thus Theorem 3 is completed. �	
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